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DISCRETE TOPOLOGICAL METHODS FOR CYBERSECURITY,
NETWORK SCIENCE, AND MACHINE LEARNING

STEVE HUNTSMAN∗

Abstract. This is an advertisement for (or a rant about) discrete topological methods—fairly
new even by the standards of topological data analysis, and certainly underutilized at present—that
are naturally suited to analyze (hyper)graphical data prevalent in cybersecurity applications, network
science, and tasks in machine learning. As outstanding exemplars in this vein, we briefly discuss path
homology and magnitude homology before paying lip service to sheaves, curvatures, and geodesics
in discrete settings. Throughout, we mention new or plausible near-term applications.
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1. Introduction. The field of topological data analysis (TDA) arguably origi-
nated with the introduction of topological persistence in 2000 [25]. Since then, it has
blossomed into a vast enterprise (see, e.g. [93, 24, 31, 69, 20]), albeit one that has been
mostly focused on computing topological properties of structures that in some sense
embody or approximate continuous objects such as spaces, probability distributions,
etc. The fundamental data structure here, familiar to every student of topology, is an
abstract simplicial complex. Meanwhile, the basic idea of mainstream TDA is that
algebraic bookkeeping enables the construction of a filtration of abstract simplicial
complexes (e.g., the computationally tractable Vietoris-Rips complexes) that ade-
quately represents topological properties of a finite metric space across scales. Here
“adequately” means that the constructions are sufficient to reconstruct many of the
features of the original data, that they are resilient to noise, with quantitative error
(bottleneck distance) bounds, etc.

A more peripheral branch in applied topology has an earlier origin but also ties
into recent foundational developments. This branch deals with structures in which
simplicial complexes are optional technical devices (if they appear at all) and are
not embodiments or approximations (but are perhaps alternative representations or
models) of a structure that is the direct subject of investigation. For example, in [23],
Dowker showed that a relation naturally gives rise to a pair of homotopy equivalent
simplicial complexes. Meanwhile, the homology over F2 of these complexes can be
readily computed directly from the relation itself, without ever constructing either
simplicial complex. That is, relations give rise directly to F2-(co)chain complexes
[31]. For applications (besides the implicit connection to witness complexes [18]),
see, e.g. [6, 30, 32, 27, 86, 47]. More generally, bipartite graphs can be identified
with a relation up to duality, and so Dowker homology could be applied to, e.g.
user/computer authentication data such as [43, 51], process/file interactions, bipartite
network data from [53], 1 etc. (these are exercises for the reader). 2

Discrete structures such as finite topological spaces (e.g., the four-point pseu-
docircle) [10] and posets [89] have long been analyzed using classical methods of
algebraic topology and the classical structure of a simplicial (or in some cases CW-)

∗sch213@nyu.edu
1This collection of data is presently at http://konect.cc/.
2Dowker complexes (and for that matter, cosheaves) also feature prominently in an effort to

characterize consistency of program variants’ behavior on inputs [3, 28, 77, 79]. While topological
invariants per se are relevant to this effort, they feature only peripherally in such work to date.
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complex. More recently, hypergraphs [49] have been analyzed via the abstract simpli-
cial complexes they generate [29]. Meanwhile, discrete versions of classical methods
such as Morse theory [84] are seeing increasing use. Still, there is a sense in which the
distinctly recent and computationally convenient topological techniques of path and
magnitude (co)homology generalize classical techniques (though we do not specifically
elaborate on the generalization aspects here) while also permitting applications to
new types of data, most notably weighted digraphs and even directed hypergraphs.
Because these techniques—each of which we briefly discuss in turn below—construct
chain complexes directly from the data structures that they apply to, without any
need to construct an intervening simplicial complex, they are particularly suited for
novel applications that can give rise to new capabilities.

