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for Convolutional Neural Networks⋆

Luca Bourroux, Jenny Benois-Pineau[0000−0003−0659−8894], Romain
Bourqui[0000−0002−1847−2589], and Romain Giot[0000−0002−0638−7504]

Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR5800, F-33400 Talence, France

Abstract. The most popular methods for Artificial Intelligence such as
Deep Neural Networks are, for the vast majority, considered black boxes.
It is necessary to explain their decisions to understand the input data
which influence most the result.
Methods presented in this paper aim at an explanation in image classi-
fication tasks: which data in the input are the most important for the
result. We further extend the Feature Explanation Method (FEM) from
our previous work, transforming it into a multi-layered FEM (MLFEM).
The evaluation of the method is designed by comparison of explana-
tion maps with human Gaze Fixation Density maps (GFDM). We show
that proposed MLFEM outperforms FEM and popular DNN explanation
methods in terms of classical comparison metrics with GFDM.

Keywords: XAI · Features attribution · ResNet · Gaze Fixation Density
Maps

1 Introduction and related work

Deep learning (DL) approaches have become indispensable in data analysis and
classification. Although the results of DL models have been exemplary, they lack
transparency, which prevents a wide use of them in critical applications such as
medical image analysis or security.

The need for explanations of Deep Neural Networks (DNN) decisions has led
to an active research in eXplainable Artificial Intelligence (XAI). In the field
of pattern recognition for images and videos, explanation of a DNN’s decision
consists in identifying the set of input pixels that have contributed the most
into the decision [1]. A famous example of decisions on a wrong data is given
by Ribeiro et al. [2]: here, a trained classifier wrongly used the presence of snow
as the distinguishing feature between the “Wolf” and “Husky” classes. One of
the ways to automatically verify if the DL classifier builds its decision on the
adequate pattern in the input data is to compare the set of “important” pixels
with human observations of visual content; we use this approach in this paper.

Ayyar et al. [1] analyzed the variety of explanations methods highlighting
important patterns from the input image. Following their proposed taxonomy,

⋆ Supported by LaBRI.



we can identify “black-box” and “white-box” families of explanation methods.
The “black-box” methods remain model agnostic and are applicable to any clas-
sifier, as they identify important pixels in images by masking different parts of
the input and tracking induced decisions (e.g., LIME[2] method). “White-box”
methods, on the contrary, use the internal architecture of DNNs and can be
subdivided into several groups. The first one concerns the methods based on
linearization of the Deep-CNN. One of the first was the so-called Deconvolution
Network (DeconvNet) proposed by Zeiler et al. [3]. The principle here was to
build the mapping of the output score to the input space using reverse filters or
“deconvolution” and thus identifying the important pixels. The methods based
on gradient back-propagation such as a popular GradCam [4] or its further im-
proved versions, (e.g., smoothgrad [5] or integrated gradients [6]) proceed by
propagation of gradients from the last layers to the input with regard to the
changed input. The important input information is located where the gradients
are strong. The Layered Relevance Propagation method (LRP) [7] is also based
on the same idea of back propagation, but without the need of gradient com-
putations. Here, the relevance of neurons from the last decision layer through
receptive fields in previous layers using the principle of conservation of the rel-
evance at each layer allows identifying important input neurons-pixels. Feature
Explanation Method (FEM) [8] (Section 2.1) is also based on backpropagation,
but it is not linear in the sense that with the help of statistical filtering of the
features of the last convolutional layer it identifies the most important ones. The
various features maps are usually depicted using a heatmap overlaying the input
image, explaining important regions in the input to the user.

Propagating information through subsequent layers, the Deep NNs loose high
resolution information due to the cascaded convolutions and subsampling. Hence,
it is logical to explore the DNN classifier a bit more, preserving important details
in each conv layer which finally bring the classification decision. We assert that
the fusion of explanations from several layers is a key to improve the final ex-
planation. For this reason, we propose an extension of FEM, the Multi-Layered
FEM (MLFEM), that relies on information fusion on feature importance from
different layers. We study different strategies of fusion and benchmark them
against Gaze Fixation Density Maps resulting from psycho-visual experiments
on image databases.

The reminder of the paper is organized as follows. Section 2 presents our
contribution - MLFEM, Section 3 gives the evaluation methodology, while results
are reported in Section 4. Conclusion and perspectives are drown in section 5.

