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Abstract. The wave finite element (WFE) method is now an established numerical method
for obtaining the structural response of periodic structures. From a model of a substructure ob-
tained from any finite element software, it allows to get dispersion curves and responses of finite
periodic structures with a low calculation cost. Here, we consider some recent improvements
of the method. First of all, the original WFE is often formulated with some point loads on the
structure, but we show that it is possible to extend this to the consideration of general loads as
pressure waves or moving loads for which external loads are applied on each substructure. Sec-
ond, the classical WFE deals with structures in the frequency domain. It would be interesting to
consider the analysis of periodic structures in the time domain, for instance to deal with blast
loads. We present here one possibility to do so by computing absorbing boundary conditions in
the time domain. By considering supplementary variables at the boundary, a new formulation
can be obtained and a classical equation with extended mass, damping and stiffness matrices
can be formulated in the time domain and solved by classical algorithms like the Newmark
scheme.
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1 INTRODUCTION

The wave finite element method (WFE) is often used to predict the dynamic response of
periodic structures under harmonic loading like railway tracks, pipelines, ribbed plates, tires,
reinforced panels or metamaterials. This consists in computing wave modes (propagation con-
stants, wave shapes) of a periodic structure from the finite element (FE) model of a substructure
and its related mass, damping and stiffness matrices which can be obtained from any FE soft-
ware. Afterwards, these wave modes can be used to calculate the harmonic response of periodic
structures in an efficient way, i.e., by computing small matrix systems for one substructure, or
a few of them, see for instance the works in [1, 2, 3, 4].

First of all, the original WFE considers mainly some points loads on the structure, but we
show here that it is possible to extend this to the consideration of general loads as pressure waves
or moving loads for which external loads are applied on each substructure. Several applications
of this are possible. At first is the computation of civil engineering structures such as bridges
which have extended loads and various displacement and reaction forces at supports, or the
computation of structures under moving loads such as railways tracks under the dynamic loads
of a train.

Second, it is a matter of fact that the classical WFE deals with structures in the frequency do-
main. But it would also be interesting to consider the analysis of periodic structures in the time
domain, for instance to deal with shocks or blast loads. We present here one possibility to do
so by computing absorbing boundary conditions in the time domain. For dispersive media like
beams [5], multi-layered systems [6] or general periodic structures [7], absorbing BCs can be
formulated in terms of boundary operators involving complicated functions of the frequency —
e.g., square roots of the frequency — which, as such, cannot be converted to simple functions of
time after inverse Fourier transforms. To solve this issue, the impedance relation at the boundary
of a periodic structure is first written in the frequency domain, then this impedance frequency
function is decomposed as a rational function for which poles and residues are computed. By
considering supplementary variables at the boundary, a formulation in the time domain can be
obtained. Finally, a classical equation with extended mass, damping and stiffness matrices can
be formulated in the time domain and solved by classical algorithms like the Newmark scheme.

The rest of this paper is organized as follows. In section 2, the main steps of the WFE
method are recalled. In section 3, the case of complex and moving loads are considered. Then
section 4 is concerned with the formulation of time domain absorbing boundary conditions for
periodic structures and the solution of time domain structural dynamics problems. Numerical
comparisons with analytical or an equivalent infinite full FE model are presented. Concluding
remarks are finally brought in section 5.

2  WFE method

The present paper investigates the dynamic response of infinite 1D periodic structures subject
to harmonic or time-dependent loadings. For instance, a schematic of a periodic structure made
up of identical substructures is shown in Fig. 1. The substructures under concern can be of
arbitrary shape and are supposed to be linear, elastic, isotropic and damped (viscous damping).
Also, the excitations are applied on the structure encompassing those substructures which can
be infinite or bounded by two left and right boundaries.

