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Recurrent neural networks (RNNs) have been proved very successful at modeling

sequential data such as language or motions. However, these successes rely on the

use of the backpropagation through time (BPTT) algorithm, batch training, and the

hypothesis that all the training data are available at the same time. In contrast, the

field of developmental robotics aims at uncovering lifelong learning mechanisms that

could allow embodiedmachines to learn and stabilize knowledge in continuously evolving

environments. In this article, we investigate different RNN designs and learning methods,

that we evaluate in a continual learning setting. The generative modeling task consists

in learning to generate 20 continuous trajectories that are presented sequentially to the

learning algorithms. Each method is evaluated according to the average prediction error

over the 20 trajectories obtained after complete training. This study focuses on learning

algorithms with low memory requirements, that do not need to store past information to

update their parameters. Our experiments identify two approaches especially fit for this

task: conceptors and predictive coding. We suggest combining these two mechanisms

into a new proposed model that we label PC-Conceptors that outperforms the other

methods presented in this study.

Keywords: predictive coding, continual learning, Reservoir Computing (RC), recurrent neural networks (RNN),

conceptors

1. INTRODUCTION

Continual learning is a branch of machine learning aiming at equipping learning agents with the
ability to learn incrementally without forgetting previously acquired knowledge. The continual
learning setting typically involves several separate tasks where we assume data to be independent
and identically distributed. The learning algorithm is confronted with each source of data (i.e., each
task) sequentially. After a set amount of time on a task, training switches to a new task. This process
is repeated until the learning algorithm has been confronted with all tasks.

Learning methods based on iterative updates of model parameters, such as the backpropagation
algorithm, can be performed sequentially as new data becomes available. However, these methods
might suffer from the problem known as catastrophic forgetting (McCloskey and Cohen, 1989)
if the distribution of the data they process evolves over time. When adapting to the new task,
they automatically overwrite the model parameters that were optimized according to the previous
tasks. This is an important issue since it prevents artificial neural networks from being trained
incrementally.
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In this study, we focus on the problem of learning a repertoire
of trajectories. As such, the training examples in each task
are sequences that the learning algorithm has to generate
from a discrete input (i.e., the index of the sequence). We
study different Recurrent Neural Network (RNN) designs and
learning algorithms for this continual learning task. We limit our
comparison to models with low memory requirements and, thus,
impose that at each time step t, the neural network computations
and learning can only access the currently available quantities.
In our case, these quantities are the currently hidden variables of
the models, and the target output x∗t provided by the data set.
Consequently, learning methods based on BPTT do not qualify
for this criterion, as they need to store in memory the past
activations of the RNN hidden states to compute gradients. The
advantage of models fitting this criterion is that they could in
principle be implemented on dedicated hardware reproducing
the neural network architecture, with no need for an external
memory storing past inputs and activations.

To avoid confusion about the use of the word “online,”
we rather talk about continual learning to refer to the task
temporality, and talk about online learning to refer to the
sequence (the training example) temporality. The models studied
in this section are thus trained both in a continual learning
setting, since the different target trajectories are provided
sequentially to the agent, and using online learning mechanisms
since the algorithms for learning do not rely on a memory of past
activations. The article is structured as follows: in Section 2, we
review methods that have been proposed to mitigate the problem
of catastrophic forgetting in artificial neural networks, as well as
learning algorithms that can be performed online. In Section 3,
we describe the experimental setting and the different algorithms,
and present the obtained results in Section 4. Finally, in Section
5, we discuss our results in order to identify the online learning
mechanisms for RNNs most suited for the continual learning of
a repertoire of sequences.

2. RELATED WORK

There exists a large spectrum of methods to mitigate catastrophic
forgetting in continual learning settings. Regularization methods
typically aim at limiting forgetting by constraining learning with,
e.g., sparsity constraints, early stopping, or identified synaptic
weights that should not be overwritten. For instance, in Elastic
Weight Consolidation (EWC) (Kirkpatrick et al., 2017), the
update rule contains a regularization term that pulls the synaptic
weights toward the optimal weights found for previous tasks,
with a strength depending on the estimated importance of each
synaptic weight.

Another approach is to rely on architecture modifications
when new tasks are presented, for instance by freezing some
of the previously learned weights (Mallya et al., 2018), or by
adding new neurons and synaptic connections to the model
(Li and Hoiem, 2017). Finally, rehearsal (Rebuffi et al., 2017)
and generative replay (Shin et al., 2017) methods rely on saving
examples or modeling past tasks for future use. By inserting
training examples from the previous tasks, either saved or

replayed, into the current task, these methods allow to retrain on
those data points and thus limiting catastrophic forgetting.

