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Many numerical or analytical methods have been developed to compute the response of a railway
track on a uniform foundation. The rail can then be modelled by different beam models. It was shown
that for uniform railway tracks, Euler beam model and Timoshenko beam model give close results. In
the case of damaged railway track components, the defaults can cause higher displacements of the rail
leading to higher shears. Thus, in this case, the Timoshenko beam model can be more interesting. In
this paper, a semi-analytical model for a railway track resting on a non-uniform foundation is proposed
where the rail is modelled by a Timoshenko beam. Then, the results obtained with Timoshenko beam
model and Euler Bernoulli beam model are compared for both a uniform railway track and a damaged
railway track.
Keywords: Railway tracks dynamics, Timoshenko beam, Euler beam, Non-uniform foundation

1. Introduction

To compute the dynamics of railway tracks subjected to moving loads, many authors modelled the
tracks with a periodically supported beams [1, 2, 3, 4]. Some of them [3, 4] gave analytical results
for describing the dynamics of a homogeneous railway track. In many cases, for instance tracks with
damaged supports or transition zones, the track can not be considered as homogeneous. To compute
the dynamics of this type of tracks, many authors [5, 6] used fully numerical models. Hoang et al
developed an analytical method to compute the behaviour of a beam resting on a non-uniform viscoelastic
foundation where the supports are modelled as mass-spring-dampers systems and an Euler beam model
is used [7].

Contrary to Timoshenko beams, when an Euler beam is deformed the sections remain perpendicular
to the neutral axis. Hoang et al showed [8] that for homogeneous tracks, Euler and Timoshenko beam
models give close results. In the non-uniform case, especially for a damaged track, displacements have
a larger amplitude, leading to higher shears. Thus, in this case, Timoshenko beam model can be more
interesting.

This article develops the analytical method proposed by Hoang et al [7] for Timoshenko beams.
Results obtained with the two beam models are then compared on a uniform track and a damaged track.

1



2. Track model

2.1 Supports description

A rail supported by periodic supports (sleepers) is modelled. Each support contains two elastic stages:
the rail pad and an elastic stage under the sleeper (see figure 1). In the examples used thereafter, a
ballastless track is considered. Therefore the under-sleeper elastic stage can be reduced to the under-
sleeper pad. For ballasted track this second elastic stage must take into account the ballast stiffness too.
The supports are supposed punctual and are modelled as mass-spring-dampers systems.

l

vQ

Kf

Kr

Figure 1: Model of the periodically supported beam.

In the frequency domain, the dynamic stiffness of the two elastic stages is given by (1) where k is the
stiffness and ξ the damping coefficient and the subscript r is for the rail pad and f for the foundation or
the under-sleeper pad. {

Kr = kr + iωξr

Kf = kf + iωξf − ω2M
(1)

Combining the two precedent equations, the support dynamic stiffness is given byKs =
(
K−1r +K−1f

)−1.

2.2 Timoshenko beam model

In this paper, the rail is modelled by a Timoshenko beam of constant section S, with a flexion rigidity
EI and subjected to an external force F . The Timoshenko beam model was introduced [9] to take into
account shear deformation and rotational bending effects in beam flexions. In that aim, a degree of
freedom θ describing the section angle is added to the Euler beam model. The dynamic equation of a
Timoshenko beam’s flexion are given in the frequency domain by (2).{

κSG∂xθ̂ = κSG∂2xŵ + ρSω2ŵ + F̂

− κSG∂xŵ = EI∂2xθ̂ − (κSG− ρIω2)θ̂
(2)

The shear modulus G is a material property defined as the ratio between shear stress and shear rate.
The Timoshenko shear coefficient κ is a parameter which depends on the section’s geometry. In the limit
EI

κL2SG
� 1 -ie. for beam with a high shear rigidity compared to his flexion rigidity- the Timoshenko

beam model converges to the Euler beam model.
Considering only the rail deflexion ŵ (2), can be reduced to:

EI
[
∂2x + λ21

] [
∂2x − λ22

]
ŵ =

[
1− EI

κSG
∂2x −

ρIω2

κSG

]
F (x, ω) (3)

With,

λ21,2 =

√
ω4

4

(
ρI

EI
− ρS

κSG

)2

+
ρSω2

EI
± ω2

2

(
ρI

EI
+

ρS

κSG

)
(4)
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3. Periodical support system

The supports are supposed to be periodically distributed. The period has a length L = ml where
m is an integer and l is the spacing between two consecutive supports. The train is modelled by a set
of constant moving loads {Qj} characterized by the distances {Dj}. The train’s speed v is constant. It
is also supposed that the reaction forces in a period are the same as the reaction forces in the previous
period with a temporal delay of L

v
(so-called "periodic condition"). Calling Rk the reaction force due to

the support k, (5) is obtained.

