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We consider the motion of a compressible viscous fluid containing a moving rigid body confined to a planar domain Ω ⊂ R 2 . The main result states that the influence of the body on the fluid is negligible if (i) the diameter of the body is small and (ii) the fluid is nearly incompressible (the low Mach number regime). The specific shape of the body as well as the boundary conditions on the fluid-body interface are irrelevant and collisions with the boundary ∂Ω are allowed. The rigid body motion may be enforced externally or governed solely by its interaction with the fluid.

Introduction i

There is a vast number of recent studies concerning the motion of a rigid body immersed in/or containing a compressible viscous fluid. We focus on the situation when the body is "small" therefore its influence on the fluid motion is expected to be negligible. By small we mean that the body is contained in a ball with a small radius. The problem is mathematically more challenging in the case of planar (2d) flows, where even small objects may have large capacity.

The motion of a small object immersed in an inviscid (Euler) incompressible fluid is studied by Iftimie, Lopes Filho, and Nussenzveig Lopes [START_REF] Iftimie | Two dimensional incompressible ideal flow around a small obstacle[END_REF]. Similar problems again in the framework of inviscid fluids have been considered by Glass, Lacave, and Sueur [START_REF] Glass | On the motion of a small body immersed in a twodimensional incompressible perfect fluid[END_REF], [START_REF] Glass | On the motion of a small light body immersed in a two dimensional incompressible perfect fluid with vorticity[END_REF]. The asymptotic behavior of solutions of the incompressible Euler equations in the exterior of a single smooth obstacle when the obstacle becomes very thin tending to curve has been studied by Lacave [START_REF] Lacave | Two dimensional incompressible ideal flow around a thin obstacle tending to a curve[END_REF].

In the context of viscous Newtonian fluids, the flow around a small rigid obstacle was studied by Iftimie et al. [START_REF] Iftimie | Two-dimensional incompressible viscous flow around a small obstacle[END_REF]. Lacave [START_REF] Lacave | Two-dimensional incompressible viscous flow around a thin obstacle tending to a curve[END_REF] studies the limit of a viscous fluid flow in the exterior of a thin obstacle shrinking to a curve.

Finally, let us mention results in planar domains, where the body does not influence the flow in the asymptotic limit. Dashti and Robinson [START_REF] Dashti | The motion of a fluid-rigid disc system at the zero limit of the rigid disc radius[END_REF] consider the viscous fluid-rigid disc system, where the disc is not rotating. Lacave and Takahashi [START_REF] Lacave | Small moving rigid body into a viscous incompressible fluid[END_REF] consider a single disk moving under the influence of a viscous fluid. They proved convergence towards the Navier-Stokes equations as the size of the solid tends to zero, its density is constant and the initial data small. Finally, He and Iftimie [START_REF] He | A small solid body with large density in a planar fluid is negligible[END_REF] extend the above result to a general shape of the body and to the initial velocities not necessarily small.

To the best of our knowledge, the problem of negligibility of a small rigid body immersed in a planar viscous compressible fluid is completely open. Bravin and Nečasová [START_REF] Bravin | On the vanishing rigid body problem in a viscous compressible fluid[END_REF] addressed the problem in the 3d setting, where the capacity of the object in a suitable Sobolev norm is small enough.

Problem formulation

Neglecting completely the possible thermal effects as well as the external body forces, we consider the isentropic compressible fluid in the low Mach number regime governed by the following system of equations: Navier-Stokes system.

∂ t ̺ + div x (̺u) = 0, (1.1) i1 ∂ t (̺u) + div x (̺u ⊗ u) + 1 ε 2m ∇ x p = div x S(∇ x u), (1.2) i2 S(∇ x u) = µ ∇ x u + ∇ t x u -div x uI + λdiv x uI, µ > 0, λ ≥ 0, (1.3) i3 p = p(̺) = a̺ γ , γ > 1, a > 0. (1.4) i4
The fluid is confined to a bounded planar domain Ω ⊂ R 2 and the momentum equation

(1.2) satisfied in Ω ε,t = Ω \ B ε,t , t ∈ (0, T ), (1.5) i8 where B ε,t = x ∈ R 2 |x -h ε (t)| ≤ ε , (1.6) i5 h ε ∈ W 1,∞ ([0, T ]; R 2 ), ε|h ′ ε (t)| → 0 uniformly for a.a. t ∈ (0, T ) as ε → 0. (1.7) i6
The ball B ε,t is the part of the plane containing the rigid object at the time t. Note carefully that, in general, we do not require B ε,t ⊂ Ω. Finally, we impose the no-slip boundary conditions

u| ∂Ω = 0. (1.8) i7

Main results

Below, we formulate the main hypotheses imposed on the fluid motion. It is convenient to consider the density ̺ = ̺ ε as well as the velocity u = u ε to be defined on the whole physical space (0, T ) × R 2 . Accordingly, we set