In this study, we compare learning algorithms with low
memory requirements in a continual learning setting. As such,
we disregard approaches such as rehearsal and generative replay
and only consider some simple regularization or architectural
techniques to improve the performance of sequence memory
models in a continual learning setting.

Many alternatives to BPTT have been investigated in the past
decades, often with the goal of avoiding the problems known
as exploding and vanishing gradients that can arise when using
this learning algorithm (Pascanu et al., 2013). Here, we study
two alternative approaches, namely, learning with evolution
strategies, and Reservoir Computing (RC) (Verstraeten et al.,
2007; Lukosevicius and Jaeger, 2009).

Using evolution strategies allows for learning RNNparameters
without having to rely on past activations. The success of a certain
parameter configuration can be measured online, for instance
by comparing the network’s output at each time step t with the
target output. Then, this score is used as the fitness measure to be
minimized by evolution. Following this approach, Schmidhuber
et al. (2005) and Schmidhuber et al. (2007) co-evolve different
groups of neurons in a Long Short-Term Memory (LSTM)
network. A similar approach is used by Pitti et al. (2017), where
the fitness measure is used to directly optimize the inputs of
an RNN.

Completely avoiding the problem of learning recurrent
weights, a family of approaches has emerged in parallel with the
field of computational neurosciences in the form of Liquid State
Machines (Maass et al., 2002), and from the field of machine
learning in the form of Echo State Networks (ESN) (Jaeger, 2001).
These models, later brought together under the label of Reservoir
Computing (Verstraeten et al., 2007; Lukosevicius and Jaeger,
2009), discards the difficulties of learning recurrent weights by
instead developing techniques to find relevant initializations of
these parameters.

Typically, the recurrent connections are set in order for the
RNN to exhibit rich non-linear (and sometimes self-sustained)
dynamics, that are decoded by a learned readout layer. If the
dynamics of the RNN activation are complex enough (e.g., they
do not converge too rapidly toward a point attractor or limit cycle
attractor), various output sequences can be decoded from those.
Training RC models then come down to learning the weights of
the readout layer, which is an easier optimization problem that
can be tackled with several algorithms. This output layer can, e.g.,
be trained using stochastic gradient descent, without the need for
BP. The FORCE algorithm (Sussillo and Abbott, 2009) improves
this learning by running an iterative estimate of the correlation
matrix of the hidden state activations.

Another interesting learningmechanism is presented in Jaeger
(2014a,b) under the name of Conceptors. This method exploits
the fact that the hidden state dynamics triggered by an input
pattern is typically bounded to a certain subspace of lower
dimension. By identifying the subspace for each possible input
pattern, it is possible to decorrelate the training of each target
trajectory by focusing learning on the readout connections that
come from the corresponding hidden state subspace (called
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Conceptor). This method allows training a sequence memory
where the learning of a new pattern has limited interference with
already learned ones.

Finally, the Predictive Coding (PC) theory (Rao and Ballard,
1999; Clark, 2013) also provides learning rules that do not
rely on past activations. According to PC, prediction error
neurons are intertwined with the neural generative model and
encode at each layer the discrepancy between the top-down
prediction and the current representation. It has been shown
that this construction allows propagating the output prediction
error information back into the generative model and even
approximates the backpropagation algorithm (Whittington and
Bogacz, 2017; Millidge et al., 2020).

Taking inspiration from the PC theory, we propose several
models that integrate prediction error neurons into a simple
RNN design. These prediction error neurons transport the error
information from the output layer to the hidden layer, which
provides a local target that can be used to learn the recurrent
and input weights. We label the resulting models PC-RNN (for
Predictive Coding Recurrent Neural Network). In Appendix A,
we show how these models can be derived from the application
of gradient descent on a quantity called variational free-energy
expressed according to different generative models. The resulting
models slightly deviate from other approaches such as the Parallel
Temporal Coding Network (P-TNCN) described in Ororbia et al.
(2020), and the original PC model presented in Rao and Ballard
(1997), which suggests learning feedback weights responsibly
for the bottom-up computations instead of copying the forward
weights, as performed in the proposed models.

There have been other evaluations of continual learning
methods applied to RNNs (Sodhani et al., 2020; Cossu et al.,
2021b), some even focusing on ESNs (Cossu et al., 2021a). While
these studies compare many continual learning techniques, they
do not consider the online learning constraint, and almost
exclusively focus on sequence classification tasks. In contrast,
this study investigates continual learning methods that can be
used online, applied to the incremental learning of a repertoire
of trajectories.

