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Many numerical or analytical methods have been developed to compute the response of a railway track on a uniform foundation. The rail can then be modelled by different beam models. It was shown that for uniform railway tracks, Euler beam model and Timoshenko beam model give close results. In the case of damaged railway track components, the defaults can cause higher displacements of the rail leading to higher shears. Thus, in this case, the Timoshenko beam model can be more interesting. In this paper, a semi-analytical model for a railway track resting on a non-uniform foundation is proposed where the rail is modelled by a Timoshenko beam. Then, the results obtained with Timoshenko beam model and Euler Bernoulli beam model are compared for both a uniform railway track and a damaged railway track.

Introduction

To compute the dynamics of railway tracks subjected to moving loads, many authors modelled the tracks with a periodically supported beams [START_REF] Sheng | Responses of infinite periodic structures to moving or stationary harmonic loads[END_REF][START_REF] Kouroussis | Prediction of railway ground vibrations: Accuracy of a coupled lumped mass model for representing the track/soil interaction[END_REF][START_REF] Nordborg | Vertical Rail Vibrations: Parametric Excitation[END_REF][START_REF] Belotserkovskiy | On the oscillations of infinite periodic beams subjected to a moving concentrated force[END_REF]. Some of them [START_REF] Nordborg | Vertical Rail Vibrations: Parametric Excitation[END_REF][START_REF] Belotserkovskiy | On the oscillations of infinite periodic beams subjected to a moving concentrated force[END_REF] gave analytical results for describing the dynamics of a homogeneous railway track. In many cases, for instance tracks with damaged supports or transition zones, the track can not be considered as homogeneous. To compute the dynamics of this type of tracks, many authors [START_REF] Claudet | Wave Finite Element Method for computing the dynamic response of railway transition zones subjected to moving loads[END_REF][START_REF] Arlaud | Receptance of railway tracks at low frequency: Numerical and experimental approaches[END_REF] used fully numerical models. Hoang et al developed an analytical method to compute the behaviour of a beam resting on a non-uniform viscoelastic foundation where the supports are modelled as mass-spring-dampers systems and an Euler beam model is used [START_REF] Hoang | Response of a Periodically Supported Beam on a Non-Uniform Viscoelastic Foundation subject to Moving Loads[END_REF].

Contrary to Timoshenko beams, when an Euler beam is deformed the sections remain perpendicular to the neutral axis. Hoang et al showed [START_REF] Hoang | Dynamical response of a Timoshenko beams on periodical nonlinear supports subjected to moving forces[END_REF] that for homogeneous tracks, Euler and Timoshenko beam models give close results. In the non-uniform case, especially for a damaged track, displacements have a larger amplitude, leading to higher shears. Thus, in this case, Timoshenko beam model can be more interesting.

This article develops the analytical method proposed by Hoang et al [START_REF] Hoang | Response of a Periodically Supported Beam on a Non-Uniform Viscoelastic Foundation subject to Moving Loads[END_REF] for Timoshenko beams. Results obtained with the two beam models are then compared on a uniform track and a damaged track. 

Track model 2.1 Supports description

A rail supported by periodic supports (sleepers) is modelled. Each support contains two elastic stages: the rail pad and an elastic stage under the sleeper (see figure 1). In the examples used thereafter, a ballastless track is considered. Therefore the under-sleeper elastic stage can be reduced to the undersleeper pad. For ballasted track this second elastic stage must take into account the ballast stiffness too. The supports are supposed punctual and are modelled as mass-spring-dampers systems. In the frequency domain, the dynamic stiffness of the two elastic stages is given by [START_REF] Sheng | Responses of infinite periodic structures to moving or stationary harmonic loads[END_REF] where k is the stiffness and ξ the damping coefficient and the subscript r is for the rail pad and f for the foundation or the under-sleeper pad.

l v Q K f K r
K r = k r + iωξ r K f = k f + iωξ f -ω 2 M (1) 
Combining the two precedent equations, the support dynamic stiffness is given by

K s = K -1 r + K -1 f -1 .

