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Abstract

The calculation of high-frequency wave radiation in exterior domains by finite ele-
ment methods can lead to large computations. In this paper, it is shown that the
solution in the exterior domain can be decomposed as a series expansion of functions
with an analytical part made from the product of harmonic waves and polynomials
in a scaled variable and a numerical part made of a finite element approximation
vectors. The solution of the radiation or scattering problem can be found by solving
a sparse linear system which is set from the dynamic stiffness matrices of several
scaled layers around the radiating body. These dynamic stiffness matrices are clas-
sical finite element matrices obtained from any finite element software. Moreover,
accurate results can be obtained from a small number of terms in the series expan-
sion. Several examples are given to estimate the efficiency of the proposed method.

Key words: Finite element, scaled domain, wave, Helmholtz equation, radiation,
scattering, infinite domain.
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1 Introduction

Many approaches have been used in the past for computing the solutions of
wave problems in unbounded media. Classical methods include the boundary
element method described in numerous classical textbooks like [1–5] and the
fast multipole method developed by many authors like [6–9]. One can also find,
for instance, the Dirichlet to Neumann (DtN) mapping proposed by [10,11]
which is also quite accurate but lead to non-local boundary conditions as for
the boundary element method and full matrices on the boundary. Local meth-
ods, on the contrary, are more computationaly efficient as in these methods,
the condition at a border node involves only a limited number of neighbouring
nodes. Various classes of local absorbent boundary conditions were for instance
developed long ago by [12]. Infinite elements made with elements extending
at infinity and satisfying the Sommerfeld radiation condition were proposed
by [13–18]. Other absorbing boundary conditions involving differential oper-
ators of different orders on the boundary were proposed by different authors
[19–22] and then improved by Bayliss and Turkel [23,24] using sequences of
local non-reflecting boundary conditions and modified by [25,26]. However, all
these conditions are difficult to implement above the second order because of
the high order derivatives involved in their formulations. Another possibility
is the addition of variables on the exterior surface as in [27–29]. They involve
only second order derivatives of the auxiliary variables and so can be efficiently
implemented. One can also surround the computational domain by absorbing
layers, as proposed by [30,31] in the perfectly matched layer, in which the wave
equation is analytically continued into complex coordinates. With a correct
choice of the size of the layer and the parameters of the absorbing layer, very
efficient absorptions of waves can be obtained. More details on these methods
are given in [32] and a review on the different numerical methods for short
wave scattering can be found in [33]. In all these local methods, a significant
part of the exterior domain is meshed, and more or less accurate boundary
conditions are put at the external surface of the mesh. Little or no information
is given on the solution outside the meshed domain.

Among all the methods, we must especially notice the scaled boundary finite-
element method proposed by [34–37]. It is based on a coordinate transform
with a radial coordinate interpreted as a scaling factor with a reference to a
center inside the bounded domain. The problem is formulated as a differential
equation in the radial coordinate and can be solved analytically along this
coordinate. The method was further developed by its authors in [38–41]. The
solution is obtained by solving an eigenvalue problem from matrices built on
the boundary. In case of dynamic problems, it also needs expansions in the
scaled variables. These points were developed in [42,43]. This subject is still
active as evidenced by recent papers [44–47]. The advantage of this method
is that it gives analytical solutions in the scaled variable. Note that it can
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be easily coupled with FEM models of other fluid or structural domains as
shown in [48]. However, it needs special matrices defined on the boundary
of the radiating body which are not the usual matrices obtained by classical
finite element software.

Other interesting methods were developed for the analysis of waveguides. For
example, the semi-analytical finite element (SAFE) method proposed by [49–
51] and further developed by [52–57] separate the solution into an analytical
harmonic function eikx into the direction of the waveguide and a finite element
approximation in the cross-section. This can only be applied to uniform waveg-
uides and needs special matrices defined on the cross-section of the waveguide.
So the approach has some common points with the scaled boundary finite-
element method: an analytical expression of the solution in radial/waveguide
direction and special matrices in the boundary/cross-section. This method
has been applied to various problems and some recent developments were
proposed, for instance, by [58–60].