3. MATERIALS AND METHODS

In this section, we detail our experimental setting as well as the
different models that we use for the comparative study.

3.1. Experimental Setting
Each RNN model is trained sequentially on p sequence
generation tasks. The p sequences to be learned are sampled
from a data set of motion capture trajectories of dimension 62.
Each point x∗t describes a body configuration, as represented in
Figure 1. These trajectories were obtained from the CMUMotion
Capture Database. We make a distinction between the validation
set used to optimize the hyperparameters of each model, and
the test set, used to measure the performance of each model.
In our experiments, the validation set is composed of p = 15
trajectories of a subject (#86 in the database) practicing various
sports. The test set is composed of p = 20 trajectories of a subject

FIGURE 1 | Three body configurations taken from a trajectory capturing a

jump motion.

(#62 in the database) performing construction work (screwing,
hammering, etc.).

We also measure the performance of each model on a
different test set of p = 20 simple 2D trajectories corresponding
to handwritten letters taken from the UCI Machine Learning
Repository (Dua and Graff, 2019). All trajectories are resampled
to last for 60 time steps. These data sets were chosen since they
represent potential use cases of themodels presented in this work.
For instance, the proposed continual learning algorithms could
be used to incrementally train a robot manipulator to perform
certain motor trajectories.

We assume that the model knows when a transition between
two tasks occurs, and provide to the RNN the current task index
k as a one-hot vector input of dimension p. Otherwise, this
distributional shift could, e.g., be automatically detected through
a significant increase of the prediction error.

The end goal of this experiment is to identify online learning
mechanisms for RNNs that extend properly to the continual
learning case. The RNN architectures typically comprise three
types of weight parameters to be learned: the output weights, the
recurrent weights, and the input weights. As such, we split our
analysis into three comparisons focusing on the learningmethods
for each type of parameter.

For each learning mechanism, we perform an optimization
of hyperparameters using Bayesian optimization with Gaussian
processes and Matern 5/2 Kernel, similarly to the RNN encoding
capacity comparative analysis performed in Collins et al. (2016).

This method tries to approximate the function P → f (P)
that associates a scoring function with a certain hyperparameter
configuration P. This approximation is estimated based on
points

(

(P0, f (P0)), (P1, f (P1)), · · ·
)

sampled sequentially by the
optimizer. The function used by the optimizer to guide its
sampling process is called acquisition function. Here, we used
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an expected improvement acquisition function, meaning that
at each iteration, the optimizer samples the point P which
is most likely to improve the current estimated maximum
of the function f . Compared to exhaustive hyperparameter
optimization methods such as random search or grid search,
this method is expected to converge faster and to better
configurations. To perform this hyperparameter optimization
we used the gp_minimize function from the scikit-optimize
library in python.

The hyperparameters of the models are optimized in
order to minimize the final average prediction error on
the p target sequences of the validation set. For each
model, the hyperparameters to optimize are the learning rates
associated with the input, recurrent, and output weights, as
well as some other coefficients specific to certain learning
algorithms. The score function associates each hyperparameter
configuration with a real-valued score computed as the
negative logarithm of the average prediction error at the end
of training.

With the hyperparameter configurations we obtain, we
perform for each model 10 seeds of training in the continual
learning setting to measure their performances. The final average
prediction error on the p sequences can be used to evaluate and
compare the different learning mechanisms.

3.2. Benchmark Models
The models for this benchmark were chosen in order to identify
the relevant mechanisms for training RNNs in a continual
learning setting. As already said, we also limit this analysis to
learning algorithms that can be performed online, i.e., without
relying on past activations. For each set of weights, we compare
the different models listed in Table 1.

3.2.1. Output Weights
For the learning of the output weights of RNNs, denoted
Wo, we compared four learning methods, applied to the
simple RNN architecture represented in Figure 2. All methods
share the same architecture, and do not provide any learning
mechanism for the recurrent weights. At each time step, the
hidden state and output prediction are obtained with the
following equations:

ht = (1−
1

τ
)ht−1 +

1

τ
Wr · tanh(ht−1) (1)

xt = Wo · tanh(ht) (2)

where τ is a time constant controlling the velocity of the hidden
state dynamics.