2. Path homology. Here we sketch the basic elements of path homology as
treated in [36, 13]. 3 Let R be a ring and consider the free modules RX ∼= R|X| with
standard basis {ex : x ∈ X}; also, set R∅ := {0}. Next, let D = (V,A) be a loopless

digraph, and consider the non-regular boundary operator ∂[k] : RV k+1 → RV k

defined
as the linear map whose action on the standard basis is

∂[k]e(v0,...,vk) =

k∑
j=0

(−1)je∇j(v0,...,vk),

where ∇j(v0, . . . , vk) := (v0, . . . , vj−1, vj+1, . . . , vk) is the result of deleting vj from
(v0, . . . , vk). A few lines of algebra focused on index bookkeeping shows that ∂[k−1] ◦
∂[k] ≡ 0, i.e. (RV k+1

, ∂[k]) is a chain complex.
Path homology arises indirectly from another chain complex that is derived from

(RV k+1

, ∂[k]). Consider the set

Ak(D) := {(v0, . . . , vk) ∈ V k+1 : (vj−1, vj) ∈ A, 1 ≤ j ≤ k}

of allowed k-paths, with A0 := V , V 0 ≡ A−1 := {0} and V −1 ≡ A−2 := ∅. Write

Ωk :=
{
ω ∈ RAk : ∂[k]ω ∈ RAk−1

}
,

Ω−1 := R{0} ∼= R, and Ω−2 := R∅ = {0}. Now ∂[k]Ωk ⊆ RAk−1 , so ∂[k−1]∂[k]Ωk =
0 ∈ RAk−2 and ∂[k]Ωk ⊆ Ωk−1. The (non-regular) path complex of D is accordingly
defined to be the chain complex (Ωk, ∂k), where ∂k := ∂[k]|Ωk

. 4 The (non-regular)
path homology of D is just the homology of the path complex (Ωk, ∂k). 5

A simple example illustrating the mechanics of path homology is provided by the
digraphs D1 and D2 in Fig. 1. A1(D1) and A1(D2) are given by the digraph arcs,
A2(D1) = ∅, and A2(D2) = {(w, x, z), (w, y, z)}. We have ∂[1](e(i,j) − e(i,k) − e(l,j) +

3See also a series of papers including [37, 42, 38]. There are associated notions of cohomology
[21, 22, 40, 41] and homotopy [39, 34]; the constructions of [7, 9] are closely related for the case of
undirected graphs. Persistent path homology is introduced in [14] and an algorithm for computing
it in dimension one is in [19]. There are extensions of path homology to (among other structures)
hypergraphs [35] and directed hypergraphs [61], as well as an associated discrete Morse theory [59].

4The implied regular path complex prevents a directed 2-cycle from having nontrivial 1-homology.
In our view non-regular path homology is simpler, richer, and more likely useful in applications. As a
practical matter, our rationale amounts to the convention that a directed 2-cycle counts as a “hole.”

5For convenience, we generally replace the path complex (Ωk, ∂k) with its reduction . . .Ωk+1

∂k+1−→

Ωk
∂k−→ Ωk−1

∂k−1−→ . . .
∂1−→ Ω0

∂̃0−→ R −→ 0. Assuming the original complex is nondegenerate, this

has the minor effect H̃0 ⊕R ∼= H0, while H̃k
∼= Hk for k > 0.
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e(l,k)) = 0, and similarly ∂[1](e(x,z) + e(w,x) − e(y,z) − e(w,y)) = 0. Now ∂[2]e(w,x,z) =

e(x,z) − e(w,z) + e(w,x) 6∈ RA1(D2) and ∂[2]e(w,y,z) = e(y,z) − e(w,z) + e(w,y) 6∈ RA1(D2)

(because the arc w → z is not present), but

∂[2](e(w,x,z) − e(w,y,z)) = e(x,z) − e(w,z) + e(w,x) − e(y,z) + e(w,z) − e(w,y)

= e(x,z) + e(w,x) − e(y,z) − e(w,y) ∈ RA1(D2).

It follows that H1(D1) = R and H1(D2) = {0}, i.e., the Betti numbers are different:
β1(D1) = 1 and β1(D2) = 0.

D1

i j

k l

i

jk

l

=

D2

w x

y z

w

xy

z

=

Fig. 1. The digraph D2 has trivial path homology but the digraph D1 does not. The nontrivial
path homology of D1 can be interpreted as a consistent and robust unidirectional flow. The trivial
path homology of D2 can be attributed to w and z appearing as “bottlenecks” that prevent robustness
of the flow. This intuition is formalized by results in [12].