̺ = ̺ ε (t, x) = ̺ -a positive constant whenever x ∈ R 2 \ Ω, u = u ε (t, x) = 0 if x ∈ R 2 \ Ω. (1.9) i9
Throughout the whole text, we assume the following:

(H1) h ε ∈ W 1,∞ ([0, T ]; R 2 ); (1.10) hreg (H2) (̺ ε , u ε ), ̺ ε ≥ 0 is a weak renormalized solution of the equation of continuity (1.1), meaning T 0 R 2 ̺ ε ∂ t ϕ + ̺ ε u ε • ∇ x ϕ dx dt = - R 2 ̺ 0,ε ϕ(0, •) dx, T 0 R 2 b(̺ ε )∂ t ϕ + b(̺ ε )u ε • ∇ x ϕ + (b(̺ ε ) -b ′ (̺ ε )̺ ε ) div x u ε ϕ dx dt = - R 2 b(̺ ε,0 )ϕ(0, •) dx, (1.11) i10 for any ϕ ∈ C 1 c ([0, T ) × R 2 ) and any b ∈ C 1 [0, ∞), b ′ ∈ C c [0, ∞); (H3) (̺ ε , u ε ) is a weak solution of the momentum equation (1.2) in the fluid domain ∪ t∈(0,T ) Ω ε,t , meaning u ε ∈ L 2 (0, T ; W 1,2 0 (Ω; R 2 )), (1.12) i11 and T 0 Ω ̺ ε u ε • ∂ t ϕ + ̺ ε u ε ⊗ u ε : ∇ x ϕ + 1 ε 2m p(̺ ε )div x ϕ dx dt = T 0 Ω S(∇ x u ε ) : ∇ x ϕ dx dt - Ω ̺ ε,0 u ε,0 • ϕ(0, •) dx (1.13) i12 for any ϕ ∈ C 1 c (∪ 0≤t<T Ω ε,t ; R 2 ) ∩ C 1 c ([0, T ) × Ω; R 2 );
(H4) The energy inequality

Ω 1 2 ̺ ε |u ε | 2 (τ, •) dx + 1 ε 2m Ωε,τ P (̺ ε ) -P ′ (̺)(̺ ε -̺) -P (̺) (τ, •) dx + τ 0 Ω S(∇ x u ε ) : ∇ x u ε dx dt ≤ Ω 1 2 ̺ ε,0 |u ε,0 | 2 dx + 1 ε 2m Ω F ,ε,0 P (̺ ε,0 ) -P ′ (̺)(̺ ε,0 -̺) -P (̺) dx (1.14) i13
holds for a.a. τ ∈ (0, T ), where P is the pressure potential,

P (̺) = a γ -1
̺ γ , and Ω ε,0 ⊂ Ω F ,ε,0 .

In (1.14), Ω F ,ε,0 is the fluid domain at the initial time, meaning Ω F ,ε,0 \ B 0 , B 0 ⊂ B ε,0 the initial position of the rigid body.

Our main result reads as follows:

mT1 Theorem 1.1. Let Ω ⊂ R 2 be a bounded domain of class C 3 . Let (̺ ε , u ε ) ε>0 satisfy the hypotheses (H1)-(H4). In addition, suppose

̺ ε,0 ≥ 0 a.e. in Ω, 1 ε 2m Ω F ,ε,0 P (̺ ε,0 ) -P ′ (̺)(̺ ε,0 -̺) -P (̺) dx → 0, (1.15) i14
where

min m; 2m γ > 3. (1.16) i14A u ε,0 → u 0 weakly in L 2 (Ω; R 2 ), Ω ̺ ε,0 |u ε,0 | 2 dx → Ω ̺|u 0 | 2 dx as ε → 0, where u 0 ∈ W 2,∞ (Ω), div x u 0 = 0, u 0 | ∂Ω = 0; (1.17) i15 ε|h ′ ε (t)| → 0 uniformly for a.a. t ∈ (0, T ) (1.18) i16 as ε → 0. Then sup τ ∈[0,T ] ̺ ε (τ, •) -̺ L γ (Ωε,τ ) → 0 with γ as in (1.4), (1.19) i17 u ε → u in L 2 (0, T ; W 1,2 0 (Ω; R 2 )) (1.20) i18
as ε → 0, where u is the (unique) classical solution of the incompressible Navier-Stokes system