∀ (n, p) ∈ Z2, Rnm+p(t) = Rp

(
t− nL

v

)
(5)

Thus, in the temporal domain the force F follows:

F (x, t) =
∑
n∈Z

m=1∑
p=0

Rp

(
t− x− pl

v

)
δ(x− pl − nL)−

K∑
j=1

Qjδ (x−Dj − vt) (6)

And, in the frequency domain, F̂ :

F̂ (x, ω) =
∑
n∈Z

m−1∑
p=0

R̂p(ω)e
−iω x−pl

v δ(x− nL− pl)−
K∑
j=1

Qj

v
e−iω

x+Dj
v

= e−i
ωx
v

(∑
n∈Z

m−1∑
p=0

R̂p(ω)e
iω pl

v δ(x− nL− pl)−
K∑
j=1

Qj

v
e−iω

Dj
v

) (7)

F̂ (x, ω)ei
ωx
v is L periodic and we have:

1

L

∫ L/2

−L/2
F̂ (x, ω)ei

ωx
v e−2iπn

x
Ldx =

1

L

m−1∑
p=0

R̂p(ω)e
i(ωv−

2πn
L )pl − δ0n

v

K∑
j=1

Qje
−iω

Dj
v (8)

Thus, using the method described in [8], (9) is obtained.

ŵ(x, ω) =
m−1∑
p=0

R̂p(ω)e
iω pl−x

v η(pl − x, ω)− η(0, ω)Q(ω)e−i
ωx
v (9)

Where,

η(x, ω) =
ei
ωx
v

2EI (λ21 + λ22)

[
C1

λ1

sinλ1(L− x) + e−i
ωL
v sinλ1x

cosLλ1 − cos ωL
v

− C2

λ2

sinhλ2(L− x) + e−i
ωL
v sinhλ2x

coshLλ2 − cos ωL
v

]

Q(ω) = p̃0L

v
η(0, ω)−1

K∑
j=1

Qje
−iω

Dj
v

C1,2 = 1−
ρIω2 ∓ EIλ21,2

κSG

p̃0L =
xSG− ρIω2 + EI ω

2

v2

xSG
(
EI ω

4

v4
− ρSω2

)
− ρSI (xG+ E − ρv2) ω4

v2

(10)
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Evaluated at x = 0, the equation (9) gives :

ŵ(0, ω) =
m−1∑
p=0

R̂p(ω)e
iωpl
v ηp(ω)− η0(ω)Q(ω) (11)

The equation (11) is very similar to the equation given in [7]. The differences between the two beam
models are contained in the exact expression of ηp(ω) = η(pl, ω) and p̃0. Indeed, the Euler beam model
can be obtained by taking the limit G → +∞ which leads to C1 = C2 = 1 and λ1,2 =

√
(ρSω2)/(EI).

The rest of the method remains identical. Therefore, only the key steps are reminded in the following.
From (9), remarking ηm+p−q = ηp−q, for x = ql (q ∈ Z) it can be shown that:

ŵ(ql, ω)eiω
ql
v =

m−1∑
p=0

R̂p(ω)e
iω pl

v η(p−q) − η0Qe(ω) (12)

Defining wq and Rq as in (13), (14) and (15) are obtained.{
wq(t) = wr

(
ql, t− ql

v

)
Rq(t) = Rq

(
t− ql

v

) (13)

ŵq(ω) =
m−1∑
p=0

R̂p(ω)η(p−q) − η0Qe(ω) (14)


η0 η1 · · · ηm−1
ηm−1 η0 · · · ηm−2

...
... . . . ...

η1 η2 · · · η0




R̂0

R̂1
...

R̂m−1

 = η0Qe


1
1
...
1

+


ŵ0

ŵ1
...

ŵm−1

 (15)

Writting 1 =t (1, . . . , 1), (15) can be rewritten in a reduced form:

C R̂ = η0Qe1+ ŵ (16)

(16) links the deflexion of the beam with the reaction forces. This relationship only comes from the
periodicity of the problem and the beam behaviour. Another relationship is needed to close the problem.
This other relationship comes from the support stiffness and can be written as in (17).

ŵ = −D R̂ (17)

Where D = diag(1/Ks0, 1/Ks1, . . . , 1/Ks(m−1)) and 1/Ksp is the stiffness of the support p. Com-
bining (17) and (16), (18) is obtained.

R̂ = QeA
−11 (18)

Where A = η−10

(
C+D

)
.

A is a m × m matrix which depends on the frequency and whose computation is fast and simple.
However, when one of the stiffness is equal to zero (lack of a support, broken support) this matrix is not
well-defined. To study these cases, an iterative method is developed in [7] and reminded in the next part.
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4. Iterative resolution for non-uniform tracks

The beam considered has a local part where the supports have different behaviours (reinforced or
damaged) from normal supports. This local different part is included in a larger zone of length L = ml
(see figure 2). This zone is taken large enough so that the central different part has no effect on the
borders of the large zone. This hypothesis makes possible to consider the track periodic and therefore
to use the results obtained with periodic support systems. On the other hand, this hypothesis should be
verified aposteriori.

Figure 2: Periodically supported beam with one damaged support. In this illustration, the period contains
m = 5 supports, one of them being broken.