We note that there is good evidence that path homology provides a robust char-
acterization of neural network architectures [12], a stronger variant of cyclomatic
complexity [46], and that it can identify salient motifs and behavior in temporal net-
works [13]. Path homology is also phenomenologically rich, exhibiting torsion and
nonvanishing homology in dimension three for various digraphs with just six vertices.

3. Magnitude homology. We follow the concise formulation of [44]. Let (X, d)
be a Lawvere metric space, i.e., d is an extended quasipseudometric. 6 A k-simplex
in X is an ordered tuple x(k) := (x0, . . . , xk) ∈ Xk+1 such that adjacent entries are

distinct; its length is λ(x(k)) :=
∑k

j=1 d(xj−1, xj). The R-graded magnitude chain
complex has k-chains (where as before R is a coefficient ring)

MCk,L(X) := R
{
x(k) a k-simplex in X : λ(x(k)) = L

}
and differential ∂k : MCk,L(X)→MCk−1,L(X) given by

∂k :=

k−1∑
j=1

(−1)j∂(j)

with

∂(j)(x(k)) :=

{
∇jx

(k) if d(xj−1, xj+1) = d(xj−1, xj) + d(xj , xj+1)

0 otherwise,

and where as before ∇j acts on a tuple by deleting the corresponding entry. The
appropriate notion of chain map is induced by distance-nonincreasing maps.

6Here “extended” means d : X × X → [0,∞]; “quasi” means d need not be symmetric, and
“pseudo” means that d(x, x) need not be zero. A Lawvere metric space is best thought of here as a
category enriched over the poset ([0,∞],≥), not least because the theory of magnitude (co)homology
applies to enriched categories with a suitable notion of “size.”
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The magnitude homology of X is the homology of the magnitude chain complex.
Conveniently for a digraph D, there is a direct sum decomposition of the form

MC•,L(D) =
⊕

s,t∈V (D)

MC
(s,t)
•,L (D)

where the direct summands on the right are subcomplexes generated by simplices with
initial and terminal entries s and t, respectively [5]. This provides a very specific al-
gebraic structure and a reduction in computational complexity that makes magnitude
homology particularly convenient for unweighted (or Z+-weighted) digraphs. 7

The dual theory of magnitude cohomology has an analogue of the cup product [44].
This additional ring structure allows magnitude cohomology to completely determine
its underlying space up to isometry for finite extended quasi-metric spaces, such as
digraphs and finite metric spaces. By comparison, trees on the same number of vertices
have isomorphic magnitude (co)homology groups.

These constructs all generalize to the setting of enriched categories, and we sketch
a slightly nontrivial construction likely to be of interest and use. There is an enriched
category of sub-flow graphs of a given flow graph in the sense of [45], and it can
be shown that the topological entropy (roughly, the logarithmic rate of growth of
the number of possible paths as a function of length [52]) of such a flow graph with
its (unique) entry and exit identified is a suitable “size function” over the max-plus
semiring. This setup dovetails nicely with the direct sum decomposition above, and
a categorification of these observations would presumably yield an interesting and
efficiently computable instance of magnitude (co)homology, with representatives that
encode detailed structural information. Meanwhile, there are effective normalization
procedures to represent control flow graphs of the sort compilers actually produce in
this way, so the theory has sufficient scope for genuine applications to be possible.

Besides the notional application sketched above, another interesting situation ripe
for investigation/application is a graph with probability distributions on the vertices.
By computing Bregman (e.g., Kullback-Leibler) divergences between adjacent distri-
butions, we obtain an asymmetric weighted graph suited for analysis via (blurred)
magnitude homology (or even just the decategorification into magnitude [58, 57]).