Timoshenko beam model

In this paper, the rail is modelled by a Timoshenko beam of constant section S, with a flexion rigidity EI and subjected to an external force F . The Timoshenko beam model was introduced [START_REF] Timoshenko | On the correction for shear of the differential equation for transverse vibrations of prismatic bars[END_REF] to take into account shear deformation and rotational bending effects in beam flexions. In that aim, a degree of freedom θ describing the section angle is added to the Euler beam model. The dynamic equation of a Timoshenko beam's flexion are given in the frequency domain by [START_REF] Kouroussis | Prediction of railway ground vibrations: Accuracy of a coupled lumped mass model for representing the track/soil interaction[END_REF].

κSG∂ x θ = κSG∂ 2 x ŵ + ρSω 2 ŵ + F -κSG∂ x ŵ = EI∂ 2 x θ -(κSG -ρIω 2 ) θ (2) 
The shear modulus G is a material property defined as the ratio between shear stress and shear rate. The Timoshenko shear coefficient κ is a parameter which depends on the section's geometry. In the limit EI κL 2 SG 1 -ie. for beam with a high shear rigidity compared to his flexion rigidity-the Timoshenko beam model converges to the Euler beam model.

Considering only the rail deflexion ŵ (2), can be reduced to:

EI ∂ 2 x + λ 2 1 ∂ 2 x -λ 2 2 ŵ = 1 - EI κSG ∂ 2 x - ρIω 2 κSG F (x, ω) (3) 
With,

λ 2 1,2 = ω 4 4 ρI EI - ρS κSG 2 + ρSω 2 EI ± ω 2 2 ρI EI + ρS κSG (4) 
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Periodical support system

The supports are supposed to be periodically distributed. The period has a length L = ml where m is an integer and l is the spacing between two consecutive supports. The train is modelled by a set of constant moving loads {Q j } characterized by the distances {D j }. The train's speed v is constant. It is also supposed that the reaction forces in a period are the same as the reaction forces in the previous period with a temporal delay of L v (so-called "periodic condition"). Calling R k the reaction force due to the support k, (5) is obtained.

∀ (n, p) ∈ Z 2 , R nm+p (t) = R p t - nL v (5) 
Thus, in the temporal domain the force F follows:

F (x, t) = n∈Z m=1 p=0 R p t - x -pl v δ(x -pl -nL) - K j=1 Q j δ (x -D j -vt) (6) 
And, in the frequency domain, F :

F (x, ω) = n∈Z m-1 p=0 Rp (ω)e -iω x-pl v δ(x -nL -pl) - K j=1 Q j v e -iω x+D j v = e -i ωx v n∈Z m-1 p=0 Rp (ω)e iω pl v δ(x -nL -pl) - K j=1 Q j v e -iω D j v (7) 
F (x, ω)e i ωx v is L periodic and we have:

1 L L/2 -L/2 F (x, ω)e i ωx v e -2iπn x L dx = 1 L m-1 p=0 Rp (ω)e i( ω v -2πn L )pl - δ 0n v K j=1 Q j e -iω D j v (8) 
Thus, using the method described in [START_REF] Hoang | Dynamical response of a Timoshenko beams on periodical nonlinear supports subjected to moving forces[END_REF], ( 9) is obtained.

ŵ(x, ω) = m-1 p=0 Rp (ω)e iω pl-x v η(pl -x, ω) -η(0, ω)Q(ω)e -i ωx v (9) 
Where, Evaluated at x = 0, the equation ( 9) gives :

η(x, ω) = e i ωx v 2EI (λ 2 1 + λ 2 2 ) C 1 λ 1 sin λ 1 (L -x) + e -i ωL v sin λ 1 x cos Lλ 1 -cos ωL v - C 2 λ 2 sinh λ 2 (L -x) + e -i ωL v sinh λ 2 x cosh Lλ 2 -cos ωL v Q(ω) = p 0 L v η(0, ω) -1 K j=1 Q j e -iω D j v C 1,2 = 1 - ρIω 2 ∓ EIλ 2 1,2 κSG p 0 L = xSG -ρIω 2 + EI ω 2 v 2 xSG EI ω 4 v 4 -ρSω 2 -ρSI (xG + E -ρv 2 ) ω 4 v 2 ( 
ŵ(0, ω) = m-1 p=0 Rp (ω)e i ωpl v η p (ω) -η 0 (ω)Q(ω) (11) 
The equation ( 11) is very similar to the equation given in [START_REF] Hoang | Response of a Periodically Supported Beam on a Non-Uniform Viscoelastic Foundation subject to Moving Loads[END_REF]. The differences between the two beam models are contained in the exact expression of η p (ω) = η(pl, ω) and p 0 . Indeed, the Euler beam model can be obtained by taking the limit G → +∞ which leads to C 1 = C 2 = 1 and λ 1,2 = (ρSω 2 )/(EI). The rest of the method remains identical. Therefore, only the key steps are reminded in the following.

