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The calculation of high-frequency wave radiation in exterior domains by finite element methods can lead to large computations. In this paper, it is shown that the solution in the exterior domain can be decomposed as a series expansion of functions with an analytical part made from the product of harmonic waves and polynomials in a scaled variable and a numerical part made of a finite element approximation vectors. The solution of the radiation or scattering problem can be found by solving a sparse linear system which is set from the dynamic stiffness matrices of several scaled layers around the radiating body. These dynamic stiffness matrices are classical finite element matrices obtained from any finite element software. Moreover, accurate results can be obtained from a small number of terms in the series expansion. Several examples are given to estimate the efficiency of the proposed method.

Introduction

Many approaches have been used in the past for computing the solutions of wave problems in unbounded media. Classical methods include the boundary element method described in numerous classical textbooks like [START_REF] Brebbia | Boundary Element Techniques in Engineering[END_REF][START_REF] Crouch | Boundary element methods in solid mechanics[END_REF][START_REF] Ciskowski | Boundary Element Methods in Acoustics[END_REF][START_REF] Chen | Boundary element methods, Computational mathematics and applications[END_REF][START_REF] Bonnet | Boundary Integral Equation Methods for Solids and Fluids[END_REF] and the fast multipole method developed by many authors like [START_REF] Rokhlin | Rapid solution of integral equations of classical potential theory[END_REF][START_REF] Rokhlin | Rapid solution of integral equations of scattering theory in two dimensions[END_REF][START_REF] Darve | The fast multipole method: Numerical implementation[END_REF][START_REF] Liu | The fast multipole boundary element method for potential problems: A tutorial[END_REF]. One can also find, for instance, the Dirichlet to Neumann (DtN) mapping proposed by [START_REF] Givoli | A finite element method for large domains[END_REF][START_REF] Keller | Exact non-reflecting boundary conditions[END_REF] which is also quite accurate but lead to non-local boundary conditions as for the boundary element method and full matrices on the boundary. Local methods, on the contrary, are more computationaly efficient as in these methods, the condition at a border node involves only a limited number of neighbouring nodes. Various classes of local absorbent boundary conditions were for instance developed long ago by [START_REF] Engquist | Absorbing boundary conditions for the numerical simulation of waves[END_REF]. Infinite elements made with elements extending at infinity and satisfying the Sommerfeld radiation condition were proposed by [START_REF] Bettess | Infinite elements[END_REF][START_REF] Bettess | More on infinite elements[END_REF][START_REF] Bettess | Infinite Elements[END_REF][START_REF] Burnett | A three-dimensional acoustic infinite element based on a prolate spheroidal multipole expansion[END_REF][START_REF] Astley | Infinite elements for wave problems: a review of current formulations and an assessment of accuracy[END_REF][START_REF] Gerdes | A review of infinite element methods for exterior helmholtz problems[END_REF]. Other absorbing boundary conditions involving differential operators of different orders on the boundary were proposed by different authors [START_REF] Engquist | Absorbing boundary conditions for numerical simulation of waves[END_REF][START_REF] Engquist | Absorbing boundary conditions for numerical simulation of waves[END_REF][START_REF] Clayton | Absorbing boundary conditions for acoustic and elastic wave equations[END_REF][START_REF] Reynolds | Boundary conditions for the numerical solution of wave propagation problems[END_REF] and then improved by Bayliss and Turkel [START_REF] Bayliss | Radiation boundary conditions for wave-like equations[END_REF][START_REF] Bayliss | Boundary conditions for the numerical solution of elliptic equations in exterior regions[END_REF] using sequences of local non-reflecting boundary conditions and modified by [START_REF] Higdon | Absorbing boundary conditions for difference approximations to the multidimensional wave equation[END_REF][START_REF] Higdon | Numerical absorbing boundary conditions for the wave equation[END_REF]. However, all these conditions are difficult to implement above the second order because of the high order derivatives involved in their formulations. Another possibility is the addition of variables on the exterior surface as in [START_REF] Collino | High-order absorbing boundary conditions for wave propagation models. straight line boundary and corner cases[END_REF][START_REF] Hagstrom | A formulation of asymptotic and exact boundary conditions using local operators[END_REF][START_REF] Givoli | High-order local non-reflecting boundary conditions: a review[END_REF]. They involve only second order derivatives of the auxiliary variables and so can be efficiently implemented. One can also surround the computational domain by absorbing layers, as proposed by [START_REF] Berenger | A perfectly matched layer for the absorption of electromagnetic waves[END_REF][START_REF] Berenger | Three-dimensional perfectly matched layer for the absorption of electromagnetic waves[END_REF] in the perfectly matched layer, in which the wave equation is analytically continued into complex coordinates. With a correct choice of the size of the layer and the parameters of the absorbing layer, very efficient absorptions of waves can be obtained. More details on these methods are given in [START_REF] Duhamel | Finite element computation of absorbing boundary conditions for time-harmonic wave problems[END_REF] and a review on the different numerical methods for short wave scattering can be found in [START_REF] Bettess | Short-wave scattering: Problems and techniques[END_REF]. In all these local methods, a significant part of the exterior domain is meshed, and more or less accurate boundary conditions are put at the external surface of the mesh. Little or no information is given on the solution outside the meshed domain.