For non uniform waveguides with truly periodic structures, the Wave Finite
Element (WFE) method can be used. This consists in computing wave modes
(propagation constants, wave shapes) of a periodic structure from the finite
element (FE) model of a substructure and its related mass, damping and
stiffness matrices which can be obtained from any FE software. Afterwards,
these wave modes can be used to calculate the harmonic response of periodic
structures in an efficient way, i.e., by computing small matrix systems for one
substructure, or a few of them. The main steps of the method can be found
in [61–64]. Also, some of its recent extensions and applications are reported
in [65–74]. Compared to the SAFE method, the WFE can deal with more
general structures and do not need the development of special matrices but
can use matrices produced by commercial FE software. This Floquet’s theory
was applied to exterior problems by [75,76] by dividing the exterior domain
into layers and trying to apply the WFE on them with possible corrections
on the solution to obtain constant energy flux through the layers. However,
as the matrices in the different layers of the exterior domain are not constant,
only approximate solutions have been obtained.

In this paper, we propose to improve these last attempts of [75,76] by coupling
the equilibrium equations between adjacent layers as in the WFE approach
and which only needs classical finite element matrices, to the expansion of the
solution suggested by the scaled boundary finite element. The solution in the
exterior domain will be decomposed as a sum of elementary functions made of
harmonic waves multiplied by polynomials and finite element approximation
vectors. The solution can then be found by solving a sparse linear system which
is set from the dynamic stiffness matrices of several scaled layers around the
radiating body. These dynamic stiffness matrices are classical finite element
matrices obtained from any finite element software, so eliminating the need
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of building special matrices. Accurate results can be obtained from a small
number of terms in the series expansion. So a description of the solution in the
exterior domain can be found for general geometries. The paper is divided into
three sections and is outlined as follows. In the second section, the principles
of the method are described in general. In the third section, examples are
described to get a clear insight in the proposed approach before concluding
remarks.

2 Solution in the exterior domain

2.1 Behaviour of a layer

We consider the general case of a convex body Ω surrounded by an infinite
domain as in figure 1. To simplify, we consider here two-dimensional problems
only. Linear waves are supposed to propagate in this exterior domain. They
are described by the Helmholtz equation

∆q + k2q = 0 (1)

with k = ω/c the wavenumber, ω the circular frequency and c the velocity.
Boundary conditions are applied on the boundary surface S0 and at infinity
such that

q= q0 on SD
0

∂q

∂n
= r0 on SN

0

∂q

∂n
− ikq= o(

1√
r

) for r →∞

(2)

with SD
0 and SN

0 the parts of S0 where respectively the Dirichlet and Neumann
boundary conditions are applied and q0 and r0 given functions on S0. The last
relation is the Sommerfeld radiation condition for two-dimensional problems.

A layer n, defined as the domain Ωn between surfaces Sn and Sn+1, is de-
scribed by a finite element model. The surface Sn is defined by a constant
value of the scaled parameter ξ = ξn with ξn = 1 +

∑i=n−1
i=0 di (as in the scaled

boundary element method) where the di are the variables giving the thickness
in term of ξ of each layer and ξ = ξ0 with ξ0 = 1 defines the surface S0 of
the radiating body. A layer can be meshed with an arbitrary number of ele-
ments using the full possibilities of usual finite element software. This makes it
possible to process structures of complex shapes directly from their dynamic
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Fig. 1. Exterior domain divided into different layers.

stiffness matrix without having to go into the details of the implementation of
the finite elements (shape functions, order of the elements, integration tech-
niques, ...) and to be able to potentially generalize the proposed method to
other situations without substantial modification of the software. The dis-
crete dynamic behaviour of a layer n obtained from a finite element model at
a circular frequency ω is thus given by