The wave propagation analysis in 1D periodic structures can be conducted with the WFE
method [2, 4, 8]. The basics of the method are recalled hereafter. Let us consider infinite
structures under harmonic disturbance e™* which are built from identical substructures as shown
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Figure 1: Periodic structure of infinite length, and FE mesh of a substructure.

in Fig. 1, are supposed to share the same FE mesh, and are modelled by means of identical mass,
damping and stiffness matrices M, C and K. The related dynamic equilibrium equation is given
by:

D;; D;. D qr F;
D;; Dy Digr az| = |F. (D
Dgr; Dgrr Dgr| |ar Fr

where q and F refer to the displacement vector and the force vector (respectively), and where D
is the dynamic stiffness matrix of the substructures (similar for all the substructures) expressed
by D = —w?M + iwC + K. The FE mesh of a substructure is shown in Fig. 1, and involves
internal (/) degrees of freedom (DOFs), left (L) and right (R) boundaries which are described
with the same number n of DOFs. If we assume that the internal DOFs are free from excitation,
e.g., F; = 0, we can remove q; and rearrange Eq. (1) to yield the following transfer matrix
relation between the right and left boundaries of the substructure:

up = Suy, (2)
where uy and uy, are 2n x 1 state vectors expressed by:
_ | 9r _ | dr
uR - [ FR :| ) U.L - |: _FL :| . (3)
Also, S is a symplectic 2n x 2n matrix (also called transfer matrix) expressed by:

S — |: _( 2R>_1D2L | _< ER>_1 :| (4)
D%, — Dyx(Diz)'Di, | —D5z(Dir) " ]’

where D™ refers to the dynamic stiffness matrix of the substructure condensed on the left and
right boundaries [9].

The eigenvalues and eigenvectors of the transfer matrix S occur in pairs as (15, ¢;) and (15 =
1/, @%) with |15 < 1 (see [3] for further details about the computation of the eigensolutions
of S). Also, the eigenvectors ¢; (resp. cz);) have the meaning of wave shapes, for the waves
traveling to the right and left directions (respectively) of the periodic structure. Those vectors
of wave shapes are of size 2n x 1 and are usually partitioned as follows:

o=lon] - e=l3E)
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where ¢ ; and d);j (resp. ¢p; and ¢}j) are n X 1 vectors involving displacement (resp. force)
components. The related n x n matrices of wave shapes — namely, ®,, ®;, ®r and ®}, — are
given by:

q)q:[d)ql"'d)qn]? (I);:[d);ld);n]? (I)F:[¢F1"'¢Fn]7 @}:[¢}1¢;n]6
(6)

A state vector at any substructure interface can then be decomposed on these wave modes by
j=n g=n
u=>y Q¢+ Q9 (7)
j=1 j=1

where @; and ()} are respectively the amplitudes of the right and left propagating waves in the
considered section.

3 WFE with complex loads

3.1 Equations

We consider now the case where the structure is under a distributed load that can be applied
on each substructure. For loads inside a substructure, relation (1) yields

q; = D;} [Fr — D;zqr — Dirqg| (8)

and so relation (2) is transformed to a relation linking the state vector in sections n (between
substructures n — 1 and n) and the state vector in section n + 1 (see [10] for details)

u™t = Su 4 p™, 9)

with .
(n) _ q " b(n) _ DqIFI 10
u |:_F(Ln)‘| ) |:DfIFI o F%zt ( )

where F¢/* is the external load applied in section n + 1 and
Dyr| _ —(Dir) "D},
- * * * —11y* (1 1)
Dy D% — DRR(DLR> D7,
where the superscript * means that the matrix is condensed on the boundary, for instance,
D;; = Dyr—DyD; Dig
D;, = D;D;} (12)

Finally, the state vector in section n is related to the state vectors of sections 1 and N + 1 by

n—1
u™ =8 u® 43 " grhtp® (13)
k=1
or
N
u(N+1) _ SN—n+1u(n) + Z SN—kb(k) (14)
k=n

where the sum including b®*) allows to take into account all the loads applied between the two
sections. Projecting on the wave modes, the state vector u™ in section n and load vector b(*)
in section k can also be written in terms of wave amplitudes by

u” = Q™ + Q™
b® = @Qy + ¢ Q" (15)
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3.2 Case of moving loads
An interesting case concerns moving loads. For a moving load at speed v, with a substructure
of length L, the amplitude of the load in section (k) is related to the amplitude of the load in
section (0) by
* kel ~x
QE(k) — k% QE(O)
Q" = & qy (16)

because the loads on the different substructures are related by f,,(¢) = f,-1(t — L/v). From
relations (13) and (15), one gets