Among all the methods, we must especially notice the scaled boundary finiteelement method proposed by [START_REF] Song | Consistent infinitesimal finite-element cell method: threedimensional vector wave equation[END_REF][START_REF] Song | The scaled boundary finite-element method-alias consistent infinitesimal finite-element cell method-for elastodynamics[END_REF][START_REF] Song | The scaled boundary finite-element method: analytical solution in frequency domain[END_REF][START_REF] Wolf | Unit-impulse response of unbounded medium by scaled boundary finite-element method[END_REF]. It is based on a coordinate transform with a radial coordinate interpreted as a scaling factor with a reference to a center inside the bounded domain. The problem is formulated as a differential equation in the radial coordinate and can be solved analytically along this coordinate. The method was further developed by its authors in [START_REF] Wolf | The scaled boundary finite-element method -a primer: derivations[END_REF][START_REF] Song | The scaled boundary finite-element method -a primer: solution procedures[END_REF][START_REF] Wolf | The scaled boundary finite-element method -a fundamental solution-less boundary-element method[END_REF][START_REF] Song | Dynamic analysis of unbounded domains by a reduced set of base functions[END_REF]. The solution is obtained by solving an eigenvalue problem from matrices built on the boundary. In case of dynamic problems, it also needs expansions in the scaled variables. These points were developed in [START_REF] Yang | A Frobenius solution to the scaled boundary finite element equations in frequency domain for bounded media[END_REF][START_REF] Song | Development of a fundamental-solution-less boundary element method for exterior wave problems[END_REF]. This subject is still active as evidenced by recent papers [START_REF] Birk | The scaled boundary finite element method for transient wave propagation problems[END_REF][START_REF] Yang | A scaled boundary finite element formulation for dynamic elastoplastic analysis[END_REF][START_REF] Gravenkamp | On mass lumping and explicit dynamics in the scaled boundary finite element method[END_REF][START_REF] Sepehry | Application of scaled boundary finite element method for vibration-based structural health monitoring of breathing cracks[END_REF]. The advantage of this method is that it gives analytical solutions in the scaled variable. Note that it can be easily coupled with FEM models of other fluid or structural domains as shown in [START_REF] Lehmann | Scaled boundary finite element method for acoustics[END_REF]. However, it needs special matrices defined on the boundary of the radiating body which are not the usual matrices obtained by classical finite element software.

Other interesting methods were developed for the analysis of waveguides. For example, the semi-analytical finite element (SAFE) method proposed by [START_REF] Nelson | Vibrations and waves in laminated orthotropic circular cylinders[END_REF][START_REF] Aalami | Waves in Prismatic Guides of Arbitrary Cross Section[END_REF][START_REF] Gavrić | Computation of propagative waves in free rail using a finite element technique[END_REF] and further developed by [START_REF] Shorter | Wave propagation and damping in linear viscoelastic laminates[END_REF][START_REF] Bartoli | Modeling wave propagation in damped waveguides of arbitrary cross-section[END_REF][START_REF] Marzani | A semi-analytical finite element formulation for modeling stress wave propagation in axisymmetric damped waveguides[END_REF][START_REF] Treyssède | Investigation of elastic modes propagating in multiwire helical waveguides[END_REF][START_REF] Nguyen | Numerical modeling of three-dimensional open elastic waveguides combining semi-analytical finite element and perfectly matched layer methods[END_REF][START_REF] Li | On the study of vibration of a supported railway rail using the semi-analytical finite element method[END_REF] separate the solution into an analytical harmonic function e ikx into the direction of the waveguide and a finite element approximation in the cross-section. This can only be applied to uniform waveguides and needs special matrices defined on the cross-section of the waveguide. So the approach has some common points with the scaled boundary finiteelement method: an analytical expression of the solution in radial/waveguide direction and special matrices in the boundary/cross-section. This method has been applied to various problems and some recent developments were proposed, for instance, by [START_REF] Hakoda | Weak form implementation of the semi-analytical finite element (SAFE) method for a variety of elastodynamic waveguides[END_REF][START_REF] Long | Numerical verification of an efficient coupled SAFE-3D FE analysis for guided wave ultrasound excitation[END_REF][START_REF] Khajah | Shape optimization of acoustic devices using the scaled boundary finite element method[END_REF].