(Kn − ω2Mn)qn = fn (3)

where Kn and Mn are the stiffness and mass matrices respectively, fn is the
vector of internal forces and qn the vector of the degrees of freedom. Introduc-
ing the dynamic stiffness matrix of the layer Dn = Kn − ω2Mn, decomposing
into degrees of freedom of the left boundary (L) associated to the dofs in Sn,
interior dofs (I) and right boundary dofs (R) associated to dofs in Sn+1, and
assuming that there is no external force on the interior nodes, results in the
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following relation 
Dn

LL Dn
LI Dn

LR

Dn
IL Dn

II Dn
IR

Dn
RL Dn

RI Dn
RR




qn
L

qn
I

qn
R

 =


fnL

0

fnR

 (4)

The assumption that there is no force on the interior degrees of freedom is
satisfied for free waves inside the structure for which the forces on a layer are
only produced by boundary forces from the adjacent layers.

2.2 Relations between adjacent layers

At the interface between layers n−1 and n (on surface Sn), there is continuity
of the displacement and equilibrium of the forces, so that one has

qn
L = qn−1

R (5)

fnL + fn−1R = 0 (6)

The equilibrium of the forces leads to the relation

Dn−1
RL qn−1

L + Dn−1
RI qn−1

I + Dn−1
RR qn−1

R + Dn
LLqn

L + Dn
LIq

n
I + Dn

LRqn
R = 0 (7)

or, using (5) and denoting the vector of displacement qn on the surface Sn,
this can be written as

Dn−1
RL qn−1 + Dn−1

RI qn−1
I + (Dn−1

RR + Dn
LL)qn + Dn

LIq
n
I + Dn

LRqn+1 = 0 (8)

This must be completed by the relations for the internal degrees of freedom
in domains Ωn and Ωn+1, given by

Dn−1
IL qn−1 + Dn−1

II qn−1
I + Dn−1

IR qn = 0 (9)

Dn
ILqn + Dn

IIq
n
I + Dn

IRqn+1 = 0 (10)

So assembling relations (8), (9) and (10) yields

Dn
TQn = 0 (11)
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with

Dn
T =


Dn−1

RL Dn−1
RI Dn−1

RR + Dn
LL Dn

LI Dn
LR

Dn−1
IL Dn−1

II Dn−1
IR 0 0

0 0 Dn
IL Dn

II Dn
IR

 , Qn =



qn−1

qn−1
I

qn

qn
I

qn+1


(12)

Note that in case of no interior node, this simplifies to

Dn
T =

(
Dn−1

RL Dn−1
RR + Dn

LL Dn
LR

)
, Qn =


qn−1

qn

qn+1

 (13)

Note also that Qn is the vector made of the dofs associated to the domain
Ωn−1∪Ωn and, if we denote by Mn this number of dofs, the size of Qn is Mn×1
while the number of lines of Dn

T equals the number of dofs on the surface Sn

plus the number of internal degrees of freedom in Ωn−1 ∪Ωn, the whole which
is denoted mn, and so the size of Dn

T is mm ×Mn with mm < Mn.

2.3 Series expansion of the solution

As we deal with two-dimensional problems, we expect a large distance be-
haviour like eikr√

r
. So the displacement at a node of location rj of scaled pa-

rameter ξj will be assumed given by the expansion,

q(rj) =
p=P∑
p=0

(
ajpξ

−(2p+1)/2
j

)
eik|rj | (14)

in term of parameters ajp to be found. Note that this expansion includes both
the distance rj of the node j to the center of the object and the parameter ξj
which locates the surface to which the node j belongs. For a node js on the
surface of the object, we therefore have ξjs = 1 and the expansion reduces to

q(rjs) =

p=P∑
p=0

ajsp

 eik|rjs | (15)

The form of the expansion (14) was suggested by the expansion of Hankel’s
functions for large arguments. Other expansion choices are probably possible.
Note also that we make the assumption that the domains are meshed in an
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identical way up to the scaled parameter ξ, see figure 2. So the nodes on the
different surfaces Sn are located on the same radial lines and the nodes on
a surface Sn can be obtained from the nodes on the surface Sn−1 by scaling
in ξ. So the value of q(rj) is expressed in term of p + 1 parameters ajp with

ξ

Sn−1

Sn+1

Sn

Sn+2

rn−1,2
rn−1,1

rn−1, m

Nodes associated 
to the same j

Fig. 2. Mesh of the surfaces Sn.