Finally, it seems likely that magnitude homology will also be useful for character-
izing DAGs, and an interesting problem is to develop a formula akin to that in [12]
for the path homology Betti numbers of DAGs that correspond to densely connected
multilayer perceptrons. For example, the DAG underlying a densely connected mul-
tilayer perceptron with consecutive layers of 5, 4, 3, and 2 neurons has only a single
nontrivial Betti number in path homology, viz. β3 = 24, whereas a computer cal-
culation yields the more complicated magnitude homology Betti numbers β1,1 = 38,
β2,2 = 61, and β3,3 = 60 (recall that the second index is for the length grading): all
other Betti numbers are zero except for β0,0, which is just the number of vertices.

4. Proto-topological and geometrical tools. Sheaves [31, 73], (positive)
Ricci curvatures and geodesics [62, 80] each control topological properties of spa-
ces they are associated with. These objects also have analogues in the discrete setting
that inherit properties familiar from traditional continuous or smooth contexts, while
also being amenable to computational implementation. 8 As such, they are likely to

7Notably, magnitude homology is related to Vietoris-Rips homology via a “blurring” procedure
that essentially replaces equalities of the form λ = L in the definition of the chain complex with
inequalities λ ≤ L [68, 11, 33], and it is also closely related to path homology [4].

8See, e.g. https://github.com/kb1dds/pysheaf.

https://github.com/kb1dds/pysheaf
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find progressively more useful applications adjacent to topological invariants.

4.1. Sheaves. For heterogeneous data, sheaves are the representational frame-
work par excellence [70]. Without belaboring definitions, sheaves provide the math-
ematical framework assembling global data from local data. In this context it is
natural that they should be used to model communications networks [71, 72, 47] and
the process of data fusion [74, 78, 75, 50, 76].

This data fusion process, predicated on a consistency radius, requires a reason-
able (pseudo)metric on observations. While for many applications to cybersecurity
this can be a challenging if not prohibitive obstacle, it is probably less of one in the
important case of networked cyber-physical systems, where models can inform the
construction of a metric on observable data [1, 56, 8, 88]. In particular, hierarchi-
cal classifications and their corresponding ultrametrics are readily constructible in
practice, and these have the advantage of being realizable in Euclidean space via a
Cholesky decomposition of a (finite) distance matrix. Such a construction (which we
note can avoid the need for continuous models/metrics in a way analogous to how the
homology theories of preceding sections avoid constructing simplicial complexes) can
be lifted to sequences of observed data that could then be meaningfully fused using
sheaf-theoretical techniques.

4.2. Curvatures. For a reasonably up-to-date overview of discrete notions of
curvature, see [63]. Various such notions exist, e.g. the Ollivier-Ricci curvature for
metric spaces [66, 67] and directed hypergraphs [26]; and Forman-Ricci curvature for
directed graphs, simplicial complexes [83] and hypergraphs [55]. These yield com-
plementary tools for network science applications [54] and jointly provide features
that can statistically distinguish between different model network ensembles. Other
variants of Ricci curvature have also been constructed for {weighted, directed, hy-
per}graphs: see, e.g. [82].

Applications of such discrete curvatures include analysis of neural network archi-
tectures [82]; graph matching [64] and community detection [65, 85]; and addressing
congestion in communication [90] and power networks [48]. Coming full circle, discrete
curvatures also inform the construction of persistent topological invariants [81].

4.3. Geodesics. Gromov-Wasserstein distance [60, 87] is a Riemannian geo-
desic distance on the space of (isomorphism classes of) metric measure spaces. It
can be computed using optimal transport methods, and algorithms based on this
insight have enabled state-of-the-art performance for matching–and meaningfully in-
terpolating between–discrete structures such as (hyper)graphs endowed with measures
[92, 91, 15, 16, 17] and (via word embeddings) unsupervised translation [2].

5. Conclusion. A recurring theme that we have sought to illustrate is that while
topological and adjacent methods may have been (and likely often still are) thought of
as implicitly inappropriate for fundamentally discrete data and problems, the opposite
is actually true. Recently developed topological invariants and adjacent geometrical
constructions are amenable to computation in silico and can enable new capabilities
for discrete data that are ubiquitous in cybersecurity, network science, and machine
learning.

Acknowledgments. I thank Samir Chowdhury and Michael Robinson for con-
versations that informed portions of this advertisement.
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