For non uniform waveguides with truly periodic structures, the Wave Finite Element (WFE) method can be used. This consists in computing wave modes (propagation constants, wave shapes) of a periodic structure from the finite element (FE) model of a substructure and its related mass, damping and stiffness matrices which can be obtained from any FE software. Afterwards, these wave modes can be used to calculate the harmonic response of periodic structures in an efficient way, i.e., by computing small matrix systems for one substructure, or a few of them. The main steps of the method can be found in [START_REF] Mace | Finite element prediction of wave motion in structural waveguides[END_REF][START_REF] Duhamel | Finite element analysis of the vibrations of waveguides and periodic structures[END_REF][START_REF] Mencik | A wave-based model reduction technique for the description of the dynamic behavior of periodic structures involving arbitraryshaped substructures and large-sized finite element models[END_REF][START_REF] Mencik | Multi-mode propagation and diffusion in structures through finite elements[END_REF]. Also, some of its recent extensions and applications are reported in [START_REF] Mencik | A wave finite element-based approach for the modeling of periodic structures with local perturbations[END_REF][START_REF] Mencik | New advances in the forced response computation of periodic structures using the wave finite element (WFE) method[END_REF][START_REF] Mencik | A model reduction strategy for computing the forced response of elastic waveguides using the wave finite element method[END_REF][START_REF] Mencik | A wave finite element approach for the analysis of periodic structures with cyclic symmetry in dynamic substructuring[END_REF][START_REF] Ichchou | Wave finite elements for low and midfrequency description of coupled structures with damage[END_REF][START_REF] Hoang | Wave finite element method for waveguides and periodic structures subjected to arbitrary loads[END_REF][START_REF] Renno | On the forced response of waveguides using the wave and finite element method[END_REF][START_REF] Waki | Free and forced vibrations of a tyre using a wave/finite element approach[END_REF][START_REF] Singh | Stochastic wave finite element quadratic formulation for periodic media: 1D and 2D[END_REF][START_REF] Fan | Model reduction schemes for the wave and finite element method using the free modes of a unit cell[END_REF]. Compared to the SAFE method, the WFE can deal with more general structures and do not need the development of special matrices but can use matrices produced by commercial FE software. This Floquet's theory was applied to exterior problems by [START_REF] Hvatov | On application of the Floquet theory for radially periodic membranes and plates[END_REF][START_REF] Manconi | Wave propagation in polar periodic structures using Floquet theory and finite element analysis[END_REF] by dividing the exterior domain into layers and trying to apply the WFE on them with possible corrections on the solution to obtain constant energy flux through the layers. However, as the matrices in the different layers of the exterior domain are not constant, only approximate solutions have been obtained.

In this paper, we propose to improve these last attempts of [START_REF] Hvatov | On application of the Floquet theory for radially periodic membranes and plates[END_REF][START_REF] Manconi | Wave propagation in polar periodic structures using Floquet theory and finite element analysis[END_REF] by coupling the equilibrium equations between adjacent layers as in the WFE approach and which only needs classical finite element matrices, to the expansion of the solution suggested by the scaled boundary finite element. The solution in the exterior domain will be decomposed as a sum of elementary functions made of harmonic waves multiplied by polynomials and finite element approximation vectors. The solution can then be found by solving a sparse linear system which is set from the dynamic stiffness matrices of several scaled layers around the radiating body. These dynamic stiffness matrices are classical finite element matrices obtained from any finite element software, so eliminating the need of building special matrices. Accurate results can be obtained from a small number of terms in the series expansion. So a description of the solution in the exterior domain can be found for general geometries. The paper is divided into three sections and is outlined as follows. In the second section, the principles of the method are described in general. In the third section, examples are described to get a clear insight in the proposed approach before concluding remarks.