div x u = 0, ̺∂ t u + ̺div x (u ⊗ u) + ∇ x Π = µ∆ x u, u| ∂Ω = 0, u(0, •) = u 0 (1.21) i19 in (0, T ) × Ω.
The hypotheses (1.15), (1.17) correspond to the well prepared data in the low Mach number limit, cf. Masmoudi [START_REF] Masmoudi | Asymptotic problems and compressible-incompressible limit[END_REF]. Moreover, as u 0 belongs to the class (1.17), the standard maximal regularity theory yields a strong solution of the Navier-Stokes system (1.21), unique in the class

u ∈ L p (0, T ; W 2,p (Ω; R 2 )), ∂ t u ∈ L p (0, T ; L p (Ω; R 2 )), ∇ x Π ∈ L p (0, T ; L p (Ω; R 2 )), 1 ≤ p < ∞ (1.22) i20
see e.g. Gerhardt [START_REF] Gerhardt | L p -estimates for solutions to the instationary Navier-Stokes equations in dimension two[END_REF], von Wahl [START_REF] Wahl | Instationary Navier-Stokes equations and parabolic systems[END_REF]. The solution is classical in (0, T ) × Ω as a consequence of the interior regularity estimates. The hypotheses of Theorem 1.1 are satisfied if (̺ ε , u ε ) is a weak solution of the fluid-structure interaction problem of a single rigid body immersed in a viscous compressible fluid in the sense of [5] (see also Desjardins and Esteban [START_REF] Desjardins | On weak solutions for fluid-rigid structure interaction: compressible and incompressible models[END_REF]) or if the motion of the body is prescribed as in [START_REF] Feireisl | Weak solutions to the barotropic Navier-Stokes system with slip boundary conditions in time dependent domains[END_REF]. A detailed proof is given in Appendix 5.

The remaining part of the paper is devoted to the proof of Theorem 1.1. Similarly to the purely incompressible setting studied by He and Iftimie [START_REF] He | On the small rigid body limit in 3D incompressible flows[END_REF] (cf. also Lacave and Takahashi [START_REF] Lacave | Small moving rigid body into a viscous incompressible fluid[END_REF]), the main problem is the rather weak estimate (1.18) that does not allow for a precise identification of the limit trajectory of the body. In addition, two new difficulties appear in the compressible regime:

• Possible fast oscillations of acoustic (gradient) component of the velocity that cannot be a priori excluded even for the well prepared data because of the influence of the rigid body.

• Possible contacts of the body -intersection of the balls B ε,t -with the outer boundary ∂Ω.

To overcome the above mentioned difficulties, we proceed as follows. In Sections 2, 3 we identify the system of equations satisfied by the limit velocity u. Due to the lack of information on ∂ t u ε , the limit of the convective term as well as the kinetic energy is described in terms of the corresponding Young measure. The limit u is therefore a generalized dissipative solution of the incompressible Navier-Stokes system in the sense of [START_REF] Abbatiello | On a class of generalized solutions to equations describing incompressible viscous fluids[END_REF]. In particular, we adapt the approximation of the test functions introduced by He and Iftimie to the geometry of a bounded domain. Finally, in Section 4, apply the weak-strong uniqueness result proved in [START_REF] Abbatiello | On a class of generalized solutions to equations describing incompressible viscous fluids[END_REF] to conclude that the limit is, in fact, a strong solution of the Navier-Stokes system whereas the associated Young-measure reduces to a parametrized family of Dirac masses.

2 Identifying the limit, the equation of continuity, energy balance I It follows from the hypotheses (1.15), (1.17) that the initial energy on the right-hand side of the energy inequality (1.14) is bounded uniformly for ε → 0. Applying Korn-Poincaré inequality we get, up to a suitable subsequence,

u ε → u weakly in L 2 (0, T ; W 1,2 0 (Ω; R 2 )). (2.1) I1
Next, ̺ ε satisfies the renormalized equation of continuity (1.11). Moreover, the energy inequality (1.14) yields

̺ ε → ̺ in (0, T ) × Ω in measure.
In particular, we may perform the limit in (1.11) 

obtaining b ′ (̺)̺div x u = 0, yielding div x u = 0. (2.2) I3
Finally, using the hypotheses (1.17), (1.18) and the property of weak lower semi-continuity of convex functionals, we perform the the limit in the energy inequality obtaining

Ω 1 2 ̺|u| 2 (τ, •) dx + E(τ ) + µ τ 0 Ω ∇ x u : ∇ x u dx dt ≤ Ω 1 2 ̺|u 0 | 2 dx (2.3) I4
for a.a. τ ∈ (0, T ). Here, C(τ ) ∈ L ∞ (0, T ) is the so called total energy defect defined as

E(τ ) = lim inf ε→0 Ω 1 2 ̺ ε |u ε | 2 (τ, •) dx - Ω 1 2 ̺|u| 2 (τ, •) dx ≥ 0 for a.a. τ ∈ (0, T ).
(2.4) I4a

3 Identifying the limit, the momentum equation

II

The next and more delicate step is to perform the limit ε → 0 in the momentum equation (1.2).