2 Multi Layered Feature Explanation Method

Our method MLFEM is built upon FEM method [8]. The latter relies on the
analysis of activations at the last conv layer of a CNN classifier. As each layer
of a CNN embeds information at a different scale, we assume that computing
FEM at several layers and fusing them would improve the quality of the feature



attribution; this is the main idea of MLFEM. In the following, we briefly review
FEM and describe the adaptations for MLFEM.

2.1 Reminder of Feature Explanation Method (FEM)

Feature Explanation Method (FEM) [8] is a recent algorithm used to produce
an explanation map of the decision of a CNN. In opposite to other methods of
the literature, it is class agnostic and does not need to provide a class of interest.
FEM makes two hypotheses. The first is that strong features at the last con-
volutional layer will contribute the most in the final decision of the CNN in a
classification task when pushed through fully connected layers. The second hy-
pothesis will help us to select strong features. It assumes that the features in each
feature map follow a Gaussian Distribution; this is a simplification hypothesis,
but in case of large feature maps it could hold. At the last layer of convolution
the strongest features are the representations of the most relevant regions in the
input image. This comes from the interpretation of the “convolutional” part of
a deep CNN as of a multiscaled pyramid with filtering, non-linear input signal
transformations and subsampling [9].

By analyzing only the last layer of the CNN part of the model, one can
get input pixels which contributed the most into the final decision. As FEM
uses activations of the last layer of the CNN after the non-linearity (most likely
ReLU) only positive features will be picked up. As FEM is class agnostic, it
is not a problem if it emphasizes on some high activations that are negatively
weighted in the next layer. Indeed the features remain important for the overall
classification wether they vote for or against a specific class.

The last convolutional layer produces activations of size (W×H) forD feature
maps fi. D binary maps, bi,i=1...D corresponding to each of the D feature maps
fi are computed by selecting their strongest features: fi(x, y) ≥ µi + kσi. Mean
µi and standard deviation σi are individually estimated for each feature map
fi. In the same manner as the most important features are selected in each
feature map fi, the contribution of each map into decision is also weighted by
a map-importance weight corresponding to µi. This will give us a saliency map
s =

∑
biµi of dimension (W × H) that is then upscaled to the resolution of

the input image by linear interpolation. A min-max normalization is finally used
to bring the domain from R+ to [0, 1] and obtain the final normalized map of
feature importance S.

2.2 Principles of Multi Layered FEM (MLFEM)

In fact, FEM as presented previously can be applied on any layer of a CNN.
We can merely pretend to truncate the model at a particular layer and see
that FEM would work as is. The application of FEM on a CNN consisting of
L convolutional layers will yield L different feature importance maps. As all
importance maps are interpolated in FEM method we finally have L maps of
the input resolution. The information provided by the maps is layer-dependent
and it is interesting to fuse them. Now the question is how to obtain a single



Fig. 1: FEM applied on every convolutional block of a typical ResNet50 archi-
tecture. Resolution is higher for the first layers.

heat-map for the input highlighting the pixels which have contributed into the
Netwok decision the most.

Let M be our convolutional neural network, with l = 1, ..., L convolutional
layers. Let us denote Fl a feature tensor obtained at each convolutional layer
after the positive non-linearity (ReLU).

Let us denote byH(Fl) the operator which implements FEM method yielding
to a normalized importance map Sl of features Fl. The multi layered FEM pixel
importance map is obtained by fusing all the importance maps Sl with a fusion
operator

⊕
: S =

⊕L
l=1 Sl.

The combination of L different maps can be done in a recursive manner.
For each intermediary map Sl we will construct S as the combination of S and
the current intermediary map Sl. We will then move along for each l < L.
An alternative is to devise a fusion operator that takes a variable number of
arguments to produce a single final feature importance map.

Intuition behind Multi-layerd FEM The reasoning for applying multiple
times the same explanation method at different network’s layers is the following.
The network passes the input image through multiple layers of convolution.
Convolution layers produce results that are position invariant. They are meant
to pick up on spatially-local feature. With each step deeper in the network, the
convolutional layer picks up on a more and more abstract concepts (see Figure
1). The very first layers are generally performing edge detection while the later
ones extract abstract concept like “face”, “car” etc..