2 Solution in the exterior domain

Behaviour of a layer

We consider the general case of a convex body Ω surrounded by an infinite domain as in figure 1. To simplify, we consider here two-dimensional problems only. Linear waves are supposed to propagate in this exterior domain. They are described by the Helmholtz equation

∆q + k 2 q = 0 (1) 
with k = ω/c the wavenumber, ω the circular frequency and c the velocity. Boundary conditions are applied on the boundary surface S 0 and at infinity such that

q = q 0 on S D 0 ∂q ∂n = r 0 on S N 0 ∂q ∂n -ikq = o( 1 √ r ) f or r → ∞ (2) 
with S D 0 and S N 0 the parts of S 0 where respectively the Dirichlet and Neumann boundary conditions are applied and q 0 and r 0 given functions on S 0 . The last relation is the Sommerfeld radiation condition for two-dimensional problems.

A layer n, defined as the domain Ω n between surfaces S n and S n+1 , is described by a finite element model. The surface S n is defined by a constant value of the scaled parameter ξ = ξ n with ξ n = 1 + i=n-1 i=0 d i (as in the scaled boundary element method) where the d i are the variables giving the thickness in term of ξ of each layer and ξ = ξ 0 with ξ 0 = 1 defines the surface S 0 of the radiating body. A layer can be meshed with an arbitrary number of elements using the full possibilities of usual finite element software. This makes it possible to process structures of complex shapes directly from their dynamic d0 S 0 (x=1) stiffness matrix without having to go into the details of the implementation of the finite elements (shape functions, order of the elements, integration techniques, ...) and to be able to potentially generalize the proposed method to other situations without substantial modification of the software. The discrete dynamic behaviour of a layer n obtained from a finite element model at a circular frequency ω is thus given by

S 3 (x=1+d 0 +d 1 +d 2 ) S 2 (x=1+d 0 +d 1 ) S 1 (x=1+d 0 ) ξ W 1 W 0 q L 0 q R 0 =q L 1 q I 0 d 1 d 2 Ω
(K n -ω 2 M n )q n = f n (3) 
where K n and M n are the stiffness and mass matrices respectively, f n is the vector of internal forces and q n the vector of the degrees of freedom. Introducing the dynamic stiffness matrix of the layer D n = K n -ω 2 M n , decomposing into degrees of freedom of the left boundary (L) associated to the dofs in S n , interior dofs (I) and right boundary dofs (R) associated to dofs in S n+1 , and assuming that there is no external force on the interior nodes, results in the following relation

       D n LL D n LI D n LR D n IL D n II D n IR D n RL D n RI D n RR               q n L q n I q n R        =        f n L 0 f n R        (4) 
The assumption that there is no force on the interior degrees of freedom is satisfied for free waves inside the structure for which the forces on a layer are only produced by boundary forces from the adjacent layers.

Relations between adjacent layers

At the interface between layers n -1 and n (on surface S n ), there is continuity of the displacement and equilibrium of the forces, so that one has

q n L = q n-1 R (5) f n L + f n-1 R = 0 (6) 
The equilibrium of the forces leads to the relation

D n-1 RL q n-1 L + D n-1 RI q n-1 I + D n-1 RR q n-1 R + D n LL q n L + D n LI q n I + D n LR q n R = 0 (7)
or, using (5) and denoting the vector of displacement q n on the surface S n , this can be written as

D n-1 RL q n-1 + D n-1 RI q n-1 I + (D n-1 RR + D n LL )q n + D n LI q n I + D n LR q n+1 = 0 (8)
This must be completed by the relations for the internal degrees of freedom in domains Ω n and Ω n+1 , given by

D n-1 IL q n-1 + D n-1 II q n-1 I + D n-1 IR q n = 0 (9) D n IL q n + D n II q n I + D n IR q n+1 = 0 (10) 
So assembling relations (8), ( 9) and ( 10) yields

D n T Q n = 0 (11) 
with

D n T =        D n-1 RL D n-1 RI D n-1 RR + D n LL D n LI D n LR D n-1 IL D n-1 II D n-1 IR 0 0 0 0 D n IL D n II D n IR        , Q n =               q n-1 q n-1 I q n q n I q n+1               (12) 
Note that in case of no interior node, this simplifies to

D n T = D n-1 RL D n-1 RR + D n LL D n LR , Q n =        q n-1 q n q n+1        (13) 
Note also that Q n is the vector made of the dofs associated to the domain Ω n-1 ∪Ω n and, if we denote by M n this number of dofs, the size of Q n is M n ×1 while the number of lines of D n T equals the number of dofs on the surface S n plus the number of internal degrees of freedom in Ω n-1 ∪ Ω n , the whole which is denoted m n , and so the size of

D n T is m m × M n with m m < M n .