0 ≤ p ≤ P associated to the same direction on different surfaces and so for
a fixed value of j which defines the radial direction to which rj belongs. The
vector of displacement Qn of the dofs of the domain Ωn−1 ∪ Ωn can thus be
written as

Qn =
(
Tn

a Tn
I

) a

qI

 = Tn

 a

qI

 (16)

with Tn =
(
Tn

a Tn
I

)
and where the vector of the parameters ajp is
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a =



a0

...

ap

...

aP


, with ap =


a1p
...

amp

 (17)

and

Tn
a =

(
tn,Ξn.tn, . . . ,Ξ

P
n .tn

)
(18)

with

tn =
(
ξ
−1/2
n,j eik|rn,j | djj′

)
j=1...M,j′=1...m

(19)

Ξn = diag(
1

ξn,j
)j=1...M (20)

with diag meaning a diagonal matrix and the domain Ωn−1 ∪ Ωn is supposed
meshed with M nodes of positions rn,j for j = 1...M with the associated scaled
parameters ξn,j and m is the number of nodes on a surface Sn. Note that the

ξ
−(2p+1)/2
j factor can be found for the ξ

−1/2
j part in the vector tn and for the ξ−pj

part in the matrix Ξp
n. The parameter djj′ equals 1 if the node number j in

domain Ωn−1∪Ωn is not an interior node and if node j is associated to node j′

on surface Sn in the way shown in figure 2. In other words, nodes on the same
radial line are associated to the same j′. So the matrix tn is sparse and has
only one non zero element on each line. The vector qI is the global vector of
interior degrees of freedom associated to the considered domains. The matrix
Tn

I is a matrix made of zeros and ones which extracts the subvectors qn−1
I and

qn
I of relation (12) from qI .

Combining with relation (11), the equation for the layer can be finally written
as

Sn

 a

qI

 = (Dn
TTn)

 a

qI

 = 0 (21)

where the precedent relation defines the matrix Sn. The number of equations
equals mn, the number of dofs on the surface Sn plus the number of interior
dofs in Ωn−1 ∪Ωn. Note that according to the shape of the matrix Tn seen in
relations (16) and (18), the matrix Sn is given by

Sn =
(
Dn

T tn,D
n
TΞn.tn, . . . ,D

n
TΞP

n .tn,D
n
T .T

n
I

)
(22)

and is also a sparse matrix as Dn
T , which is sparse, multiplies only other sparse

matrices.
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2.4 Global solution

Now, relations (16) and (21) are applied for the surface S0 and layers n1, n2, ..., nP ,
see Figure 1. We consider first a Dirichlet problem with the given displacement
q0 on the boundary surface S0. Using relation (16) leads to

q0 = T0
r

 a

qI

 (23)

with T0
r obtained in the same way as (16) but keeping only the lines associated

to the dofs of the surface S0. This is also the component q0 of vector Q1 in
relations (12) and (16). So, the number of equations equals the number of dofs
on surface S0, denoted m.

Then, we choose P central layers n1, ..., nP , and around each layer we apply
the relation (21) so that for the other layers ni, the relation is

Sni

 a

qI

 = 0 (24)

Assembling relations (23) and (24), finally, the global system to solve is



T0
r

Sn1

...

SnP


 a

qI

 =



q0

0
...