The four methods differ with regard to the learning
mechanism applied to the output weights. First, output weights
can be learned using standard stochastic gradient descent. In the
RNN models we consider, the prediction xt is not re-injected
into the recurrent computations. As such, the output weights
gradients can be computed using only the target signal x∗t , the
prediction xt , and the hidden state ht . These computations do
not involve the backpropagation of a gradient through time and

TABLE 1 | Summary of the models used in our benchmark.

Weights Model

Output weights ESN (Widrow-Hoff)

Conceptors

EWC

ESN + GR

Recurrent weights PC-RNN-V

P-TNCN

PC-RNN-Hebb

Input weights PC-RNN-HC-A

PC-RNN-HC-M

PC-RNN-HC-A-RS

PC-RNN-HC-M-RS

FIGURE 2 | Simple RNN model.

thus qualify as an online learning method. This first learning rule,
also known as the Widrow-Hoff learning rule is expressed as:

Wo ←Wo + λǫx,t · tanh(ht)
⊺ (3)

where λ is the learning rate of the output weights, and ǫx,t is the
prediction error on the output layer, i.e., the difference x∗t − xt .

The second learning mechanism that we study is stochastic
gradient descent aided by Conceptors (Jaeger, 2014a,b).
Mathematically, this method can be implemented using only
online computations. The Conceptor C associated with some
input can be defined as the matrix corresponding to a soft
projection on the subspace where the hidden state dynamics lie
when stimulated with this input. The softness of this projection
is controlled by a positive parameter α called the aperture. This
matrix C can be computed using the hidden state correlation
matrix R estimated online based on the hidden state dynamics:

C = R · (R+ α−2I)−1 (4)

Rt+1 =
(

1−
1

t + 1

)

Rt +
1

t + 1

(

ht · h
⊺

t

)

(5)

In a continual learning setting, for each new task, we can compute
the Conceptor corresponding to the complement of the subspace
where the previously seen hidden states lie, as I − C. This
Conceptor is used to project the new hidden states into a subspace
orthogonal to the subspace in which lie the previously seen
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hidden states. Learning is then performed only on the synaptic
weights involving the components of this subspace:

Wo ←Wo + λǫx,t ·

(

(

I− C
)

· tanh(ht)
)

⊺

(6)

As shown in Equation 4, low values of α induce a Conceptor
matrix close to 0, leading to a projection matrix (I − C) close to
the identity. On the opposite, high values of α induce a conceptor
matrix close to the identity matrix, leading to a hard projection
hindering learning.

The third learning mechanism that we study is the Elastic
Weight Consolidation (EWC) (Kirkpatrick et al., 2017) algorithm
applied to the output weights of the RNN. On each task k, we
can compute the Fischer information matrix Fk, where each
coefficient Fk,i measures the importance of the synaptic weight
Wo,i:

Fk,i =

T
∑

t=1

(

∇Wo,i‖xt − x
∗
k,t‖

2
2

)2
(7)

where x∗
k,t denotes the target at time t for the task k. Then, on a

new task k′, EWC minimizes the following loss function for each
synaptic weightWo,i:

L(Wo,i) = Lk′ (Wo,i)+
∑

k<k′

β

2
Fk,i(Wo,i −W∗k,i)

2 (8)

where Lk′ denotes the loss for task k′ without EWC
regularization, β is a hyperparameter controlling the importance
of the new task with regard to previous tasks, and W∗

k,i denotes
the i-th component of the optimal synaptic weights W∗

k
learned

on task k. We optimize this loss function using gradient descent
on the synaptic weights Wo, and obtain the following learning
rule:

Wo ←Wo + λǫx,t · tanh(ht)
⊺

−λβ

[

(

∑

k<k′

Fk

)

⊙Wo −
∑

k<k′

Fk ⊙W
∗
k

]

(9)

We can observe that the second line pullsWo toward the optimal
output weights found for previous tasks, weighted by coefficients
measuring the importance of each synaptic weight. In terms of
memory requirements, we need to store the sum of the Fischer
matrices, as well as the sum of previous optimal synaptic weights
weighted by the fisher matrices.

Finally, we also experiment with Generative Replay (GR) as a
continual learning technique mitigating catastrophic forgetting.
Since each individual task consists precisely in learning to
generate the task data (the trajectory), the learned generative
model can directly be used to provide samples of the previous
tasks.We apply this technique to the simple ESNmodel described
beforehand. At each new task k′, we create a copy of the model
trained on the tasks k < k′. This copy is used to generate
samples {x1, xT} that should be close to the previous tasks’
trajectories. During training on the task k′, the ESN is also trained
in parallel to predict these replayed trajectories, which mitigates
catastrophic forgetting.