Series expansion of the solution

As we deal with two-dimensional problems, we expect a large distance behaviour like e ikr √ r . So the displacement at a node of location r j of scaled parameter ξ j will be assumed given by the expansion,

q(r j ) = p=P p=0 a jp ξ -(2p+1)/2 j e ik|r j | (14) 
in term of parameters a jp to be found. Note that this expansion includes both the distance r j of the node j to the center of the object and the parameter ξ j which locates the surface to which the node j belongs. For a node j s on the surface of the object, we therefore have ξ js = 1 and the expansion reduces to

q(r js ) =   p=P p=0 a jsp   e ik|r js | (15) 
The form of the expansion ( 14) was suggested by the expansion of Hankel's functions for large arguments. Other expansion choices are probably possible.

Note also that we make the assumption that the domains are meshed in an identical way up to the scaled parameter ξ, see figure 2. So the nodes on the different surfaces S n are located on the same radial lines and the nodes on a surface S n can be obtained from the nodes on the surface S n-1 by scaling in ξ. So the value of q(r j ) is expressed in term of p + 1 parameters a jp with ξ

S n-1 S n +1 S n S n+2 r n -1,2 r n -1,1 r n -1, m
Nodes associated to the same j Fig. 2. Mesh of the surfaces S n .

0 ≤ p ≤ P associated to the same direction on different surfaces and so for a fixed value of j which defines the radial direction to which r j belongs. The vector of displacement Q n of the dofs of the domain Ω n-1 ∪ Ω n can thus be written as

Q n = T n a T n I    a q I    = T n    a q I    (16) 
with

T n = T n a T n I
and where the vector of the parameters a jp is

a =               a 0 . . . a p . . . a P               , with a p =        a 1p . . . a mp        (17) 
and

T n a = t n , Ξ n .t n , . . . , Ξ P n .t n ( 18 
)
with

t n = ξ -1/2 n,j e ik|r n,j | d jj j=1...M,j =1...m (19) 
Ξ n = diag( 1 ξ n,j ) j=1...M (20) 
with diag meaning a diagonal matrix and the domain Ω n-1 ∪ Ω n is supposed meshed with M nodes of positions r n,j for j = 1...M with the associated scaled parameters ξ n,j and m is the number of nodes on a surface S n . Note that the ξ

-(2p+1)/2 j
factor can be found for the ξ -1/2 j part in the vector t n and for the ξ -p j part in the matrix Ξ p n . The parameter d jj equals 1 if the node number j in domain Ω n-1 ∪ Ω n is not an interior node and if node j is associated to node j on surface S n in the way shown in figure 2. In other words, nodes on the same radial line are associated to the same j . So the matrix t n is sparse and has only one non zero element on each line. The vector q I is the global vector of interior degrees of freedom associated to the considered domains. The matrix T n I is a matrix made of zeros and ones which extracts the subvectors q n-1 I and q n I of relation ( 12) from q I .

Combining with relation [START_REF] Keller | Exact non-reflecting boundary conditions[END_REF], the equation for the layer can be finally written as

S n    a q I    = (D n T T n )    a q I    = 0 (21) 
where the precedent relation defines the matrix S n . The number of equations equals m n , the number of dofs on the surface S n plus the number of interior dofs in Ω n-1 ∪ Ω n . Note that according to the shape of the matrix T n seen in relations ( 16) and ( 18), the matrix S n is given by

S n = D n T t n , D n T Ξ n .t n , . . . , D n T Ξ P n .t n , D n T .T n I ( 22 
)
and is also a sparse matrix as D n T , which is sparse, multiplies only other sparse matrices.

Global solution

Now, relations ( 16) and ( 21) are applied for the surface S 0 and layers n 1 , n 2 , ..., n P , see Figure 1. We consider first a Dirichlet problem with the given displacement q 0 on the boundary surface S 0 . Using relation ( 16) leads to

q 0 = T 0 r    a q I    (23)
with T 0 r obtained in the same way as ( 16) but keeping only the lines associated to the dofs of the surface S 0 . This is also the component q 0 of vector Q 1 in relations ( 12) and ( 16). So, the number of equations equals the number of dofs on surface S 0 , denoted m.

