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Recently, a mixed pressure displacement $u, P% formulation based on Biot’s poroelasticity equations has been presented for 
porous materials. This model leads to a reduction of the number of degrees of freedom required for the modeling of three-

dimensional porous media in comparison to classical displacement–displacement $u, U% formulations. In this paper, an 
extension of the $u, P% formulation based on hierarchical elements is presented. First, a variant of the weak integral form of the 
$u, P% formulation is presented and its numerical implementation using hierarchical elements is detailed, together with the 
application of boundary and loading conditions. Numerical results are presented to show the accuracy and performance of the 
present approach. In particular, the importance of correctly capturing the coupling effects between the two phases is 
highlighted.

I. INTRODUCTION

The behavior of porous material is classically modeled

using empirical formulas for locally reacting materials,1 or

with accurate one-dimensional ~1D! analytical methods

based on Biot poroelasticity theory.2–5 At low frequencies,

where the modal behavior of the system is important, several

two-dimensional ~2D! and three-dimensional ~3D! finite ele-

ments models have been developed. The first models use,

with different variations, the displacement fields in the solid

and fluid phase of the porous material as variables.6–10 They

are referred to as $u, U% type formulations. While accurate,

the $u, U% formulations lead to large frequency dependent

systems and thus to cumbersome calculations for complex

structures. To alleviate the problem, Atalla et al.11 presented

an exact mixed displacement-pressure $u, P% finite element

formulation in three dimensions for a porous material, based

on Biot’s poroelastic equations. Debergue et al.12 presented

the boundary and coupling conditions for this new formula-

tion. Atalla et al.’ model presents the calculation of the re-

sponse of the porous material in the form of a coupled fluid-

structure problem. This formulation has been proven to give

accurate results when compared to the $u, U% formulation.

More importantly, by reducing the number of degrees of

freedom involved ~i.e., from six degrees of freedom per node

to four! and by simplifying the coupling conditions between

the porous medium and elastic or fluid media, the approach

leads to important gains in memory and computation time

requirements.

While the $u, P% formulation allows for a more efficient

modeling to porous elastic media compared to the $u, U%

formulation, yet both techniques suffer from important com-

putational costs in practical applications. Indeed, because of

the biphasic nature of poroelastic elements, mesh criterion

used for elements describing monophasic media ~solid, fluid!

is a priori not valid for poroelastic elements. Using the $u,

U% formulation, Dauchez et al.13 showed that linear poroelas-

tic elements verify convergence rate of linear monophasic

elements, according to each type of Biot wave. Classical

mesh criterion, i.e., six linear elements per wavelength, pro-

vides a necessary condition to get reliable results. However,

for real 3D deformations, the classical criterion gives indica-

tions for a minimal mesh but is insufficient because of lock-

ing of 3D linear elements and discrepancies in the wave-

lengths of the displacement fields of the two phases. An

important refinement of the mesh is necessary to get satis-

factory results. In particular, indicators related to fluid mo-

tion have been found very sensitive. As a consequence, the

minimal number of elements required is difficult to predict.

By nature, convergence of poroelastic elements is rather

slower than convergence of either equivalent solid or fluid

elements, because of the presence of two different scale phe-

nomena. The discrepancy can be lowered when the behavior

of the porous material is dominated by the motion of one

phase. As a consequence, this slow convergence leads to

large computational costs. Debergue14 found similar results

using the $u, P% formulation. Several recent attempts to alle-

viate the computing cost of the poroelastic formulations, us-

ing linear elements, have been unsuccessful. For example,
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Sgard et al.15,16 have investigated the use of a selective