So different information is available at different points in the network. By
combining the different activation maps at different points in the network, we
can reconstruct a heatmap that takes advantage of all this scattered information.

2.3 Fusion operators

We can apply quite a number of usual operators in data fusion. In our present
work, we have appealed to the algebraic fusion operators, and to the fusion by a
convolutional neural network trained with regard to the ground truth obtained
from human observers of the content.



Algebraic fusion operators applied in our work are presented below. They
are applied individually to the element of the maps.

– The max operator max(a, b) is the result of the max operation applied
element wise to a and b. maxu,v(a, b) = max(au,v, bu,v)

– The weighted addition add(a, b) is the result of the addition of a and b given
a factor α. addu,v(a, b) = α · au,v + (1− α) · bu,v

– The top operator. It is defined in relation to the add operator, taking only
the top 50% features of b. b′i = bi if (bi > µ(b)), 0 otherwise, top(a, b) =
add(a, b’)

– The fem operator. We can produce the same result as the FEM method
would by using this fusion operator. fem(a, b) = b it is also a special case of
the add operator with α = 0

The maximum is commutative: max(a, b) = max(b, a), but the add and so
the top operators are not: add(a, b) ̸= add(b, a), top(a, b) ̸= top(b, a). The add
operation in fact constructs a geometric sequence. Σα(1−α)l−1Sl. The normal-
ization operator can also be applied, either at the end of the fusions or interleaved
between each binary operator.

By the fact that add and top are not commutative they take advantage of
the structure of data, namely, of the fact that the first operand of the operator
is the cumulated map in the recursive fusion approach and can be more or less
taken into account regulated by the parameter α.

Fusion by a convolutional neural network The idea here consists in training
a light CNN m which input is the set of feature importance maps Sl from all
layers of the CNN model M to be explained, interpolated to the resolution of
input images of M . The training of m is fulfilled with regard to the ground truth
expressing human perception of the visual content in the classification task. This
perception is measured by Gaze Fixation Density Maps (GFDM) obtained in a
psycho-visual experiment when human subjects observe images to classify them.
We refer the reader to [10] for a detailed explanation of such an experiment.
Human gaze fixations from a number of observers are recorded for each image
by an eye-tracking device.

Then on each fixation (u, v) in the image plane, a 2D-Gaussian surface
N(u,v,Σ) is centered with the mean vector µ = (u, v)T and a diagonal covariance
matrix Σ with equal σ2 values on the principal diagonal. The scale parameter
σ is defined from the geometry of the experiment to represent the projection of
the fovea, into the image plane. Summing up and normalizing multi-Gaussian
surface from different observers for the same image, its GFDM G is obtained.
An example of such maps on the dataset from [10] is illustrated in figure 2.

We call this CNN-based fusion operator NET . As a light fusion CNN m we
use a simple architecture. The input tensor consisting of intermediate importance
maps Sl is pushed through three successive convolution layers with pooling. They
have the total effect of pooling the input tensor by a factor of 4 and multiplying
the depth by a factor of 8. Lastly, a weighted sum is computed to output a final



Fig. 2: Example of GFDMs on Mexculture database[10]

predicted 2D map. The loss function is the Euclidean loss, which is the mean
square error between G and the application of NET operator to the input set of
of importance maps Sl. The fusion network m is trained on GFDMs of a training
set of a given dataset. We present our datasets in section 4.

2.4 Implementation of MLFEM on CNN classifiers

The MLFEM is a white-box method and can be applied to any architecture
of a CNN in visual classification tasks. Here we present the implementation of
MLFEM for ResNet50 [11] architecture.

ResNet50 contains 16 residual blocks; as a block is the natural unit of choice
to apply FEM, we apply it to the output of each of them, after the activation
function. This gives us 16 different applications of FEM to fuse. The goal is to
maximize the different semantic meaning that one can extract: for ResNet50 we
take advantage of the structure of the network.

ResNet50 used in our experiments is trained with the Adam optimizer [12],
with a binary cross entropy for binary classification tasks and a categorical cross-
entropy loss for multi-label classification tasks.