Then, we choose P central layers n 1 , ..., n P , and around each layer we apply the relation ( 21) so that for the other layers n i , the relation is

S n i    a q I    = 0 (24) 
Assembling relations [START_REF] Bayliss | Radiation boundary conditions for wave-like equations[END_REF] and [START_REF] Bayliss | Boundary conditions for the numerical solution of elliptic equations in exterior regions[END_REF], finally, the global system to solve is

          T 0 r S n 1 . . . S n P              a q I    =           q 0 0 . . . 0           (25) 
The solution of this system gives the parameters a jp and the solution for any node can be obtained by the expansion ( 14) and the components of q I . To obtain a square system a parameter a jp must be associated to each dof of S n i and to each dof of S 0 .

In case of a Neumann problem where the external force f 0 is given on surface S 0 , relation ( 23) is changed to

   f 0 0    = S 0 r    a q I    (26) 
with

S 0 r    a q I    = D 0 L T 1 0    a q I    (27) 
with D 0 L the submatrix of D 0 with only the lines associated to the dofs of S 0 and the interior dofs of Ω 0 (first and second lines of relation ( 4)) and T 1 0 the submatix of T 1 with only the lines associated to the dofs of Ω 0 (first three lines of Q 1 in relation ( 12) and ( 16)). The right member of relation ( 25) is changed so that the final relation is now

          S 0 r S n 1
. . .

S n P              a q I    =           f 0 0 . . . 0           (28) 
The number of equations in relation ( 25) equals m + P (m + 2n int ) and in [START_REF] Hagstrom | A formulation of asymptotic and exact boundary conditions using local operators[END_REF] it equals m + n int + P (m + 2n int ) with n int the number of interior dofs in a domain. Note that the linear system to solve is sparse.

Coupling with another FEM domain

The expansion ( 14) is efficient for large enough frequencies and for convex domains. We consider here the more general case of radiation by a body of any shape as in the figure 3. Note that here the radiating body is non-convex and therefore the previous method cannot be applied directly. So, we divide the domain outside the radiating body into two subdomains. The first subdomain is inside a convex surface noted S 0 and is described by a dynamic stiffness matrix of a classical finite element model obtained by any finite element software (the grid part in the figure). The second subdomain outside the surface S 0 can be described by the model presented previously since the surface S 0 is convex. We will then specify the equations satisfied in each of the two subdomains and the global relation obtained by coupling the two subdomains. The domain interior to the surface S 0 which is described by a classical finite element model satisfied the following relation.

       D bb D bi D b0 D ib D ii D i0 D 0b D 0i D 00               q b q i q 0        =        f b 0 f 0        (29) 
with the subscript b describing the dofs belonging to the surface S b where the boundary conditions are prescribed (the surface of the radiating body), 0 the dofs belonging to the coupling interface S 0 between the domain described by classical FEM and the exterior domain described by the expansion ( 14) and i the dofs internal to the FEM domain, see figure 3.

ξ S 2 S 1 S 0 S b

FEM part

Fig. 3. Case of a non convex domain.

On the surface S 0 , one has the relations ( 23) and ( 26) so that

q 0 = T 0 r    a q I    (30)    f 0 0    = S 0 r    a q I    =    S 0 r0 S 0 ri       a q I    (31) 
with the second line of (31) associated to the interior dofs of Ω 0 . Assembling relations ( 29), ( 30), [START_REF] Berenger | Three-dimensional perfectly matched layer for the absorption of electromagnetic waves[END_REF] with the relations [START_REF] Clayton | Absorbing boundary conditions for acoustic and elastic wave equations[END_REF] for the other external surfaces leads to

                     D bb D bi D b0 T 0 r D ib D ii D i0 T 0 r D 0b D 0i D 00 T 0 r + S 0 r0 0 0 S 0 ri 0 0 S n 1 . . . . . . . . . 0 0 S n P                                q b q i a q I           =                      f b 0 0 0 0 . . . 0                      (32) 
This system can be solved when q b or f b is known on the boundary S b and the solution gives the displacement in the FEM part and the coefficients of the expansion ( 14).