From ( 9), remarking η m+p-q = η p-q , for x = ql (q ∈ Z) it can be shown that:

ŵ(ql, ω)e iω ql v = m-1 p=0 Rp (ω)e iω pl v η (p-q) -η 0 Q e (ω) (12) 
Defining w q and R q as in ( 13), ( 14) and (15) are obtained.

w q (t) = w r ql, t -ql v R q (t) = R q t -ql v (13) ŵq (ω) = m-1 p=0 Rp (ω)η (p-q) -η 0 Q e (ω) (14) 
     η 0 η 1 • • • η m-1 η m-1 η 0 • • • η m-2 . . . . . . . . . . . . η 1 η 2 • • • η 0           R0 R1 . . . Rm-1      = η 0 Q e      1 1 . . . 1      +      ŵ0 ŵ1 . . . ŵm-1      (15) 
Writting 1 = t (1, . . . , 1), (15) can be rewritten in a reduced form:

C R = η 0 Q e 1 + ŵ (16) 
(16) links the deflexion of the beam with the reaction forces. This relationship only comes from the periodicity of the problem and the beam behaviour. Another relationship is needed to close the problem. This other relationship comes from the support stiffness and can be written as in (17).

ŵ = -D R (17) 
Where D = diag(1/K s0 , 1/K s1 , . . . , 1/K s(m-1) ) and 1/K sp is the stiffness of the support p. Combining (17) and ( 16), (18) is obtained.

R = Q e A -1 1 (18) 
Where A = η -1 0 C + D . A is a m × m matrix which depends on the frequency and whose computation is fast and simple. However, when one of the stiffness is equal to zero (lack of a support, broken support) this matrix is not well-defined. To study these cases, an iterative method is developed in [START_REF] Hoang | Response of a Periodically Supported Beam on a Non-Uniform Viscoelastic Foundation subject to Moving Loads[END_REF] and reminded in the next part. 

Iterative resolution for non-uniform tracks

The beam considered has a local part where the supports have different behaviours (reinforced or damaged) from normal supports. This local different part is included in a larger zone of length L = ml (see figure 2). This zone is taken large enough so that the central different part has no effect on the borders of the large zone. This hypothesis makes possible to consider the track periodic and therefore to use the results obtained with periodic support systems. On the other hand, this hypothesis should be verified aposteriori. 14) and ( 15) represent a convolution product plus a constant part. Therefore it can be rewritten :

ŵ = η R -η 0 Q e I ( 19 
)
Performing a discrete Fourier transform defined by ( 20) on ( 19) gives ( 21)

∀f, F q {f } = m-1 p=0 e i2π pq m f p (20) 
F q R = κ q F q { ŵ} + mQ e δ 1q (21) 
Where Q e = η 0 Q e /F 0 η and κ q = F q η -1 .

The discrete Fourier transform F q η is given by :

F q η = 1 2EI (λ 2 1 + λ 2 2 ) C 1 λ 1 sin λ 1 l cos lλ 1 -cos ωl v + 2πq m - C 2 λ 2 sinh λ 2 l cosh lλ 2 -cos ωl v + 2πq m (22)
As in the previous part, the problem closure is given by the support stiffness. This relationship can be written :

R = -K ŵ = -K -K sn I ŵ -K sn ŵ = R -K sn ŵ (23) 
Where K = diag(K s0 , K s1 , . . . , K s(m-1) ) and K sn is the stiffness of the supports in a normal zone. The iteration procedure proposed in [START_REF] Hoang | Response of a Periodically Supported Beam on a Non-Uniform Viscoelastic Foundation subject to Moving Loads[END_REF] is:

     Rn = -K -K sn I ŵn ŵn+1 = F -1 1 κ q + k nd F q Rn + mQ e δ 1q 0≤q<m (24) 
The initial values are given by the results for a uniform track: they follow (25).