3.2.2. Recurrent Weights
For the learning of the recurrent weights, we compare three
learningmethods inspired by PC. All threemodels share the same
architecture, represented in Figure 3. On top of the top-down
computations predicting the output xt , these models include
bottom-up computations updating the value of the hidden state,
and providing a prediction error signal on the hidden layer:

ǫx,t = x
∗
t − xt (10)

h
∗
t = ht + αxWb · ǫx,t (11)

ǫh,t = h
∗
t − ht (12)

where αx is an update rate that weights the importance of bottom-
up information for the estimation of ht .

In fact, the three models we compare propose the same update
rule for the recurrent weights, they will only differ in their
definition of the feedback weights, which impacts the recurrent
weights update. The learning rule for the recurrent weights is
based on the hidden state at time t and the prediction error on
the hidden state layer at time t + 1, according to the following
equation:

Wr ←Wr + λrǫh,t+1 · tanh(h
∗
t )

⊺ (13)

where λr is the learning rate of the recurrent weights.
The difference between the three models lies in the

computation of h∗t+1. In the first model, that we label PC-RNN-
V (for Vanilla), this bottom-up computation is done using the
transposed of the top-down weights used for prediction. This
results in a direct minimization of VFE, as shown in Appendix A.
In the two other models, these feedback and bottom-up weights
are instead learned. In the original PC model described in Rao
and Ballard (1997), it was proposed to learn these feedback
weights using the same rule as Equation 3 (up to a transpose to
match the feedback weights shape):

Wb ←Wb + λ tanh(ht) · ǫ
⊺

x,t (14)

This learning rule ensures that with random initializations, but
enough training time, the feedback weights converge to the
transposed forward weights. Since this learning rule is a copy of
the Hebbian rule used in Equation 3, we call PC-RNN-Hebb the

FIGURE 3 | PC-RNN-V model.
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RNNmodel using this method. The last model, inspired by the P-
TNCN (Ororbia et al., 2020), implements a different learning rule
for the feedback weights, described by the following equation:

Wb ←Wb − λb
(

ǫh,t − ǫh,t−1
)

· ǫ
⊺

x,t (15)

The model presented in Ororbia et al. (2020) also implements an
additional term in the learning rule for the recurrent and output
weights, on top of the rules explained here. This additional term
led our experiments to worse results. For this reason, we do not
provide more details about this rule and turn it off during the
experiments shown below.

3.2.3. Input Weights
Finally, we compare four methods to learn RNN input weights.
All methods share the same representation, displayed in
Figure 4. This architecture was derived following the principle
of free-energy minimization (Friston and Kilner, 2006), using
a generative model that features a latent variable called hidden
causes and labeled c. Similarly to hidden states, hidden causes are
hidden variables that can be dynamically inferred by the PC-RNN
network. However, contrary to the hidden state variable, hidden
causes are not dynamic: in the absence of prediction error the
value of the hidden causes is stationary ct = c0. The derivations
of these models are summarized in Appendix A. The resulting
architecture takes as input an initial value for the hidden causes
and predicts an output sequence while dynamically updating the
hidden states and hidden causes. During training, this input is the
one-hot encoded index of the current task c0 = k.

The four models differ according to two dimensions: whether
they use evolution strategies to estimate the input weights, and
according to the implementation of the influence of the input
onto the hidden state dynamics. This influence can be either
additive or multiplicative, the additive scheme is based on the
following equation:

ht = (1−
1

τ
)h∗t−1 +

1

τ

(

Wr · tanh(h
∗
t−1)+W i · ct−1

)

(16)

FIGURE 4 | PC-RNN-HC model.

The multiplicative scheme is based on the following equation:

ht = (1−
1

τ
)h∗t−1

+
1

τ
W

⊺

f
·

(

(

Wp · tanh(h
∗
t−1)

)

⊙ (W i · ct−1)
)

(17)

where we have introduced new synaptic weights Wp and W f ,
that replace the recurrent weights of the additive version.
This reparameterization is used to reduce the total number of
parameters of the multiplicative RNN, as already used in Annabi
et al. (2021a,b).

We label these two models, respectively, PC-RNN-HC-A and
PC-RNN-HC-M, the HC suffix standing for Hidden Causes and
the A and M suffixes standing for Additive and Multiplicative.
The differences between the additive and multiplicative models
also impact the bottom-up update rule for ct . However, in our
experiments, we always turn off this mechanism by using an
update rate equal to zero.