0


(25)

The solution of this system gives the parameters ajp and the solution for any
node can be obtained by the expansion (14) and the components of qI . To
obtain a square system a parameter ajp must be associated to each dof of Sni

and to each dof of S0.

In case of a Neumann problem where the external force f0 is given on surface
S0, relation (23) is changed to

f0

0

 = S0
r

 a

qI

 (26)
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with

S0
r

 a

qI

 = D0
LT1

0

 a

qI

 (27)

with D0
L the submatrix of D0 with only the lines associated to the dofs of S0

and the interior dofs of Ω0 (first and second lines of relation (4)) and T1
0 the

submatix of T1 with only the lines associated to the dofs of Ω0 (first three
lines of Q1 in relation (12) and (16)). The right member of relation (25) is
changed so that the final relation is now



S0
r

Sn1

...

SnP


 a

qI

 =



f0

0
...

0


(28)

The number of equations in relation (25) equals m+P (m+ 2nint) and in (28)
it equals m + nint + P (m + 2nint) with nint the number of interior dofs in a
domain. Note that the linear system to solve is sparse.

2.5 Coupling with another FEM domain

The expansion (14) is efficient for large enough frequencies and for convex do-
mains. We consider here the more general case of radiation by a body of any
shape as in the figure 3. Note that here the radiating body is non-convex and
therefore the previous method cannot be applied directly. So, we divide the
domain outside the radiating body into two subdomains. The first subdomain
is inside a convex surface noted S0 and is described by a dynamic stiffness
matrix of a classical finite element model obtained by any finite element soft-
ware (the grid part in the figure). The second subdomain outside the surface
S0 can be described by the model presented previously since the surface S0 is
convex. We will then specify the equations satisfied in each of the two sub-
domains and the global relation obtained by coupling the two subdomains.
The domain interior to the surface S0 which is described by a classical finite
element model satisfied the following relation.

Dbb Dbi Db0

Dib Dii Di0

D0b D0i D00




qb

qi

q0

 =


fb

0

f0

 (29)
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with the subscript b describing the dofs belonging to the surface Sb where the
boundary conditions are prescribed (the surface of the radiating body), 0 the
dofs belonging to the coupling interface S0 between the domain described by
classical FEM and the exterior domain described by the expansion (14) and i
the dofs internal to the FEM domain, see figure 3.

ξ

S2
S1
S0

Sb
FEM part

Fig. 3. Case of a non convex domain.

On the surface S0, one has the relations (23) and (26) so that

q0 = T0
r

 a

qI

 (30)

f0

0

= S0
r

 a

qI



=

S0
r0

S0
ri


 a

qI

 (31)

with the second line of (31) associated to the interior dofs of Ω0. Assembling
relations (29), (30), (31) with the relations (21) for the other external surfaces
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leads to 

Dbb Dbi Db0T
0
r

Dib Dii Di0T
0
r

D0b D0i D00T
0
r + S0

r0

0 0 S0
ri

0 0 Sn1

...
...

...

0 0 SnP





qb

qi

a

qI


=



fb

0

0

0

0
...

0



(32)

This system can be solved when qb or fb is known on the boundary Sb and the
solution gives the displacement in the FEM part and the coefficients of the
expansion (14).

3 Numerical examples

3.1 Two-dimensional axisymmetric example

In this first simple example, we consider an infinite membrane under harmonic
excitation with normal displacement q satisfying the Helmholtz equation

E∆q + ρω2q = 0 (33)

The wavenumber is k = ω/c with c =
√
E/ρ. This is also the case of acoustic

radiation with a given value of the sound velocity c. The radiating body is
supposed to be a disk and we are looking for axisymmetric solutions. The
radial shape functions are

N1(ξ) =
1

2
(1− ξ)

N2(ξ) =
1

2
(1 + ξ) (34)