To eliminate the singular pressure term, we consider the test functions

ϕ ε ∈ C 1 c (∪ 0≤t<T Ω ε,t ; R 2 ) ∩ C 1 c ([0, T ) × Ω; R 2 ), div x ϕ ε = 0. (3.1) I6
Accordingly, the weak formulation (1.13) gives rise to

T 0 Ω ̺ ε u ε • ∂ t ϕ ε + ̺ ε u ε ⊗ u ε : ∇ x ϕ ε dx dt = T 0 Ω S(∇ x u ε ) : ∇ x ϕ ε dx dt - Ω ̺ 0,ε u 0,ε • ϕ ε (0, •) dx. (3.2) I5

Some useful estimates

Note that (3.2) is relevant only on the fluid part ∪ t∈[0,T ] Ω ε,t , where the energy inequality (1.14) yields uniform bounds on the density. This motivates the following decomposition of any measurable functions v:

v = [v] ess + [v] res ,
where [v] ess = v1 1 2 ̺≤v≤2̺ . Thanks to the energy inequality (1.14), we get

[̺ ε ] ess u ε bounded in L ∞ (0, T ; L 2 (Ω)) ∩ L 2 (0, T ; L q (Ω)) for any 1 ≤ q < ∞. (3.3) I7
Moreover, by the energy inequality,

[̺ ε ] ess → ̺ in measure in ((0, T ) × Ω); (3.4) I8
whence we conclude

[̺ ε ] ess u ε → ̺u weakly -(*) in L ∞ (0, T ; L 2 (Ω; R 2 
)), and weakly in L 2 (0, T ; L q (Ω; R 2 )) for any 1 ≤ q < ∞.

(3.5) I9

In addition, we also have

̺ ε u ε = (̺ ε -̺)u ε + ̺u ε ,
where, thanks to the energy inequality (1.14),

Ωε,τ |̺ ε -̺||u ε | dx < ∼ ̺ ε (τ, •) -̺ (L γ +L 2 )(Ωε,τ ) u ε W 1,2 0 (Ω;R 2 ) < ∼ ε min{m, 2m γ } u ε (τ, •) W 1,2 0 (Ω;R 2 ) (3.6) II9 for any τ ∈ [0, T ]. Similarly, [̺ ε ] ess u ε ⊗ u ε is bounded in L 1 (0, T ; L q (Ω; R d×d )) ∩ L ∞ (0, T ; L 1 (Ω; R d×d )) for any 1 ≤ q < ∞; (3.7) I9a
whence, by interpolation,

[̺ ε ] ess u ε ⊗ u ε → ̺u ⊗ u weakly in L r ((0, T ; L 2 (Ω; R 2 )) for some r > 1. (3.8) I9b
The tensor ̺u ⊗ u ∈ R d×d sym is positively semi-definite and

̺u ⊗ u -̺u ⊗ u ≥ 0. (3.9) I9c
Indeed, for any d ∈ R d :

[̺u ⊗ u -̺u ⊗ u] : (d ⊗ d) = lim ε→0 | [̺ ε ] ess u ε • d| 2 -| ̺u • d| 2 .
Thus the desired conclusion (3.9) follows from (2.1), (3.4) and weak lower-semicontinuity of convex functions. Finally, as

[̺ ε ] ess |u ε | 2 ≤ ̺ ε |u ε | 2 , we get 0 ≤ Ω trace ̺u ⊗ u -̺u ⊗ u dx ≤ 2E, (3.10) I9d
where E is the total energy defect appearing on the left-hand side of the energy inequality (2.3).

As for the residual components, we deduce from the energy inequality

Ωε,τ [̺ ε ] γ res (τ, •) dx < ∼ ε 2m , 0 ≤ τ ≤ T. (3.11) I10
Consequently, by Hölder's inequality,

Ωε;τ [̺ ε ] res |u ε | dx < ∼ ε 2m γ u ε (τ, •) L q (Ω;R d ) , 1 γ + 1 q = 1, (3.12) I11
and, similarly,

Ωε;τ [̺ ε ] res |u ε ⊗ u ε | dx < ∼ ε 2m γ u ε (τ, •) 2 L q (Ω;R d ) , 1 γ + 2 q = 1 (3.13) I12
for a.a. τ ∈ (0, T ).