3 Numerical examples

Two-dimensional axisymmetric example

In this first simple example, we consider an infinite membrane under harmonic excitation with normal displacement q satisfying the Helmholtz equation

E∆q + ρω 2 q = 0 ( 33 
)
The wavenumber is k = ω/c with c = E/ρ. This is also the case of acoustic radiation with a given value of the sound velocity c. The radiating body is supposed to be a disk and we are looking for axisymmetric solutions. The radial shape functions are

N 1 (ξ) = 1 2 (1 -ξ) N 2 (ξ) = 1 2 (1 + ξ) ( 34 
)
The radius is interpolated by r(ξ) = r 1 N 1 (ξ) + r 2 N 2 (ξ) and the elements of the mass matrix for axisymmetric solutions are given by

m ij = 2π r 2 r 1 ρN i (r)N j (r)rdr = πρ(r 2 -r 1 ) 1 -1 N i (ξ)N j (ξ)r(ξ)dξ m = πρ(r 2 -r 1 )    r 1 2 + r 2 6 r 1 6 + r 2 6 r 1 6 + r 2 6 r 1 6 + r 2 2    (35) 
The elements of the stiffness matrix are

k ij = 2πE r 2 r 1 ∂N i (r) ∂r ∂N j (r) ∂r rdr = 4πE r 2 -r 1 1 -1 ∂N i (ξ) ∂ξ ∂N j (ξ) ∂ξ r(ξ)dξ k = πE(r 1 + r 2 ) (r 2 -r 1 )    1 -1 -1 1    (36) 
So that the dynamic stiffness matrix in the domain n is given by

D n = πE d (r n + r n+1 )    1 -1 -1 1    -ω 2 π 6 ρd    3r n + r n+1 r n + r n+1 r n + r n+1 r n + 3r n+1    (37) 
with r n the radius of surface S n . In the following, one takes E = 1 and everything is given in term of kr. The analytical solution for a uniform displacement q 0 at r = r 0 is given by

q(ξ) = H 0 (kr) H 0 (kr 0 ) q 0 ( 38 
)
with H 0 is the Hankel function of first type and order 0.

This problem was solved with the proposed method for different wavenumbers k such that 0.001 ≤ kr 0 ≤ 1000. First consider the case kr 0 = 1 with different values of the number of polynomial coefficients given by P . The radius of surface S n is such that kr n = 1 + nke with ke = 0.005 and ξ n = 1 + nd and d = ke/max(1, kr 0 ). Figure 4 presents the real and imaginary parts of the solution in the domain 50 ≤ kr ≤ 60 for different values of P . One clearly sees that P = 0, meaning taking only a constant for the polynomial, yields some errors. The solution is clearly improved with P ≥ 1. The relative error defined as |qnum-qana| |qana| is plotted in figure 5. Except for low values of kr, the error is almost constant for a given value of P and the value of the error decreases as P increases. For instance, taking P = 3, leads to an error of less than 1%. Now, we are interested in the influence of the wave number k on the solution of the problem. So, the solutions for different values of kr 0 are presented in figures 6 and 7 in the domain max(kr 0 , 1) ≤ kr ≤ max(kr 0 , 1) + 30. An important factor is the influence of the discretization of the FEM part on the solution for kr 0 < 1. We consider the case of one, five and ten layers of elements to discretize the FEM part. This is important for low frequencies as the solution H 0 (kr) has a singularity when k → 0. To improve the mesh, the FEM part discretizes the domain such that kr 0 ≤ kr ≤ 1 with thicknesses of layers in geometric progression of step 0.7 in this domain. In figures 5(a) and (b), for a very low frequency such that kr 0 = 1/1000, we see that a mesh with three layers is sufficient to get very good results. When kr 0 ≥ 0.1 only one layer is enough to obtain good results. So numerical solutions are very close to the analytical values with a simple mesh of the FEM part except for a very low value of kr 0 for which more element are needed in that domain to approach the singularity of the solution. For values of kr 0 larger than one, one sees in figure 7 that the expansion is sufficient to get good results and it is not necessary to have a classical finite element mesh of a domain as for kr 0 < 1. One must also note that it is possible to get accurate results for a very large range of values of kr 0 starting from very low frequencies at kr 0 = 0.001 to very high frequencies such that kr 0 = 1000.

Two-dimensional circular example

We consider now the radiation by a circle with a Dirichlet boundary condition and a solution satisfying the Helmholtz equation ( 1) in the exterior domain.