3 Evaluation of MLFEM explanations

Methodology. In [1] and [13] the methodology of evaluation of explanation
methods was proposed. It consists in the comparison of the pixel importance
maps obtained by the network sensing with the maps expressing human percep-
tion of the same visual content. This perception is expressed by gaze fixation
density maps we have presented in section 2.3. Today, this methodology is pos-
sible thanks to public databases with the recorded gaze fixation of observers,
like [10,14,15] and we will apply it to our MLFEM method with different fusion
operators and compare with different explanation methods which generate pixel
importance maps as MLFEM does.

Evaluation Metrics Evaluating the relevance of pixel importance explanation
maps is an open problem. There is no widely agreed upon metrics for assessing
their quality. We propose to employ metrics widely used in psychovisual com-
munity for comparison of saliency maps[16]: the Pearson Correlation Coefficient



and the Similarity metric. Pearson Correlation Coefficient(PCC) is defined as:

corr(x, y) =

∑W
u

∑H
v (xu,v − x)(yu,v − y)√∑W

u

∑H
v (xu,v − x)2

√∑W
u

∑H
v (yu,v − y)2

with xu,v being the value of the pixel at position (u, v) in one saliency map and
yu,v in another.

The similarity metric is defined as such:

sim(x, y) =
∑

min(xu,v, yu,v)

Design of experiments. To evaluate the proposed MLFEM method, we will
perform three kinds of experiments: i) overall method comparison, ii) dependence
on correct or wrong classification results, iii) sensitivity to clutter in the image.

Overall method comparison. We will compare pixel importance maps gen-
erated by MLFEM with different fusion methods and the reference methods
such as FEM and GradCam [4] which remains the most popular in explanation
methods generating pixel importance maps.

Dependence on correct/wrong prediction. We divide the test dataset into im-
ages that were correctly categorized by the neural network M and those that
were not. We will analyze if a drop in correlation with the ground trouth GFDMs
is observed.

In the case of a drop, we can deduce that the convolutional part of the network
did not pick up on the relevant features of the image. The fully connected part
of the network will then not have the correct information in feature space to
classify the image.

If the metrics do not change between correctly and wrongly classified images,
we can presume that the fully connected part of M , given supposedly correct
feature space information, was not able to classify the images. We can then add
more fully connected layers to help the network categorize the inputs.

Sensitivity to clutter. In case the image is cluttered, the GFDMs are dispersed
as human attention is attracted by multiple singularities/objects in the image. It
is reasonable to expect that the CNN allocates more importance to a strongest
relevant region in the image. In this case, the similarity metrics between our
explanation map and GFDMs will be lower than for images with low clutter
effects.

4 Experiments and Results

4.1 Datasets

We have chosen three different datasets to work on. The first one is MexCul-
ture [10]. It is composed of 284 images from four classes supplied with GFDMs.
It is a subset of 12000 images of the Mexican architectural style: Modern, Pre-
Hispanic and Colonial, there is also a rejection class. The dataset contains 2000



Fig. 3: Sample of the data in Salicon database (with GFDM overlaid)

images for each category for training and 2000 other images for validation. The
GFDM was constructed by instructing the subject to categorize the presented
images. We have illustrated the GFDMs in figure 2.

The second one is Salicon [14]. It is composed of 15000 images of different
(up to 80) categories, 10000 of them are supplied with GFDMs It is common
to have multiple categories present for each image, hence these images are more
cluttered than those from MexCulture dataset. To construct the GFDMs, the
subjects were free to “look around” the image and expressed their attention by
mouse pointing. We illustrate the GFMDs from this dataset in figure 3.

Finally, we use Cat2000 [15] as a third dataset. It is composed of 4000 im-
ages, 2000 with GFDM, each divided into 20 equally populated categories. The
GFDMs were obtained from gaze fixations and the images are less cluttered.

4.2 Results

Overall method comparison.We compute two similarity metrics PCC and sim for
each classified image of each dataset for every method (FEM, GradCam noted
CAM and MLFEM with NET, ADD and TOP variantes) with regard to the
GFDMs. To compare the methods between them, we compute a 2 × 2 matrix,
comparing the number of times that a method ma was better at explaining
classification than a method mb in terms of higher value of each metric. This
will give us 6 matrices, 2 for each dataset, one for the comparison using PCC
and another for the sim metric, see figures 4a, 4b, 4c.

In figures 5a, 5b distribution of the metrics in Salicon and Cat2000 datasets
is plotted for every method compared to the GFDMs.