In these two first methods, the learning rules for the input
weights follow the PC theory and attempt at minimizing the
prediction error on the hidden layer. The learning rule used for
the PC-RNN-HC-A model is the following:

W i ←W i + λiǫh,t+1 · c
⊺

t (18)

For the PC-RNN-HC-M model, we obtain the following rule:

W i ←W i + λi

(

(

Wp · tanh(h
∗
t )

)

⊙
(

W f · ǫh,t+1
)

)

· c
⊺

t (19)

The third and fourth methods that we study are respectively
based on the PC-RNN-HC-A and PC-RNN-HC-M, but
instead use random search to optimize the weights W i. Our
implementation of this random search is inspired by the learning
algorithm proposed in Pitti et al. (2017):

δi ∼ N (0, σ 2
Id2

h
) (20)

‖ǫx,i‖2 ← simulate(W i + δi) (21)

W i ←W i + δisign(‖ǫx,i−1‖2 − ‖ǫx,i‖2) (22)

where the function sign associates −1 to negative values and
1 to positive values. At each training iteration i, the algorithm
samples a noise matrix δi that is added to the input weights
of the RNN. After generation, the difference between the old
and new average norm of the prediction error ‖ǫx,i−1‖2 −
‖ǫx,i‖2 is used as a measure of success of the addition of
δi and weights the update of W i. Since this algorithm only
relies on an average of the prediction error over the predicted
sequences, that can be computed iteratively, it qualifies as an
online learning algorithm.

In summary, we have identified four learning algorithms
for output weights, three learning algorithms for recurrent
weights, and four learning algorithms for input weights. To
connect the proposed methods to the classification of continual
learning methods presented above, we could categorize the
Conceptors method as a regularization method, and the
fact that new tasks are associated with new inputs to the
RNN in the shape of hidden causes, as an architecture
modification method.
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FIGURE 5 | Score estimation of the hyperparameter optimizer with regard to the learning rate λ and the coefficient β, for the EWC model.

4. RESULTS

4.1. Hyperparameter Optimization
The source code for the experiments presented in this section
is available on GitHub1. It contains our implementation of the
different models as well as the hyperparameter optimization
method. In Appendix B, we provide the optimal hyperparameters
found for each model.

We start by showing an example of a hyperparameter
optimization in Figure 5, which was performed on the EWC
model with dh = 300. The optimized hyperparameters are the
learning rate of the output weights, λ, and the coefficient β .
After trying 200 hyperparameter configurations, the optimizer
can estimate the score for all the configurations within the given
range of values. These figures display the evolution of the score
estimation according to λ using the optimal value for β , and
according to β using the optimal value for λ. We can see that
the function according to β monotonically decreases, while the
function according to λ increases steadily before dropping once
we attain values of the learning rate that no longer sustain
convergence of the gradient descent.

In this case, the hyperparameter optimization has found
that the EWC regularization does not improve the final score,
and suggests using the lowest possible value for the coefficient
β . When β increases, the regularization mitigates catastrophic
forgetting but prevents proper learning of new tasks.

For all the results presented below, we perform optimization
of the hyperparameters following the same protocol.

4.2. Output Weights
In Figure 6, we represent the average prediction error over 10
seeds for the continual learning of 20 sequential patterns obtained
on the test set, with the hyperparameters found using the protocol
described before. The vertical dashed lines in these figures
delimit each of the training tasks. The colored lines represent the
individual prediction error for each of the 20 sequence patterns
(averaged over the 10 seeds). Finally, the black line represents the

1https://github.com/sino7/continual_online_learning_rnn_benchmark

average prediction error over all the sequence patterns (averaged
over the 10 seeds).

During each task (for each colored line), we can observe that
one of the individual prediction errors decreases rapidly, while
the other prediction errors only slightly change. Once the training
task corresponding to a certain sequence pattern k is over, the
prediction error associated with this pattern tends to increase.
The better learning mechanism is the one that can limit this
undesirable forgetting of previously learned sequence patterns.
We can observe in Figure 6 the Conceptors learning mechanism
limits forgetting compared to the standard stochastic gradient
descent rule used in our ESN model.

At first, it can be surprising that for each individual
task, the corresponding prediction error reaches a lower
value for the Conceptors model than for the ESN model.
In terms of learning rules, the ESN model could potentially
learn each pattern with better accuracy by increasing the
learning rate. However, the hyperparameter optimizer
has estimated that an increased learning rate would be
detrimental to the complete continual learning task.
Indeed, increasing the learning rate might improve the
learning on every individual task, but it would also lead to
more forgetting throughout the complete task. It is only
because the Conceptors learning mechanisms naturally
limit forgetting that the hyperparameter optimized “allows”
a higher learning rate and, thus, better learning on each
individual task.