u” = Q™ 4 Q™
n—1
— (:b[,l,n (Q + Zﬂ*k+ng€)> + (I)*I-l'_n < + Zuk+lQ*(k > (17)
k=0

with p the diagonal matrix made of the propagation constants /; on the diagonal and Q, Q* are
free wave amplitudes in the structure determined by the boundary conditions. As the precedent
relation should be bounded for n — oo, we get

k=00 m
_ Z “k+lQ’£?(k) — _ﬁQEO) (18)
k=0 L—pe™
For the left side, we get
k=00 62’%
Q=> p'Qy" = — QY (19)
k=1 L — pet
Finally, one gets
jwl
1—pe'v 1—pe ™

3.3 A simple example

Consider the very simple example of a bar undergoing a longitudinal displacement subject

to a moving force
2

u
pom = B+ f Q1)
We have k = 4/ % =%c= \/%, f(z,t) = 0(x — vt) and the wave modes are
1 L [
¢ = [—zkE} = [zkE] (22)

The propagation constant is 1 = e~**L and the load amplitudes are obtained from the load in

the period [0, L]. The solution of (21) such that u(0) = «/(0) = 0 is given by

/ — sin(k(x — 1)) f(t)dt (23)
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So that for x = L and f(t) = Le=™"", one gets

T

1 Lo , A
L) = — tk(L—t) _ _—ik(L—t) —zwt/vdt
u(L) 2ikEv /0 (e ‘ )e
B 1 (e—iwL/v — ekl e—iwL/U _ e—ikL) (24)
- 2%kEv —ik —iw/v ik — iw/v
and
1 —_iwe—iwL/v — iketkL —_iwe—iwL/v 4 ike— kL
EJv(L) = — “ e 25
w(L) Qik’v( —ik —iw/v ik —iw/v ) (25)

Using relation (9) and the solution of (21) such that b = T[u(L) FEu'(L)], the load ampli-
tudes are obtained by decomposing the solution at x = L on the wave modes by

© _ To*Jb
B TP JP
et _ o—ikL
T 2kBu(k—2)
«0) _ ToIb
g TOJP*
—iwl kL
_ _c r-C (26)
2kEv(k + 2)
with
0 1
J= {_1 0] 27)
The amplitudes of the right-going and left-going waves are thus given by, using (20),
1
@ = 2kEu(k — )
1
* _— 28
@ 2kEv(k 4 2) %)
and we recover the displacement at x = 0 by
1 1
u f— — P—
2kEv(k —2)  2kEv(k+ %)
T B - =)
1
_ 29
Evw?( — %) 29

which is the analytical solution of (21). Following the same procedure, this can be extended to
more complex structures with many DOFs in each section.
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4 Absorbing boundary conditions in the time domain
4.1 WFE formulation

Consider now a periodic structure involving a finite number N of substructures which is
enclosed between two left and right boundaries S7, and S where absorbing BCs are considered
(see Fig. 2). Such BCs are used to describe the coupling effect between the periodic structure
and two semi-infinite periodic structures, that would expand to the left and right directions. The
related impedance matrices for the left and right boundaries S;, and S — namely, Z; and Zp
— can be defined, in the frequency domain, as follows:

Fr=%2rqr , Fgr="7Zzrqg, (30)

where q;, and qp (resp. F and Fy) are the displacement (resp. force) vectors (size n x 1)
for the periodic structure on Sy, and Sg. Following the WFE procedure and expanding those
vectors on the basis of wave shapes, this yields [9]:

. =®,Q; , ar=?,Qg, (31)

and
F,=-2.Q; , Fr=®:Qp, (32)

where Q7 (resp. Qpg) is the vector of wave amplitudes, at position Sy, (resp. Sg), for the
waves traveling to the left (resp. right) direction of the structure. The fact that left-going (resp.
right-going) waves are only considered at Sy, (resp. Sg) results from the absorbing BC, i.e., the
fact that no wave comes from infinity. So we get the following expressions for the impedance
matrices:

Z; = —@}(@;)_1 , Zp=®p(®,)". (33)

Let us decompose the impedance matrices Z; and Zy which are complicated functions of
frequency that do not generally possess an analytical expression, via rational approximations

like in [7]:
P P

R R
Z,=Y ———+K, , Zp=)Y —"— +Kp, (34)
oy ‘W — PLk 1 "W — PRk
where py . and pg, denote poles (k = 1, ..., P), and R, and R g, denote matrices of residues.