The radius is interpolated by r(ξ) = r1N1(ξ) + r2N2(ξ) and the elements of
the mass matrix for axisymmetric solutions are given by
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mij = 2π
∫ r2

r1
ρNi(r)Nj(r)rdr

=πρ(r2 − r1)
∫ 1

−1
Ni(ξ)Nj(ξ)r(ξ)dξ

m = πρ(r2 − r1)

 r1
2

+ r2
6

r1
6

+ r2
6

r1
6

+ r2
6

r1
6

+ r2
2

 (35)

The elements of the stiffness matrix are

kij = 2πE
∫ r2

r1

∂Ni(r)

∂r

∂Nj(r)

∂r
rdr

=
4πE

r2 − r1

∫ 1

−1

∂Ni(ξ)

∂ξ

∂Nj(ξ)

∂ξ
r(ξ)dξ

k =
πE(r1 + r2)

(r2 − r1)

 1 −1

−1 1

 (36)

So that the dynamic stiffness matrix in the domain n is given by

Dn =
πE

d
(rn + rn+1)

 1 −1

−1 1

− ω2π

6
ρd

3rn + rn+1 rn + rn+1

rn + rn+1 rn + 3rn+1

 (37)

with rn the radius of surface Sn. In the following, one takes E = 1 and every-
thing is given in term of kr. The analytical solution for a uniform displacement
q0 at r = r0 is given by

q(ξ) =
H0(kr)

H0(kr0)
q0 (38)

with H0 is the Hankel function of first type and order 0.

This problem was solved with the proposed method for different wavenumbers
k such that 0.001 ≤ kr0 ≤ 1000. First consider the case kr0 = 1 with different
values of the number of polynomial coefficients given by P . The radius of
surface Sn is such that krn = 1 + nke with ke = 0.005 and ξn = 1 + nd and
d = ke/max(1, kr0). Figure 4 presents the real and imaginary parts of the
solution in the domain 50 ≤ kr ≤ 60 for different values of P . One clearly sees
that P = 0, meaning taking only a constant for the polynomial, yields some
errors. The solution is clearly improved with P ≥ 1. The relative error defined
as |qnum−qana|

|qana| is plotted in figure 5. Except for low values of kr, the error is
almost constant for a given value of P and the value of the error decreases as
P increases. For instance, taking P = 3, leads to an error of less than 1%.

Now, we are interested in the influence of the wave number k on the solution of
the problem. So, the solutions for different values of kr0 are presented in figures
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(a) Real part. (b) Imaginary part.

Fig. 4. Real part (a) and imaginary part (b) of the solution for different values of
P, — P = 0, - - P = 1,. . . P = 2,-.- P = 3, analytical solution.

Fig. 5. Relative error on the solution for different values of P, — P = 0, - - P =
1,... P = 2,-.- P = 3, ooo P = 4, xxx P = 5.

6 and 7 in the domain max(kr0, 1) ≤ kr ≤ max(kr0, 1) + 30. An important
factor is the influence of the discretization of the FEM part on the solution
for kr0 < 1. We consider the case of one, five and ten layers of elements to
discretize the FEM part. This is important for low frequencies as the solution
H0(kr) has a singularity when k → 0. To improve the mesh, the FEM part
discretizes the domain such that kr0 ≤ kr ≤ 1 with thicknesses of layers in
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geometric progression of step 0.7 in this domain. In figures 5(a) and (b), for
a very low frequency such that kr0 = 1/1000, we see that a mesh with three
layers is sufficient to get very good results. When kr0 ≥ 0.1 only one layer
is enough to obtain good results. So numerical solutions are very close to the
analytical values with a simple mesh of the FEM part except for a very low
value of kr0 for which more element are needed in that domain to approach the
singularity of the solution. For values of kr0 larger than one, one sees in figure

(a) kr0 = 1/1000, real part (b) kr0 = 1/1000, imaginary part

(c) kr0 = 1/100, real part (d) kr0 = 1/100, imaginary part

(e) kr0 = 1/10, real part (f) kr0 = 1/10, imaginary part

Fig. 6. Solutions for different values of kr0 and nc (number of layers in the FEM
part): — nc = 0, - - nc = 1,... nc = 3,-.- nc = 5, x analytical solution.