We can also observe that the prediction error level that
is reached during each individual task using the Conceptors
model seems to increase throughout the complete task. We
suppose that this is a consequence of further learning being
prevented on synaptic connections associated with previous
tasks’ associated Conceptors. When a large number of individual
tasks are over, learning is limited to synapses corresponding
to a subspace of the hidden state space not belonging to any
of the previous Conceptors. Decreasing the aperture α would
allow better learning of the late tasks, but at the detriment of an
increased forgetting of the early tasks.
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FIGURE 6 | Continual learning results with the ESN model (left) and the Conceptors model (right). We represent the average prediction error over 10 seeds, for the

continual learning of 20 sequential patterns, obtained on the first test set. The colored lines correspond to the prediction error on each individual task, and the black

line corresponds to the prediction error averaged on all tasks. The 20 tasks are delimited by the dashed gray lines.

FIGURE 7 | Comparison between the four learning methods for the output

weights on the first test set. The 20 tasks are delimited by the dashed gray

lines.

Figure 7 compiles these previous figures to compare the
average prediction error using the four learning mechanisms for
output weights. At the end of the training, we can see that the
Conceptors model and generative replay achieve a significantly
lower prediction error than the ESN using the standard stochastic
gradient descent rule and the EWC regularization for the learning
of the output weights.

As explained in the last section, the hyperparameters found
for EWC correspond to a configuration where the regularization
is almost removed, and the EWC model, thus, has the same
performance as the ESN model.

The generative replay strategy outperforms all other
approaches, but at the cost of a longer training time. Indeed, at
each task k, the model is trained on (k − 1) replayed trajectories
on top of the current trajectory. For all models, we have limited
the number of training iterations on each task, which induces
an unfair advantage for generative replay in our experiments.

TABLE 2 | Average prediction error after training on all p tasks.

Validation Test 1 Test 2

Model (MOCAP, (MOCAP, (Handwriting,

p = 15) p = 20) p = 20)

ESN 0.90 ± 0.07 1.37 ± 0.14 0.71 ± 0.04

EWC 0.90 ± 0.09 1.35 ± 0.15 0.69 ± 0.05

Conceptors 0.31 ± 0.02 0.52 ± 0.04 0.27 ± 0.02

ESN + GR 0.29 ± 0.01 0.39 ± 0.01 0.22 ± 0.01

PC-RNN-V 0.87 ± 0.09 1.41 ± 0.14 0.79 ± 0.10

P-TNCN 0.90 ± 0.08 1.42 ± 0.18 0.71 ± 0.05

PC-RNN-Hebb 0.90 ± 0.07 1.41 ± 0.10 0.73 ± 0.05

PC-RNN-HC-A 0.74 ± 0.09 1.28 ± 0.22 0.59 ± 0.04

PC-RNN-HC-M 0.81 ± 0.04 1.32 ± 0.09 0.77 ± 0.05

PC-RNN-HC-A-RS 0.90 ± 0.08 1.39 ± 0.15 0.77 ± 0.05

PC-RNN-HC-M-RS 0.93 ± 0.06 1.38 ± 0.10 0.72 ± 0.05

PC-Conceptors 0.28 ± 0.01 0.36 ± 0.02 0.18 ± 0.01

Bold value indicates the best performance in each group of models.

For this reason, we do not include this technique in the
remaining comparisons.

The results obtained with these models on the three data sets
(validation set and two test sets) are provided in Table 2, together
with the results for the learning of recurrent and input weights,
discussed in the next sections.

4.3. Recurrent Weights
In this second experiment, we compare the PC-RNN-V
with two variants using learning rules for the feedback
weights instead of using the transposed feedforward weights.
These three learning methods in the end provide different
update rules for the recurrent weights of the RNN. The
results of this second comparative analysis are provided in
Table 2.
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FIGURE 8 | Comparison between the three learning methods for the input

weights. The PC-RNN-V model, where no learning is performed on the input

weights, is also displayed as a baseline. The 20 tasks are delimited by the

dashed gray lines.