Some of these usually appear in conjugate pairs, i.e., (prx, Drx) and (pre, Prr ), and (R, Rpx)
and (Rgg, Rgr). As aresult, Eq. (34) leads to:

Q . p
R —R R R
Z, =5 o™ { L(?k)} {PremReren} Ry e )
2 — 2iwR 2 S
—~ —w' 2w {Prek} + [PLew) heaou1 W T PLk

where 2() < P. Only the left impedance is described as the right impedance follows similar
expression by replacing the subscript L by R. To remove the denominator terms in Eq. (35),
let us introduce n x 1 vectors of supplementary variables X, and Xy, and let us rewrite Eq.
(30) by means of Eq. (35) as follows:

Q P
F, = Z 2 (iwR{Rrem } — R{PrewmRiew) Xok + Z R (iw) X k-0 + Krqr (36)
k=1 k=2Q+1

34



D. Duhamel, B. Claudet, T. Hoang, G. Foret, J.M. Mencik

where:

(—W2 - 22@5&{2%(%)} + |pL(2k)’2) Xy = dr fork=1,...,Q,
(—w? — iwpre) Xrk-0) = dL fork=02Q+1),...,°P, (37)

Finally, let us introduce the following (P — Q)n x 1 vector X, defined by:

X
Xro
Xy = |— | (38)
X1(@+1)

| XLr-@) |

The block components of the matrices occurring in Egs. (36) and (37) represent polynomials
of iw of orders 0, 1 or 2, which as such can be simply and quickly converted to the time domain
(see hereafter). By separating the terms of identical powers of 7w, and by invoking the classical
time-frequency transforms q(w) — q(t), iwq — ¢, —w?q — qand X(w) — X(t), iwX — X,
—w?X = X (where dot and double-dot notations mean single and double time derivatives,
respectively), this yields:

wglelglxlg)-5) o
where:
[0 0 0
M, = | O |blkdiag{L,}, 0 ,
0 0 blkdiag {I,}; s,
[ 0| 2R{[Rre - Rieo)} [Rieo+n - Rep)
C, = | 0 |blkdiag{—2R{prem}l.}7 0 ,
0 0 bikdiag {—prila}y o041
[ Kp —2R{[Pr@Rre) - PregRice)]} |0
K, = 1o ®1I, blkdiag {|prew L}, 0|,
| —Lpo2g)1 ® 1, 0 0
(40)

where © denotes the Kronecker product.
Let us denote by M, C and K the mass, damping and stiffness matrices of the periodic
structure (/N substructures), and let us write the related equation of motion as follows:

Mg+ Cq+ Kq =F, 41)
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where q = q(¢) and F = F(t) are the displacement and force vectors, respectively. In this

case, the force vector is expressed by F = [FTFZFZ] where F;, and Fp refer to the force
vectors on S, and Sg (absorbing BCs), and F; refers the force vector for the internal DOFs (1)
T T .T

of the structure. Also, the displacement vector is expressed by q = [q; q; qp| Where q; is the
displacement vector for the internal DOFs. By considering the absorbing BCs (Eq. (39)), this
yields:

Moy + Ciory + Kiory = f. 42)
with
as F;
qar 0
y=|4ar |, =] 0 (43)
Xz 0
Xg 0

In (42), the matrices M., Cior and Ky, are given by:

M;; M, Mg 0 0
My, Mp, Mg 0 0
M. = | Mg Mgy Mgr 0 0 ;
0 0 0 ML(XX) 0
0 0 0 0 M)
[ C;; Ci Crg 0 0
Crr Crr Crr —Cpryx 0
Ciot = Crr Crr Cgr 0 —Crx) | »
0 0 0 (CL(XX) 0
0 0 o0 0 Crux)
[ K, Kir Kir 0 0
Krr Ko —Kpgg Krr —Krgx) 0
Kioe = | Kgr Krr Kgrr — Kggq 0 —Krex) |,
0 Krixq) 0 Krxx) 0
Y 0 Kr(xq) 0 Krxx)