ŵ0 = Q e κ 0 + K sn I (25) 

Numerical examples 5.1 Periodic track

A periodic track which contains no default is considered. The track parameters are given in Table 1. These parameters correspond to the ballastless track in the Eurotunnel (see [START_REF] Hoang | Response of a Periodically Supported Beam on a Non-Uniform Viscoelastic Foundation subject to Moving Loads[END_REF][START_REF] Hoang | Dynamical response of a Timoshenko beams on periodical nonlinear supports subjected to moving forces[END_REF]). The load is constituted of one wheel with a weigth Q = 100 kN, moving at a speed v = 37 m s -1 . As the track is uniform and only a constant moving load is considered, all the support must receive the same load. Therefore the displacement of the rail must be the same above all sleepers with a delay corresponding to the time needed for the load to pass from one sleeper to the others. ment and the force are larger with a Timoshenko beam. The maximal force computed is 4.5% larger using a Timoshenko beam model (3.5% for the displacement).

Parameter

Damaged track

A track containing one damaged support is considered, in this second numerical example. To model this damage, in a conservative approach, the damaged support has no stiffness or damping. As the computation method used is periodic, we choose a period containing 20 healthy supports each side the damaged one (m = 41). The number of iterations was fixed to 20 after verifying that doubling this number does not change the results. As the computation only lasts few seconds, no more optimizations were made. Figure 4 shows the displacement of the rail above the different sleepers. Figure 5 shows the forces and displacement for the damaged support and supports at ±1.2 m. The difference between Euler and Timoshenko beam maximum forces is now more than 4.6% near the broken support but for the broken support's displacement, this difference grows up to 6.1%. This proves that the difference between those models is increased for a damaged track. In a case where more supports are damaged or with a higher train speed, this difference is even more important and can not be neglected anymore.

Conclusion

Hoang et al in [START_REF] Hoang | Response of a Periodically Supported Beam on a Non-Uniform Viscoelastic Foundation subject to Moving Loads[END_REF] proposed a method to compute the dynamics of periodically supported Euler beam on non-uniform railway tracks. In this article, this method was adapted to the Timoshenko beam model. It has been shown [START_REF] Hoang | Dynamical response of a Timoshenko beams on periodical nonlinear supports subjected to moving forces[END_REF] that for uniform tracks, the Timoshenko beam model gives different results from Euler beam model and that this difference was growing with the speed and the support stiffness. Applying Hoang et al method, it was proved that considering forces this model difference is conserved for a damaged track and significantly increased considering displacements.
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Figure 1 :

 1 Figure 1: Model of the periodically supported beam.
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Figure 2 :

 2 Figure 2: Periodically supported beam with one damaged support. In this illustration, the period contains m = 5 supports, one of them being broken.

Figure 3 :

 3 Figure 3: Displacement of the rail above one support (left) and force applied by the support (right) against time for a uniform track. The Timoshenko model results are in continuous line and the Euler model results are represented with line with star markers.

Figure 4 :Figure 5 :

 45 Figure 4: Rail displacement along the rail length against time for a track containg one broken support.

Table 1 :

 1 Physical parameters used in the computations.

		Symbol	Value
	Rail mass	ρS	60 kg m -1
	Rail flexion stiffness	EI	6.38 MN m 2
	Rail Timoshenko ratio	κ	0.4
	Rail shear modulus	G	8.077 GPa
	Train speed	v	37 m s -1
	Charge per wheel	Q	100 kN
	Block mass	M	100 kg
	Sleeper spacing	l	0.6 m
	Railpad stiffness	k r	192 MN m -1
	Railpad damping	ξ r	1.97 MN s m -1
	Under-sleeper stiffness	k f	26.4 MN m -1
	Under-sleeper damping	ξ f	0.17 MN s m -1
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