To be able to compare with analytical solutions, the boundary value is first built from the field created by a source at a position r s = (x s , y s ) inside the circle. So the boundary value is

q 0 (r b ) = H 0 (k|r b -r s |) (39) 
with r b the position of a node on the boundary. We first study the influence of the parameter P giving the number of layers on the solution. In figure 8 we plot the L 2 relative error on the solution on the line 1m ≤ x ≤ 12m for the case of an axisymmetric solution obtained with r s = (0, 0) and a non axisymmetric case obtained with r s = (0.8m, 0m). In both cases, the boundary is the circle with r 0 = 1m, the frequency is f = 1000Hz and the velocity is 340m/s. Each layer is meshed first with linear four nodes elements, secondly with height nodes quadratic elements and the thickness is e = 0.001m. In all cases, the frequency is high enough so that no mesh of a FEM part is needed and only the expansion is used to build the solution. One can see that the optimal value of P is around 9 and that the error is reduced, as expected, by increasing the number of elements on the boundary. Taking second order elements clearly improves the solution for values of P around 9.

We now study the influence of the frequency and plot images of the solution on an annular domain. The source is at (0.8m, 0m) and kr 0 = 10. We plot the solution between radius r 0 = 1m and 7m in figure 9. One can observe a very good agreement between the numerical and analytical solutions.

We consider now the diffraction of a point source by a rigid cylinder of the same geometry. The source is located at (-2m, 0). P = 9 and 500 elements are used upto kr 0 = 10 while 1000 elements and P = 12 are used for kr 0 = 30. The solution is plotted on a semi circle of radius 2m between the angle -π and 0. Figure 10 presents the comparison between the present numerical solution and the analytical solution. Good agreement can be observed. 

Two-dimensional square example

We consider now the case of a square with a side of length 2m to test a domain with corners. As for the circle, a point source is located inside the square to build an analytical solution on the boundary. This source is located at (0.5m, 0.5m). In figure 11, one compares the error for first and second order elements. One note a considerable improvement using elements of degree two.

Figure 12 presents the analytical and numerical solutions in the domain external to the square. The frequency is 500Hz, the elements are second order and each side is mesh with 200 elements. One can observe a very good agreement between the two solutions and that the corners do not create any particular problem.

Case of a resonant cavity

To finish, we consider the case of the circular and triangular resonant cavities presented on the left of figures 13 and 14. On the right of these figures, one has the meshes of the different exterior domains used for satisfying equations [START_REF] Bayliss | Boundary conditions for the numerical solution of elliptic equations in exterior regions[END_REF]. A power four progression was found satisfactory such that in term of ξ we apply the relation on surfaces such that ξ = 1 + d × n 4 . For the circular resonator the interior radius is 0.06m, the medium radius is 0.09m and the exterior radius which also defines the surface S 0 has a radius of 0.1m. The opening connecting the interior cavity to the exterior domain has a width of 0.5cm. For the triangular resonator, the vertex points of the triangles are located on the same circles as for the circular case and the opening connection has the same size. The mesh, stiffness and mass matrices were created with FEniCS and then imported into Matlab. Any other finite element software could have been used. In the case of the circular cavity, a sound source was put at point (0.2m, 0) in front of the opening and the sound pressure was computed at the center of the cavity. The sound pressure versus the frequency is presented in figures 15a and 15b and compared to a BEM computation (obtained with a personal software of the author). A good agreement between the two solutions validates the accuracy of the present method. This can be observed both in term of modulus and real and imaginary parts. We see in particular that the resonance of the cavity is well reproduced.

Figures 16a and 16b consider the triangular resonator whose main difference is a non smooth geometry. The sound source is located at point (0, -0.2m).

In this case again the comparison between the BEM results and the present method is very good. Note that we see in figure 14 that only a small mesh in the exterior domain of the resonator is used because the scale domains follow the triangular geometry as can be seen in these figures. 

Conclusion

A new numerical method has been presented for computing radiation and scattering of waves in exterior domains. The solution on the exterior domain is decomposed into the sum of products of polynomial and exponential functions multiplied by discrete FEM vectors. As in the scaled boundary element method there is no need of a fundamental solution but contrary to this method there is also no need of special matrices. The matrices involved in this problem are obtained from classical mass and stiffness matrices from any standard finite element software. One can note that the usual Scaled boundary finite element method (SBFEM) requires the solution of an eigenvalue problem while in the method proposed in this article, there are no modes to calculate but only the solution of a sparse linear system. For a large number of degree of freedom, this can certainly be more efficient. Examples show good agreements with analytical and BEM results. Future work should consider the optimisation of this method, the case of three-dimensional problems and other wave problems such as elastic wave propagation.
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