(44)
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where:
[ blkdiag {I,}< ‘ 0
Mpxx)y = . P
] 0 ‘ blkdiag {1}, 504
Crgxy = [ 2R { [RL(Z) RL(ZQ)]} | [RL(2Q+1) RLN} ] ’
blkdiag {—28‘%{pL(zk)}In}f:1 \ 0
Crxx)y = P ’
I 0 ‘ blkdiag{_kaIn}k:2Q+l
Krwy = K,
Krgx)y = [ —2R{[ProRre - PreoRue) ) |0 ],
- _]IQXI ® In
Krxg = ’
| —Lp2gx1 @1,
. . Q
blkdiag {[prn|’L.},, | O
Kixx) = =1 , (45)
0 0

and similar expressions for the right boundary.

Eq. (42) represents a second-order differential matrix equation for the displacement vector
q and the vector of supplementary variables X = [X?XZ]7. This indeed represents a classical
dynamic equation, in the time domain, of a structure with absorbing BCs and subject to an input
force vector F; = F(t), with the only modification that supplementary DOFs are added at the
boundaries. Therefore, this equation can be solved in a standard way via a time integration
numerical scheme (e.g., Newmark scheme).

4.2 Euler-Bernoulli beam on an elastic foundation

We consider the example of the dynamic response of an infinite Euler-Bernoulli beam lying
on an elastic foundation as shown in Fig. 2 and subject to some forces f(z,t). The governing
equation of motion of the beam is given by:

o | 0

pSvU + ET <8$4 +£@

) + kpv = flz,1), (46)

where v = wv(x,t) represents the transverse displacement, p is the density, S is the cross-
sectional area, F is the Young’s modulus, [ is the inertia moment, and & is a damping parameter.
For harmonic disturbance of the form f(z)e™*, Eq. (46) leads to:

4
(—pSw? + kp)v + EI(1 + z’wé)%‘j = f(2), (47)

For this simple case, there exist analytical expressions of the matrices of wave shapes ®,,
@7, & and PF, see Eq. (6). Hence, by expressing the transverse displacement v together with
the rotation ¢ = dv /0, this yields:

v| e—ikx 0 Q . eikx 0 Q*
plom o Slal ey G e
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S Sr
Figure 2: Infinite flexural beam on an elastic foundation.
where:
11 11 pSw? — kp \"*
1 {—zk —k:} ’ a [zk k‘] ’ (El(l + iwé) )

Also, by expressing the shearing force V' = —FEI(9%0/0x?) and the bending moment M =
EI(0%v/0x?), this yields:

e ik k N N e
b =FElk l_l 1] , @, =FEIk l_l 1 (50)
Therefore, the impedance matrices are written as:
EIK* [ 2ik  —(1+1)]
_ _ ®H* -1
and B2
B 1 2tk 141
Zo= (@)t = [1 I (52)

These are analytical expressions of the impedance matrices that could also have been obtained
numerically by means of the WFE method.

Consider an infinite beam of rectangular cross-section having the following parameters:
height & = 0.001 m, width b = 0.01 m, Young’s modulus F = 2.2 x 10! Pa, density p = 7800
kg/m?, damping parameter & = 0.001 s. Also, the lineic stiffness of the elastic foundation is
kr = 1 N/m?. The system is at rest at time ¢t = 0 — i.e., v(2,0) = 0 and ©(z,0) = 0 — and,
for t > 0, it is excited by a point harmonic force of frequency f, = 5 Hz (at z = 0):

f(x,t) = cos(2m fot)d(x) fort > 0. (53)

A beam of finite length L — i.e., x € [—L/2, L/2] where, for instance, L. = 5 m — excited
at x = 0 (Eq. (53)) is considered as shown in Fig. 2. Here, the system beam-foundation is
modeled by means of 500 identical substructures that represent identical two-node Hermitian
beam elements of length d = 0.01 m. The rational approximations of the impedance matrices
Z; and Zi with P = 12 poles/residues (see Eqs. (34)) are computed with the MATLAB
rationalfit function.