We can see that none of the three models brings any
significant improvement compared with the ESN, which is
exactly the same model without any learning occurring on the
recurrent weights. In terms of hyperparameters, only the PC-
RNN-V has an optimal learning rate for recurrent weights that
does not correspond to the lowest value authorized during
hyperparameter optimization. This means that for both P-TNCN
and PC-RNN-Hebb models, the hyperparameter optimizer has
estimated that training the recurrent weights only hinders the
final prediction error. For the PC-RNN-V model, a slight
improvement was found in the validation set using the learning
rule for recurrent weights, but this improvement does not
transfer to the two test sets.

We can conclude based on these results that recurrent weights
learning in a continual learning setting is difficult andmight often
lead to more catastrophic forgetting.

4.4. Input Weights
Figure 8 displays the results obtained with the four learning
mechanisms for input weights, and the ESN as a baseline. We
use the ESN as a baseline to measure the improvement brought
by the learning in the input layer. The results of the validation set
and other test sets are displayed in Table 2.

These results suggest that the learning methods using random
search (RS suffix) perform poorly compared to the corresponding
learning rules relying on the propagation of error using PC.
The two models using random search perform similarly to the
baseline ESN model. This observation is surprising since the W i

weights in PC-RNN-HC-A/M architectures are directly factored
according to each individual task. Indeed, during the task k, we
can limit learning on the k-th column of the W i weights, since
these are the only weights that influence the RNN trajectory.
Consequently, training this layer should not cause any additional
forgetting, and thus should only bring improvements over the
baseline ESN model. Since the two models using random search
did not bring any improvement, we suppose that this is due
to the limited number of iterations allowed for the training on

FIGURE 9 | PC-Conceptors model.

FIGURE 10 | Continual learning results using the PC-Conceptors. We

represent the average prediction error over 10 seeds, for the continual learning

of 20 sequential patterns, using the PC-RNN-HC-A model with Conceptors.

The colored lines correspond to the prediction error on each individual task,

and the black line corresponds to the prediction error averaged on all tasks.

The 20 tasks are delimited by the dashed gray lines.

each individual task. We observed that in general training with
random search as in the INFERNO model (Pitti et al., 2017)
needed many more iterations than gradient-based methods.

The PC-RNN-HC-A/M models trained using the PC-based
learning rules still showed some significant improvement
compared with the ESN baseline, with the PC-RNN-HC-Amodel
performing slightly better than the PC-RNN-HC-M model. This
experiment allows us to conclude that the learning rule for input
weights proposed by the PC-RNN-HC-A model is the most
suited to a continual learning setting.

4.5. Combining Conceptors and Hidden
Causes
Finally, we can inquire whether these different learning
mechanisms combine well with each other. We implement
the Conceptors learning rule on the output weights of a PC-
RNN-HC-A model, a new model that we label PC-Conceptors,
as represented in Figure 9. Figure 10 displays the prediction
error on each individual task as well as the average prediction
error throughout learning, using this model. Interestingly,
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FIGURE 11 | Comparison between the ESN, the Conceptors model, the

PC-RNN-HC-A model, and the PC-Conceptors model on the first test set. The

20 tasks are delimited by the dashed gray lines.

virtually no forgetting seems to happen during learning, as the
individual prediction errors plateau after decreasing during the
corresponding individual tasks.

Additionally, the hyperparameter optimizer in this case
recommended using the lowest possible value for the recurrent
weights learning rate. This suggests that the recurrent weights
learning negatively interferes with the Conceptors model.
The Conceptors model might be sensible for recurrent
weight learning, since this could turn the previously learned
Conceptors into obsolete descriptors of the corresponding
hidden state trajectories.

We compare these results with the ESN, Conceptors and
PC-RNN-HC-A models in Figure 11, which confirms that this
combination of learning methods seems to provide the RNN
model best suited for online continual learning.

5. DISCUSSION

Overall, this study suggests that regularization methods such as
Conceptors, and architectural methods, as proposed in the PC-
RNN-HC architectures, can help design RNNmodels with online
learning rules suitable for continual learning.

Additionally, we have found that combining Conceptors-
based learning for the output weights with PC-based learning

for the input weights further improves the model precision.
In future study, it would be interesting to investigate whether
the combination of these two mechanisms could be improved.
Especially, the learning of the input weights is only driven by
the minimization of the prediction error on the recurrent layer.
This could be improved by integrating an orthogonality criterion
to the learning rule: if the input weights are optimized in order
to decorrelate the different hidden state trajectories, it could
facilitate the learning of the output weights.

The models we have proposed also suffer from another
limitation that should be addressed in future work. The models
were trained using as input the current task index, which is
information that might not be available in realistic lifelong
learning settings. The model should be able to detect a
distributional shift when it occurs and adapt its learning rules
based on these events.
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