Constructing a suitable class of test functions

TF

Our goal is to approximate a test function

ϕ ∈ C ∞ c ([0, T ] × Ω; R 2 ), div x ϕ = 0,
by a suitable family of admissible test functions (ϕ ε ) ε>0 in (3.2). The test function are obtained following the construction of He and Iftimie [START_REF] He | A small solid body with large density in a planar fluid is negligible[END_REF][START_REF] He | On the small rigid body limit in 3D incompressible flows[END_REF], specifically,

ϕ ε = ∇ ⊥ x (η ε (x -h ε (t))Ψ ε ), with the potential Ψ ε , ∇ ⊥ x Ψ ε = ϕ normalized as Ψ ε (t, h ε (t)) = 0.
The cut-off functions η ε near the disk D(h ε (t), ε) are smooth and satisfy the following properties (see [START_REF] He | A small solid body with large density in a planar fluid is negligible[END_REF]Lemma 3]):

|η ε | ≤ 1, η ε (y) = 0 if |y| ≤ ε, η ε (y) = 1 if |y| ≥ α(ε)ε, (3.14) I13 |∇ x η ε (y)| < ∼ 1 ε 1 log(α(ε)) , |∇ 2 x η ε (y)| < ∼ 1 ε 2 . (3.15) I13a
where α(ε) is chosen in such a way that

α(ε) → ∞, α(ε)ε(1 + |h ′ ε (t)|) → 0 as ε → 0. (3.16) I13b
As shown in [10, Lemma 5], the functions ϕ ε enjoy the following properties:

ϕ ε , ∇ x ϕ ε ∈ C c (([0, T ] × R d ) \ ∪ t∈[0,T ] B ε,t ), ∂ t ϕ ε ∈ L ∞ ((0, T ) × R 2 ; R 2 ), (3.17) I16 dist[h ε (τ ); ∂Ω] > εα(ε) ⇒ ϕ ε (τ, •)| ∂Ω = 0, (3.18) I16a ϕ ε → ϕ strongly in L ∞ (0, T ; W 1,2 (R 2 ; R 2 )) as ε → 0. (3.19) I17
Unfortunately, the functions ϕ ε do not vanish on ∂Ω unless dist[h(t); ∂Ω] > εα(ε). To remedy this, we consider a convex combination

ϕ ε = χ ε (t) ϕ ε + (1 -χ ε (t))ϕ for suitable 0 ≤ χ ε (t) ≤ 1, χ ε ∈ W 1,∞ (0, T ).
First observe that, similarly to ϕ ε ,

χ ε (t) ϕ ε + (1 -χ ε )ϕ L ∞ (0,T ;W 1,2 (Ω;R 2 )) < ∼ 1,
and

ϕ ε -ϕ = χ ε (t) ϕ ε + (1 -χ ε )ϕ -ϕ = χ ε ( ϕ ε -ϕ) → 0 in L ∞ (0, T ; W 1,2 (Ω; R 2 )) as ε → 0. (3.20) I20
Next, we compute the approximation error in the time derivative

∂ t χ ε (t) ϕ ε + (1 -χ ε )ϕ -∂ t ϕ = χ ε (t)(∂ t ϕ ε -∂ t ϕ) + χ ′ ε (t)( ϕ ε -ϕ),
where the former error term

χ ε (t)(∂ t ϕ ε -∂ t ϕ)
can be controlled in W -1,2 exactly as in He and Iftimie [START_REF] He | On the small rigid body limit in 3D incompressible flows[END_REF] since χ is independent of x. As for the latter, we have

χ ′ ε (t)( ϕ ε -ϕ) = χ ′ ε (t)∇ ⊥ x [η ε (x -h(t)) -1]Ψ ε = ∇ ⊥ x χ ′ ε (t) [η ε (x -h(t)) -1]Ψ ε ,
where, in accordance with (3.14),

χ ′ ε (t)[η ε (x -h(t)) -1]Ψ ε 2 L 2 (Ω) < ∼ |χ ′ ε (t)| 2 ε 2 α 2 (ε). (3.21) I14b Thus if |χ ′ ε (t)| < ∼ |h ′ ε (t)|, (3.22) I14
the latter error vanishes in W -1,2 for ε → 0 as a consequence of (3.16).