The differential matrix equation (42) is solved with the Newmark algorithm where At = 0.01
s,y = 0 and y° = 0. The related transverse displacement field, at ¢ = 20 s, is shown
in the left of Fig. 3 along with the analytical harmonic solution. In this case, the proposed
solution closely matches the analytical one, as expected. Finally, the right of Fig. 3 shows the
history of the displacement solution at position x = L /2. Again, it is seen that, after a certain
time (transient period), the solution issued from the proposed approach stabilizes towards the
harmonic solution.

38



D. Duhamel, B. Claudet, T. Hoang, G. Foret, J.M. Mencik

0.015 0.02

0.01 0.015
=] = 0.01
S ooosk % =
S e
= 2 0005
) 0 13}
= =
g g
< 0008 &
g — -0.005 (il
L o1k -5
-] o -001
Y 0015
o . Wt N . - ‘
25 .2 45 -4 05 0 05 1 15 2 25 o 2 4 6 8 10 12 14 16 18 20
Position (m) Time (s)

Figure 3: Transverse displacement field of the beam on the elastic foundation at ¢ = 20 s (left): (blue crosses)
Proposed approach; (red line) analytical harmonic solution and time response at x=L/2 for ¢ € [0, 20] s (right)
(blue line and crosses) Proposed approach; (red line) analytical theory, harmonic response.

4.3 Periodic structure with 2D substructures

We consider now a 2D beam with periodic distributions of holes and elastic supports (springs
of stiffness K) as shown in Fig. 4. Here, square substructures of dimensions 2 x 2 m? with
holes of radius 0.4 m are considered which are similar to those depicted in Fig. 1. Regarding
the modeling of the periodic supports, a nodal stiffness of K /2 (vertical direction) is added
to the FE model of the substructures at the left and right boundaries (bottom node). Other
substructure parameters are: thickness e = 0.005 m, Young’s modulus £/ = 7 x 10'° Pa,
Poisson’s ratio v = (.35, density p = 2700 kg/m?, and stiffness K, = 105 N/m. Rayleigh-type
damping matrices C = aM + bK are also considered where a = 0.01 s~ and b =5 x 107° s

Fiy(t)

Absorbing BC' g am Absorbing BC

Figure 4: Schematic of an infinite periodic structure with periodic elastic supports.

The time response of the infinite periodic structure subject to a vertical point force Fj(t)
at z = 0 (top node) is analyzed. Within the framework of the proposed approach, a periodic
structure involving N = 20 substructures and absorbing BCs is considered as shown in Fig.
4. In this case, the structure has a length of L = 40 m. The rational approximations of the
impedance matrices Z;, and Zr (Eq. (34)) are expressed by means of P = 15 poles/residues.
The time response of the structure is computed over a time range of [0, 0.1] s by solving the
differential matrix equation (42) with the Newmark algorithm where At = 107%s, y* = 0
and y° = 0. For comparison purpose, an equivalent FE model of an “infinite” structure with a
larger number of substructures (200) is considered and simulated over the time range [0, 0.1] s
which is supposed to be small enough to prevent wave reflections (free boundaries). Consider
a harmonic point force of magnitude Fy(t) = 10* cos(2m x 100t) acting at z = 0, and assume
that the structure is at rest at t = 0. The time response is analyzed over a time range of [0, 0.1] s
which is supposed to be broad enough to include several oscillations (10 in this case) and cover
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the transient phase. Especially, the time variation of the transverse displacement at x = 20 m
(right boundary, top node) can be computed as shown in Fig. 5. It is shown that the proposed
solution perfectly matches the reference one over the whole time range. It is also numerically
stable, i.e., a smooth curve that well predicts the oscillating nature of the signal.
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Figure 5: Harmonic force: time response at x=L/2 (top node, vertical displacement). (blue crosses) Proposed
approach; (red line) reference FE method.

5 Conclusion

A FE procedure has been proposed to model infinite periodic structures subject to distributed
or moving loads, or localized time-dependent excitations. For instance, in the case of moving
loads, the load is applied on each substructure. Concerning time domain problems, first, us-
ing the WFE method to express the absorbing BCs by means of impedance matrices, in the
frequency domain, impedance matrices have been rewritten in terms of polynomials of the fre-
quency iw up to order 2. Then, they are simply converted to the time domain and the global
dynamic equation is solved by the Newmark algorithm. Follow-on works could include the
analysis of infinite periodic structures with localized nonlinear effects.
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