modal analysis to decrease the size of large finite elements

models involving poroelastic materials. The method used a

dual uncoupled basis of undamped modes associated with

the skeleton in vacuo and the fluid phase occupying the vol-

ume of the porous material to approximate the $u, P% vari-

ables. However, this method converges poorly due to the

importance of the damping brought in by the porous mate-

rial. The same authors also proposed a mixed wave-finite

element approach dedicated to the modeling of porous

materials.17 Starting from the weak $u, P% formulation for a

porous material, the fields for each phase of the porous ma-

terial were expanded at each node of the finite element mesh

in terms of a finite number of wave functions. These func-

tions are chosen to be plane waves solution of Biot’s po-

roelasticity equations. This approach gives accurate results

for a single porous material and leads to a considerable re-

duction of the size of the system to be solved. However, this

system is no longer sparse and its construction is time con-

suming. Another way to solve the computing cost problem,

would be to design specific models dedicated to particular

applications. For example, Dauchez et al.18 pointed out that

most of the extra-energy dissipation related to the foam coat-

ing of a plate was due to structural damping in the solid

phase of the porous medium. Thus, the porous material could

be reduced to its solid phase in such a configuration. How-

ever, this assumption can not be generalized, especially for a

coating by a glasswool where viscous effects become quickly

predominant as frequency increases.19

In order to solve the convergence problem, it is pro-

posed in this paper to investigate the performance of the $u,

P% formulation using high-order hierarchical elements. It is

known that these elements allow for higher order polynomial

representation and thus eliminate problems such as

locking.20–24 Because of the higher order of approximation

of hierarchical elements, a more accurate representation of

the different type of deformations and coarser meshes, com-

pared to classical finite elements, can be used. Therefore, a

significant reduction of the number of degrees of freedom

required for a correct modeling is expected. In the first part

of the paper, a variant of the $u, P% formulation is recalled

and the theory of hierarchical elements in this context is

introduced. In particular, the treatment of the boundary con-

ditions and excitations is detailed. Validation results are then

presented to show the accuracy of the present approach. The

performance of the hierarchical poroelastic formulation in

terms of the needed number of degrees of freedom is under-

lined, and can be increased by the choice of different inter-

polation orders for the basis functions in the solid and fluid

phase. The interest of this latter feature is shown and guide-

lines for the convergence of hierarchical poroelastic elements

are presented from the study of a particular material.

II. THEORY

This section concentrates on the forced response of a

single isotropic porous material. Biot–Allard equations of

poroelasticy are considered for the description of the porous

medium. The displacement of the solid phase and the inter-

stitial pressure are chosen as variables.

A. The mixed displacement-pressure formulation

The starting point of the modeling of the porous medium

is the weak $u, P% formulation ~Atalla et al.!.11 The mixed

displacement-pressure formulation for a poroelastic material

occupying a volume Vp reads

E
Vp

@s<̃ S~u!:e< S~du!2 r̃v2
u•du#dV

1E
Vp

F h2

v2r̃22

¹P•¹dP2

h2

R̃
PdPGdV

2g̃E
Vp

d~¹P•u!dV2E
]Vp

hS 11

Q̃

R̃
D

3d~Pun!dS2E
]Vp

@s<̃ t~u!•n#•du dS

2E
]Vp

h~Un2un!dP50, ~1!

where ]Vp stands for the boundary of the poroelastic do-

main. u is the solid phase displacement, U and P are the

displacement and the pressure of the fluid in the pores, re-

spectively. s<̃ S and e< S are, respectively, the stress and strain

tensor of the solid phase in vacuo. The total stress tensor in

the porous material s<̃ t is related to s<̃ S by the relation s<̃ S

5s<̃ t
2h@11(Q̃/R̃)#P1< . r̃ and r̃22 are the apparent density

of the solid and the fluid phase, h is the porosity, g̃ is a

coupling factor between the two phases, Q̃ and R̃ are po-

roelastic coefficients. The expressions of the latter quantities

can be found in Ref. 11.

Instead of using directly Eq. ~1!, a variant is presented

here. The first surface integral in Eq. ~1! can be turned into a

volume integral using the second Green formula and given

the following mathematical relation:

¹•~ab!5¹a•b1a¹•~b!. ~2!

Hence, assuming that the porous material is isotropic,

I52E
]Vp

hS 11

Q̃

R̃
D d~unP !dS

52E
Vp

¹S hS 11

Q̃

R̃
D d~unP !D dV

52hS 11

Q̃

R̃
D E

Vp

d~u•¹P !dV

2hS 11

Q̃

R̃
D E

Vp

d~P¹u!dV . ~3!

Using Eq. ~3! in Eq. ~1! the following expression of the weak

$u, P% formulation is obtained
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E
Vp

@s<̃ S~u!:e< S~du!2 r̃v2
u•du#dV

1E
Vp

F h2

v2r̃22

¹P•¹dP2

h2

R̃
PdPGdV

2F g̃1hS 11

Q̃

R̃
D G E

Vp

d~¹P•u!dV

2hS 11

Q̃

R̃
D E

Vp

d~P¹•u!dV

2E
]Vp

@s<̃ t~u!•n#•du2E
]Vp

h~Un2un!dP dS50. ~4!

The weak form of the mixed pressure-displacement formula-

tion @Eq. ~4!# presents two interesting features. First, the

symmetric coupling terms between the two phases are ex-

pressed in terms of volume integrals over the domain Vp .

Second, the boundary integral terms involve the total stress

tensor and the displacement flux at the boundary of the do-

main. Therefore, the application of coupling conditions with

another domain, as well as boundary conditions and excita-

tions, is achieved in a simpler manner compared to Eq. ~1!.12

B. Hierarchical elements

In the following, the approximation of Eq. ~4! using

8-nodes parallelipipedic volume hierarchical elements is

considered. The so-called ‘‘blending function method’’ is

generally used to map this parent element into the geometri-

cal element.22 Any point of the discretized subdomain with

global coordinates (x ,y ,z) is located on a parent element by

a set of local coordinates ~j,h,z!. The relation between local

and global coordinates is given by

H x

y

z
J 5(

i51

8 H X i

Y i

Z i

J •Ni~j ,h ,z !1(
j51

12 H l j
x

l j
y

l j
z
J •l j

1
•l j

2. ~5!