We can see here in figures 4a and 5a that the proposed MLFEM method
is better suited for the explanation of ResNet 50 on the Salicon dataset. We
achieve a mean correlation coefficient of, 0.70 whereas the GradCam method only
achieves 0.37. We can also see that without resorting to learned fusion operator,
FEM and ADD/TOP are better with, respectively, 0.38, 0.43, 0.41 values of PCC.
The sim metric behavior is the same. The trained NET fusion operator is the
best in terms of both metrics. In Mexculture dataset, the NET operator is at
least as good as other operators, see figure 4c. For Cat2000 dataset the conclusion
is the same as for Salicon, as illustrated in 4b and 5b.

Dependence on correct/wrong prediction. For Salicon, we are in a multi-label
classification task with objects of several classes in the same image. We count the
number of times when every class present in an image is detected by the network:
i.e., the corresponding output neuron has an activation value larger than 0.5.
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Fig. 4: Number of images with a better explanation by method ma - column than
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Fig. 5: Distribution of the different metrics for each explanation method for the
Salicon and Cat2000 dataset.

as a correct prediction. When at least one class is not correctly predicted, this
image is considered wrongly classified.

We do not see any significant effect of the correct/wrong categorization of
the image on the quality of the explanation map (Figures 6a and 6b diplay the
average PCC and Similarity metrics for both correctly and wrongly classifed
samples). For Salicon dataset (Figure 6a), we have a small drop in the quality
of explanation for miss-classified images (in red), a 3% drop in the PCC and no
change in the sim metric. For Cat2000, figure 6b, a small increase of the quality
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Fig. 6: Metrics for correctly classified (green) and wrongly classified images (red)
for the Salicon and Cat2000 dataset with NET, CAM, FEM, ADD, TOP.
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Fig. 7: The evolution of similarity metrics with regard to the number of classes
present in the image to explain on the SALICON dataset.

of explanation for miss-classified images is observed. The PCC is 4% better, but
there is practically no change for the similarity metric.

Sensitivity to clutter. This experiment is conducted on Salicon dataset with
different classes of objects present in the same image. We divide images into
ten categories, with ith category containing images that have i different classes
present in it. Then we can plot the mean of the different metrics as a function
of the number of classes appearing in an image.

We can see in Figure 7 that our hypothesis holds: the quality of our explana-
tion drops when the number of classes present in an image increases. However,
even in high clutter situation, our proposed method with NET fusion gives the
best scores. The NET method only loses 11% of its performance measured by
PCC, where the FEM method loses about 33%.

The similarity metric, however, shows a lower dependence in regard to the
number of classes present in an input image. The implication of this merits
further research in future works.



5 Conclusion

In this work, we have extended the method FEM for the explanation of decisions
of CNN classifiers by introducing a Multi-Layered strategy: MLFEM. We showed
its performance on the ResNet as the latter is nowadays the most efficient CNN
classifier. Nevertheless, the method remains generic and applicable to any CNN
whether it is residual or not.

We studied different fusion strategies of individual importance maps from
each CNN layer. The evaluation has been performed accordingly to the evalu-
ation method designed by us similarly with [13] which consists in the compar-
ison of explanation maps with gaze fixation density maps (GFDM) of human
observers. In terms of comparison metrics of explanation maps and GFDM,
MLFEM achieves better performance than the similar state-of-the-art method
GradCam and the original FEM. Over GradCam, we got an improvement of
89% for PCC on Salicon and 241% on Cat2000; the improvement of similarity
metric is of 30% on Salicon and 51% on Cat2000. We got an improvement over
FEM of 84% for PCC on Salicon and 20% on Cat2000; for similarity metric, the
improvement is of 27% on Salicon and 9% on Cat2000.

We note that amongst the proposed fusion strategies, the “learnt” fusion
operator achieves the best results according to the considered comparison met-
rics. Hence, the proposed MLFEM method better explains the decisions of the
CNN classifier ResNet with regard to the human perception of the content in
the classification tasks.

In the future works, it may be interesting to apply and adapt MLFEM to
newly appeared transformer networks and to use it with another kind of data
than images. In such a case, we will face the problem of definition of the ground
truth for the evaluation methodology proposed. Hence, the proposed method
opens multiple research questions which have to be addressed in the future.
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