For δ > 0 fixed, let ϕ ∈ C 1 ([0, T ) × Ω) be given such that

ϕ(t, x) = 0 whenever dist[x, ∂Ω] ≤ 2δ. (3.23) I15
Finally, we choose

χ ε (t) = H δ dist[h ε (t); ∂Ω] , 0 ≤ H δ ≤ 1, H δ (z) = 0 for z ≤ δ 2 , H δ (z) = 1 for z ≥ δ,
where H δ is a Lipschitz function. We claim that the test functions

ϕ ε = χ ε (t) ϕ ε + (1 -χ ε (t))ϕ
vanish both on the boundary ∂Ω and on the balls B ε,t , t ∈ [0, T ]. First, by construction, the function

χ ε ϕ ε vanishes on B ε,t for any t ∈ [0, T ]. Moreover, if χ ε > 0, then, in view of (3.16), dist[h ε (t), ∂Ω] > δ 2 > εα(ε) for ε small enough. It follows from (3.18) that χ ε ϕ ε | ∂Ω = 0. Second, obviously (1 -χ ε )ϕ| ∂Ω = 0. Next, if χ ε < 1, we have dist[h ε (t); ∂Ω] < δ.
Thus, in view of (3.23), (1χ ε )ϕ(t, •)| Bε,t = 0 as soon as ε < δ.

Asymptotic limit

The function ϕ ε constructed in Section 3.2 represents a legitimate test function for the momentum balance (3.2). Our goal is to perform the limit ε → 0.

Step 1: Viscous term. In view of hypothesis (1.17), (2.1), and (2.2), it follows from (3.20) that

T 0 Ω S(∇ x u ε ) : ∇ x ϕ ε dx dt - Ω ̺ 0,ε u 0,ε • ϕ ε (0, •) dx → µ T 0 Ω ∇ x u : ∇ x ϕ dx dt - Ω ̺u 0 • ϕ(0, •) dx (3.24) A1 for any ϕ ∈ C ∞ c ([0, T ) × Ω; R d ), div x ϕ = 0.
Step 2: Convective term. We can write

T 0 Ω ̺ ε u ε ⊗u ε : ∇ x ϕ ε dx dt = T 0 Ω [̺ ε ] ess u ε ⊗u ε : ∇ x ϕ ε dx dt+ T 0 Ω [̺ ε ] res u ε ⊗u ε : ∇ x ϕ ε dx dt We use (3.8) to obtain T 0 Ω [̺ ε ] ess u ε ⊗ u ε : ∇ x ϕ ε dx dt → T 0 Ω ̺u ⊗ u : ∇ x ϕ dx dt + T 0 Ω ̺u ⊗ u -̺u ⊗ u : ∇ x ϕ dx dt. (3.25) A2
Step 3: Time derivative. Using the same arguments as in [START_REF] He | On the small rigid body limit in 3D incompressible flows[END_REF] combined with (3.21), we get

Ω ̺u ε • ∂ t ϕ ε dx < ∼ u ε W 1,2 0 (Ω;R 2 ) ∂ t ϕ ε W -1,2 (Ω;R 2 ) → 0 in L 2 (0, T ). (3.26) A3
Step 4: Remaining terms. The final step is to show

T 0 Ωε,t (̺ ε -̺)u ε • ∂ t ϕ ε dx dt → 0, T 0 Ωε,t [̺ ε ] res u ε ⊗ u ε : ∇ x ϕ ε dx dt → 0. ( 3 

.27) A4

A direct manipulation reveals Summarizing the results obtained in the preceding section we may infer that limit velocity

∇ x ϕ ε L ∞ ((0,T )×Ω;R 2×2 ) < ∼ ∇ 2 η ε L ∞ (R 2 ) + 1, ∂ t ϕ ε L ∞ ((0,T )×Ω;R 2×2 ) < ∼ (1 + |h ′ ε (t)|)( ∇ 2 η ε L ∞ (R 2 ) + 1). ( 3 
u ∈ L ∞ (0, T ; L 2 (Ω; R 2 )) ∩ L 2 (0, T ; W 1,2 0 (Ω; R 2 ))
solves the following problem: Consequently, the limit function u is a dissipative solution of the Navier-Stokes system (1.21) in the sense of [START_REF] Abbatiello | On a class of generalized solutions to equations describing incompressible viscous fluids[END_REF]. As the initial velocity is regular, the same problem admits a strong solution in the class (1.22). Thus applying the weak-strong uniqueness result [1, Theorem 2.6. and Remark 2.5] we conclude that u coincides with the strong solution of (1.21). Finally, as the strong solution satisfies the energy equality, its follows from (4.2) that E = 0, and

div x u = 0, u| ∂Ω = 0; T 0 Ω ̺u • ∂ t ϕ + ̺u ⊗ u : ∇ x ϕ dx dt = µ T 0 Ω ∇ x u : ∇ x ϕ dx dt - Ω ̺u 0 • ϕ(0, •) dx - T 0 Ω R : ∇ x ϕ dx dt (4.1) C1 for any ϕ ∈ C 1 c ([0, T ) × Ω); Ω 1 2 ̺|u| 2 (τ, •) dx + E(τ ) + µ τ 0 Ω |∇ x u| dx dt ≤ Ω 1 2 ̺|u 0 | 2 dx (4.2) C2
T 0 Ω S(∇ x u ε ) : ∇ x u ε dx dt → µ T 0 Ω |∇ x u| 2 dx
yielding the strong convergence claimed in (1.20). Theorem 1.1 has been proved.