7 that the expansion is sufficient to get good results and it is not necessary
to have a classical finite element mesh of a domain as for kr0 < 1. One must
also note that it is possible to get accurate results for a very large range of
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values of kr0 starting from very low frequencies at kr0 = 0.001 to very high
frequencies such that kr0 = 1000.

3.2 Two-dimensional circular example

We consider now the radiation by a circle with a Dirichlet boundary condition
and a solution satisfying the Helmholtz equation (1) in the exterior domain.
To be able to compare with analytical solutions, the boundary value is first
built from the field created by a source at a position rs = (xs, ys) inside the
circle. So the boundary value is

q0(rb) = H0(k|rb − rs|) (39)

with rb the position of a node on the boundary. We first study the influence
of the parameter P giving the number of layers on the solution. In figure 8 we
plot the L2 relative error on the solution on the line 1m ≤ x ≤ 12m for the case
of an axisymmetric solution obtained with rs = (0, 0) and a non axisymmetric
case obtained with rs = (0.8m, 0m). In both cases, the boundary is the circle
with r0 = 1m, the frequency is f = 1000Hz and the velocity is 340m/s. Each
layer is meshed first with linear four nodes elements, secondly with height
nodes quadratic elements and the thickness is e = 0.001m. In all cases, the
frequency is high enough so that no mesh of a FEM part is needed and only
the expansion is used to build the solution. One can see that the optimal value
of P is around 9 and that the error is reduced, as expected, by increasing the
number of elements on the boundary. Taking second order elements clearly
improves the solution for values of P around 9.

We now study the influence of the frequency and plot images of the solution
on an annular domain. The source is at (0.8m, 0m) and kr0 = 10. We plot the
solution between radius r0 = 1m and 7m in figure 9. One can observe a very
good agreement between the numerical and analytical solutions.

We consider now the diffraction of a point source by a rigid cylinder of the
same geometry. The source is located at (−2m, 0). P = 9 and 500 elements
are used upto kr0 = 10 while 1000 elements and P = 12 are used for kr0 = 30.
The solution is plotted on a semi circle of radius 2m between the angle −π and
0. Figure 10 presents the comparison between the present numerical solution
and the analytical solution. Good agreement can be observed.
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(a) kr0 = 1, real part (b) kr0 = 1, imaginary part

(c) kr0 = 10, real part (d) kr0 = 10, imaginary part

(e) kr0 = 100, real part (f) kr0 = 100, imaginary part

(g) kr0 = 1000, real part (h) kr0 = 1000, imaginary part

Fig. 7. Solutions for different values of kr0 and nc: — nc = 0, - - nc = 1,... nc =
3,-.- nc = 5, x analytical solution.
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(a) axisymmetric and degree 1 (b) non symmetric and degree 1

(c) axisymmetric and degree 2 (d) non symmetric and degree 2

Fig. 8. Error on the solution for different values of P and number of elements on
the boundary, — 100 elements,- - 250 elements,-.- 500 elements.

3.3 Two-dimensional square example

We consider now the case of a square with a side of length 2m to test a
domain with corners. As for the circle, a point source is located inside the
square to build an analytical solution on the boundary. This source is located
at (0.5m, 0.5m). In figure 11, one compares the error for first and second order
elements. One note a considerable improvement using elements of degree two.

Figure 12 presents the analytical and numerical solutions in the domain exter-
nal to the square. The frequency is 500Hz, the elements are second order and
each side is mesh with 200 elements. One can observe a very good agreement
between the two solutions and that the corners do not create any particular
problem.

3.4 Case of a resonant cavity

To finish, we consider the case of the circular and triangular resonant cavities
presented on the left of figures 13 and 14. On the right of these figures, one
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(a) Numerical solution, real part. (b) Analytical solution, real part

(c) Numerical solution, imaginary
part.