(14) and (15) represent a convolution product plus a constant part. Therefore it can be rewritten :

ŵ = η ? R̂− η0QeI (19)

Performing a discrete Fourier transform defined by (20) on (19) gives (21)

∀f,Fq {f} =
m−1∑
p=0

ei2π
pq
m fp (20)

Fq
{
R̂
}
= κqFq {ŵ}+mQeδ1q (21)

Where Qe = η0Qe/F0

{
η̂
}

and κq =
(
Fq
{
η̂
})−1.

The discrete Fourier transform Fq
{
η̂
}

is given by :

Fq
{
η̂
}
=

1

2EI (λ21 + λ22)

[
C1

λ1

sinλ1l

cos lλ1 − cos
(
ωl
v
+ 2πq

m

) − C2

λ2

sinhλ2l

cosh lλ2 − cos
(
ωl
v
+ 2πq

m

)] (22)

As in the previous part, the problem closure is given by the support stiffness. This relationship can be
written :

R̂ = −Kŵ

= −
(
K−KsnI

)
ŵ −Ksnŵ

= R̃−Ksnŵ

(23)

Where K = diag(Ks0, Ks1, . . . , Ks(m−1)) and Ksn is the stiffness of the supports in a normal zone. The
iteration procedure proposed in [7] is:

R̃
n
= −

(
K−KsnI

)
ŵn

ŵn+1 = F−1
(

1

κq + knd

[
Fq
(
R̃
n
)
+mQeδ1q

]
0≤q<m

) (24)

The initial values are given by the results for a uniform track: they follow (25).

ŵ0 =
Qe

κ0 +Ksn

I (25)
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5. Numerical examples

5.1 Periodic track

A periodic track which contains no default is considered. The track parameters are given in Table 1.
These parameters correspond to the ballastless track in the Eurotunnel (see [7, 8]). The load is constituted
of one wheel with a weigth Q = 100 kN, moving at a speed v = 37m s−1. As the track is uniform and
only a constant moving load is considered, all the support must receive the same load. Therefore the
displacement of the rail must be the same above all sleepers with a delay corresponding to the time
needed for the load to pass from one sleeper to the others.

Parameter Symbol Value
Rail mass ρS 60 kgm−1

Rail flexion stiffness EI 6.38MNm2

Rail Timoshenko ratio κ 0.4
Rail shear modulus G 8.077GPa

Train speed v 37m s−1

Charge per wheel Q 100 kN
Block mass M 100 kg

Sleeper spacing l 0.6m
Railpad stiffness kr 192MNm−1

Railpad damping ξr 1.97MN sm−1

Under-sleeper stiffness kf 26.4MNm−1

Under-sleeper damping ξf 0.17MN sm−1

Table 1: Physical parameters used in the computations.
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Figure 3: Displacement of the rail above one support (left) and force applied by the support (right)
against time for a uniform track. The Timoshenko model results are in continuous line and the Euler
model results are represented with line with star markers.

In figure 3 Euler and Timoshenko beam model results are compared. The displacement of one point
of the rail (left graph) and the force applied on one support (right graph) are plotted against time. As
expected, the Timoshenko beam is a little less rigid than the Euler one. Consequently, both the displace-
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ment and the force are larger with a Timoshenko beam. The maximal force computed is 4.5% larger
using a Timoshenko beam model (3.5% for the displacement).

5.2 Damaged track

A track containing one damaged support is considered, in this second numerical example. To model
this damage, in a conservative approach, the damaged support has no stiffness or damping. As the
computation method used is periodic, we choose a period containing 20 healthy supports each side the
damaged one (m = 41). The number of iterations was fixed to 20 after verifying that doubling this
number does not change the results. As the computation only lasts few seconds, no more optimizations
were made.

Figure 4: Rail displacement along the rail length against time for a track containg one broken support.
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Figure 5: Displacement of the rail above supports (left) and force applied by the supports (right) against
time for a damaged track. The Timoshenko model results are in continuous line and the Euler model
results are represented with lines with star markers. Damaged support and the two neighbouring supports.

Figure 4 shows the displacement of the rail above the different sleepers. Figure 5 shows the forces
and displacement for the damaged support and supports at ±1.2m. The difference between Euler and
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Timoshenko beam maximum forces is now more than 4.6% near the broken support but for the broken
support’s displacement, this difference grows up to 6.1%. This proves that the difference between those
models is increased for a damaged track. In a case where more supports are damaged or with a higher
train speed, this difference is even more important and can not be neglected anymore.

6. Conclusion

Hoang et al in [7] proposed a method to compute the dynamics of periodically supported Euler beam
on non-uniform railway tracks. In this article, this method was adapted to the Timoshenko beam model.
It has been shown [8] that for uniform tracks, the Timoshenko beam model gives different results from
Euler beam model and that this difference was growing with the speed and the support stiffness. Apply-
ing Hoang et al method, it was proved that considering forces this model difference is conserved for a
damaged track and significantly increased considering displacements.
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