Appendix

Ap

Our main result (Theorem 1.1) is valid whenever (̺ ε , u ε ) ε>0 satisfy the hypotheses (H1) -(H4) along with the conditions (1.15)-(1.20). These hypotheses (see (1.10)-(1.14)) are satisfied if (̺ ε , u ε ) is a weak solution of the fluid-structure interaction problem of a single rigid body immersed in a viscous compressible fluid in the sense of [5] (see also Desjardins and Esteban [START_REF] Desjardins | On weak solutions for fluid-rigid structure interaction: compressible and incompressible models[END_REF]) or if the motion of the body is prescribed as in [START_REF] Feireisl | Weak solutions to the barotropic Navier-Stokes system with slip boundary conditions in time dependent domains[END_REF]. Let the rigid body S ε (t) be a regular, bounded domain and moving inside Ω ⊂ R 2 . The motion of the rigid body is governed by the balance equations for linear and angular momentum. We assume that the fluid domain F ε (t) = Ω \ S ε (t) is filled with a viscous isentropic compressible fluid. Initially, the domain of the rigid body is given by S ε,0 included in the ball B ε,0 and F ε,0 is the domain of the fluid. Let h ε be the position of the centre of mass and β ε be the angle of rotation of the rigid body. The solid domain at time t is given by

S ε (t) = h ε (t) + R βε (t)S ε,0 ,
where R βε is the rotation matrix, defined by

R βε = cos β ε -sin β ε sin β ε cos β ε .
The evolution of this fluid-structure system can be described by the following equations

∂̺ ε F ∂t + div(̺ ε F u ε F ) = 0, t ∈ (0, T ), x ∈ F ε (t), (5.1) mass:com ∂ ∂t (̺ ε F u ε F ) + div(ρ F ε u ε F ⊗ u ε F ) -div S(∇ x u ε F ) + 1 ε 2m ∇p F = 0, t ∈ (0, T ), x ∈ F ε (t), (5.2) momentum m ε h ′′ ε (t) = - ∂Sε(t) S(∇ x u ε F - 1 ε 2m p F ε I)ν ε dΓ, in (0, T ), (5.3) linear m J ε β ′′ ε (t) = - ∂Sε(t) (S(∇ x u ε F ) - 1 ε 2m p F ε I)ν ε • (x -h ε (t)) ⊥ dΓ, in (0, T ), (5.4) 
angular the boundary conditions

u ε F = h ′ ε (t) + β ′ ε (t)(x -h ε (t)) ⊥ , for t ∈ (0, T ), x ∈ ∂S ε (t),
(5.5) boundary u ε F = 0, on (t, x) ∈ (0, T ) × ∂Ω, (5.6) boundary and the initial conditions

̺ ε F (0, x) = ̺ F 0 (x), (̺ ε F u ε F )(0, x) = q F 0 (x), ∀ x ∈ F ε,0 , (5.7) initial h ε (0) = 0, h ′ ε (0) = ℓ 0 , β ε (0) = 0, β ′ ε (0) = ω 0 .
(5.8) initial

In the above, the outward unit normal to ∂F ε (t) is denoted by ν ε (t, x). For all x = (x 1 , x 2 ) ∈ R 2 , we denote by x ⊥ , the vector (-x 2 , x 1 ). Moreover, the constants m ε and J ε are the mass and the moment of inertia of the rigid body. We want to state the existence result of the fluid-rigid body interaction system (5.1)-(5.8). To do so, we extend the density and the velocity in the following way:

̺ ε (t, x) =      ̺ ε F (t, x), x ∈ F ε (t), ̺ ε S (t, x), x ∈ S ε (t), ̺, x ∈ R 2 \ Ω, u ε (t, x) =      u ε F (t, x), x ∈ F ε (t), h ′ ε (t) + β ′ ε (t)(x -h ε (t)) ⊥ , x ∈ S ε (t), 0, x ∈ R 2 \ Ω.
(5.9) ext:vru ̺ ε,0 (x) =      ̺ F 0 (x), x ∈ F ε,0 , ̺ S ε (0, x), x ∈ S ε,0 , ̺, x ∈ R 2 \ Ω, q ε,0 (x) =      q F 0 , x ∈ F ε,0 , ̺ S ε (0, x)(ℓ 0 + ω 0 × x), x ∈ S ε,0 , 0, x ∈ R 2 \ Ω.