(d) Analytical solution, imagi-
nary part.

(e) Error on the solution.

Fig. 9. Numerical solution, analytical solution and error on an annular domain for
kr0 = 10.

has the meshes of the different exterior domains used for satisfying equations
(24). A power four progression was found satisfactory such that in term of ξ
we apply the relation on surfaces such that ξ = 1 + d × n4. For the circular
resonator the interior radius is 0.06m, the medium radius is 0.09m and the
exterior radius which also defines the surface S0 has a radius of 0.1m. The
opening connecting the interior cavity to the exterior domain has a width
of 0.5cm. For the triangular resonator, the vertex points of the triangles are
located on the same circles as for the circular case and the opening connection
has the same size. The mesh, stiffness and mass matrices were created with
FEniCS and then imported into Matlab. Any other finite element software
could have been used. In the case of the circular cavity, a sound source was
put at point (0.2m, 0) in front of the opening and the sound pressure was
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(a) kr0 = 0.1 (b) kr0 = 1

(c) kr0 = 10 (d) kr0 = 30

Fig. 10. Comparison of numerical and analytical solutions on a semi circle for dif-
ferent frequencies, — real part analytical, o real part numerical, -.- imaginary part
analytical, + imaginary part numerical.

Fig. 11. Error for first (—) and second (- -) order elements in case of a square.

computed at the center of the cavity. The sound pressure versus the frequency
is presented in figures 15a and 15b and compared to a BEM computation
(obtained with a personal software of the author). A good agreement between
the two solutions validates the accuracy of the present method. This can be
observed both in term of modulus and real and imaginary parts. We see in
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(a) Numerical solution, real part. (b) Analytical solution, real part

(c) Numerical solution, imaginary
part.

(d) Analytical solution, imagi-
nary part.

(e) Error on the solution.

Fig. 12. Numerical solution, analytical solution and error on a square domain for
the frequency 500Hz.

particular that the resonance of the cavity is well reproduced.

Figures 16a and 16b consider the triangular resonator whose main difference
is a non smooth geometry. The sound source is located at point (0,−0.2m).
In this case again the comparison between the BEM results and the present
method is very good. Note that we see in figure 14 that only a small mesh in
the exterior domain of the resonator is used because the scale domains follow
the triangular geometry as can be seen in these figures.
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Fig. 13. Mesh of circular resonant cavity and its exterior domain.

Fig. 14. Mesh of triangular resonant cavity and its exterior domain.

(a) Comparison between BEM (-.-)
and the present method (—) for the
modulus of the solution of the circu-
lar resonator.

(b) Comparison between BEM (- -
real part, ... imaginary part) and

the present method (— real part, -
.- imaginary part).

Fig. 15. Results for the circular resonator.

4 Conclusion

A new numerical method has been presented for computing radiation and
scattering of waves in exterior domains. The solution on the exterior domain is
decomposed into the sum of products of polynomial and exponential functions
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(a) Comparison between BEM (-.-)
and the present method (—) for the
modulus of the solution of the trian-
gle resonator.

(b) Comparison between BEM (- -
real part, ... imaginary part) and

the present method (— real part, -
.- imaginary part).

Fig. 16. Results for the triangular resonator.

multiplied by discrete FEM vectors. As in the scaled boundary element method
there is no need of a fundamental solution but contrary to this method there
is also no need of special matrices. The matrices involved in this problem are
obtained from classical mass and stiffness matrices from any standard finite
element software. One can note that the usual Scaled boundary finite element
method (SBFEM) requires the solution of an eigenvalue problem while in the
method proposed in this article, there are no modes to calculate but only the
solution of a sparse linear system. For a large number of degree of freedom,
this can certainly be more efficient. Examples show good agreements with
analytical and BEM results. Future work should consider the optimisation of
this method, the case of three-dimensional problems and other wave problems
such as elastic wave propagation.
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