(5.10) ext:vru0

We have the following existence result for the system (5.1)-(5.8) following [5, Theorem 4.1]: Theorem 5.1. Let Ω ⊂ R 2 be a bounded domain and the pressure p F be given by the isentropic constitutive law p F = p(̺ F ) = a(̺ F ) γ , γ > 1, a > 0.

Let the initial data (̺ 0 , q 0 ) be defined by (5.10) satisfying ̺ 0 ∈ L γ (Ω), ̺ 0 ≥ 0 a.e. in Ω, (5.11) init q F 0 1 {ρ F 0 =0} = 0 a.e. in Ω,

|q F 0 | 2 ρ F 0 1 {ρ F 0 >0} ∈ L 1 (Ω).
(5.12) init1

Then the system (5.1)-(5.8) admits a variational solution (̺ ε , ) in the following sense: where P is the pressure potential P (̺) = a γ -1 ̺ γ .

̺ ε ≥ 0, ̺ ε ∈ L ∞ (0, T ; L γ (Ω)), u ε ∈ L 2 (0, T ; W 1,2 0 (Ω; R 2 )), (5.13) 
u ε = h ′ ε (t) + β ′ ε (t)(x -h(t)) ⊥ in S ε (t), (5.14) 

  .28) A5 Consequently, in view of (3.15) and (3.6), (3.13), the desired conclusion (3.27) follows as soon as min m; 2m γ > 3. (3.29) A6 4 Proof of the main result C

  for a.a. τ ∈ (0, T ). Here, the tensor R = ̺u ⊗ u -̺u ⊗ u is positively semi-definite and satisfies (3.10), specifically 0 ≤ Ω trace[R] dx ≤ 2E for a.a. τ ∈ (0, T ). (4.3) C3

T 0 R 2 ̺R 2 bR 2 (R 2 S 2 ̺

 22222 ε ∂φ ∂t + (̺ ε u ε ) • ∇φ dx dt = 0, (5.15) weak den T 0 (̺ ε ) ∂φ ∂t + (b(̺ ε )u ε ) • ∇φ + (b(̺ ε )b ′ (̺ ε )̺ ε ) div u ε φ dx dt = 0, (5.16) renormal for any φ ∈ C 1 c ([0, T ) × R 2 ) and any b ∈ C 1 [0, ∞), b ′ ∈ C c [0, ∞); T 0 ̺ ε u ε ) • ∂ϕ ∂t + (̺ ε u ε ⊗ u ε ) : ∇ x ϕ + 1 ε 2m a̺ ε γ div ϕ dx dt = T 0 (∇ x u ε ) : ∇ x ϕ dx dt,(5.17) continui for any ϕ ∈ C ∞ c ((0, T )×Ω), with D(ϕ) = 0 in a neighborhood of S ε (t) where Dϕ = 1 2 (∇ x ϕ + ∇ t x ϕ); The following energy inequality holds for a.e. t ∈ [0, T ]:Ω 1 ε |u ε | 2 (τ, •) dx + Ω 1 ε 2m P (̺ ε ) -P ′ (̺)(̺ ε -̺) -P (̺) (τ, •) dx + τ 0 Ω S(∇ x u ε ) : ∇ x u ε dx dt≤ ε,0 ) -P ′ (̺)(̺ ε,0 -̺) -P (̺) dx, (5.18) fsi:ener
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Remark 5.2. Let us mention that the specific form of the energy inequality (1.14) follows from [5, Lemma 3.2] and (5.18).

We can verify the hypotheses (H1)-(H4) and apply Theorem 1.1 under certain conditions to obtain the following result in the framework of fluid-rigid body interaction: fsi:mT1 Theorem 5.3. Let Ω ⊂ R 2 be a bounded domain of class C 3 and (̺ 0 , q 0 ) satisfy (5.11)-(5.12).

Assume that S ε,0 ⊂ B ε,0 ,

(5.19) fsi:i14

(5.20) fsi:i15

• The mass m ε verifies that m ε ε 2 → ∞ as ε → 0.

(5.21) fsi:i16

Then

as ε → 0, where u is the (unique) classical solution of the incompressible Navier-Stokes system

(5.24) fsi:i19 in (0, T ) × Ω.

Remark 5.4. We want to point out that as observed by He and Iftimie [START_REF] He | On the small rigid body limit in 3D incompressible flows[END_REF], assumption (1.18) holds for the fluid-structure interaction problem if the condition (5.21) satisfies. Observe that the condition (5.21) implies inf ̺ S ε → ∞, where ̺ S ε is the density of the rigid body immersed in the fluid.