In Eq. ~5!, ^X i ,Y i ,Z i& stands for the global coordinates of

node i. The functions Ni are the classic linear basis functions

used in finite elements and are related to node i on the parent

element. In order to consider complex geometries for an el-

ement, additional functions related to the edge j are taken

into account. These functions correspond to the term on the

right-hand side of Eq. ~5!. l j
1 and l j

2 are linear functions de-

pending on a single local coordinate ~different for l j
1 and l j

2)

j, h, or z. l j
x , l j

y , and l j
z are functions depending on the third

local coordinate and used for the description of edge j. Fur-

ther details are given in Ref. 22.

The next step is the interpolation of the fields on the

mesh provided for the subdomain. On a given element, the

variable q is approximated by

q~j ,h ,z !5(
i

Ni~j ,hz !q i
ph

1(
j

Gj~j ,h ,z !q j
gen . ~6!

In Eq. ~6!, Ni are called node modes and are identical to

those used in Eq. ~5!. The associated amplitudes q i
ph stand for

the physical value of q at node i ~the superscript ph means

physical!. Functions Gj are additional shape functions classi-

fied in three categories: edge modes, face modes, and inter-

nal modes. The associated generalized amplitudes q j
gen ~the

superscript gen means generalized! do not have simple

physical meaning. Like node modes, edge and face modes

are associated to a geometrical entity of the mesh. For ex-

ample, an edge mode on an element is associated with a

particular edge j of this element. Its value is 0 on all the other

edges of the element. As for internal modes, their value is 0

on all the faces of the element. By considering each category

of modes explicitly, Eq. ~6! rewrites

q~j ,h ,z !5(
i

Ni~j ,hz !q i
ph

1(
j

Ej~j ,h ,z !q j
gen

1(
k

Fk~j ,h ,z !qk
gen

1(
t

It~j ,h ,z !q t
gen ,

~7!

where Ej are edge modes, Fk are face modes, and It are

internal modes. These functions are chosen to make com-

plete polynomials of ascending order p. Namely, the basis

functions of the hierarchical variables are constructed using

Legendre polynomials. The number of basis functions de-

pends on the interpolation order p. The selection process,

detailed in Ref. 22, leads to the expression of the generalized

shape functions; they are given in the Appendix for com-

pleteness. Note that the present approach considers a map-

ping of the parent element into the geometrical element, us-

ing only the functions Ni in Eq. ~5!.

C. Numerical implementation

As previously stated, in the present approach, the weak

integral formulation given by Eq. ~4! is discretized using

8-node volume elements. The displacement of the solid

phase u and the pressure in the pores P are expanded in

terms of node modes and hierarchical shape functions.

Hence, the field variables in a given element are written in

the following form:

u
e
5@Ns#$un%

e and pe
5@N f #$pn%

e, ~8!

where @Ns# and @N f # are the interpolation matrices on the

considered element e. $un%
e and $pn%

e stand for the physical

and generalized amplitudes associated with the displacement

of the solid phase and the pressure in the pores, respectively.

1. Discretization of the weak form

Substituting Eq. ~8! into Eq. ~4!, one gets

E
Vp

s̃< S~u!:e< S~du!dV⇒^dun&@K#$un%, ~9!

E
Vp

r̃u•du dV⇒^dun&@M̃ #$un%, ~10!
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F g̃1hS 11

Q̃

R̃ .
D G E

Vp

du•¹P dV⇒^dun&@C̃1#$Pn%,

~11!

hS 11

Q̃

R̃
D E

Vp

P¹•du dV⇒^dun&@C̃2#$Pn%, ~12!

h2

r̃22
E

Vp

¹P•¹dP dV⇒^dPn&@H̃#$Pn%, ~13!

h2

R̃
E

Vp

PdP dV⇒^dPn&@Q̃#$Pn%, ~14!

where $un% and $Pn% represent the solid and fluid phase

physical and generalized degrees of freedom of the whole

mesh. @K# and @M̃ # are, respectively, the stiffness and mass

matrix associated to the solid phase in vacuo. @H̃# and @Q̃#
are, respectively, the kinetic and compressional energy ma-

trices of the fluid phase. @C̃1# and @C̃2# stand for the cou-

pling between the two phases of the porous medium. The

notation @˜# indicates that the matrices are complex valued

and frequency dependent. Note that compared to the imple-

mentation of the $u, P% formulation presented in Ref. 11, two

new matrices have to be computed. In the theory of hierar-

chical elements, the basis functions on an element are built

using Legendre polynomials. The computation of the matri-

ces in Eqs. ~9!–~14! is performed with the commonly used

Gauss–Legendre integration scheme and enough integration

points are chosen to ensure a correct approximation. This

step is time consuming and is the main drawback of hierar-

chical elements.24 To alleviate that problem, Hinnant25 pro-

posed the ‘‘vector quadrature’’ integration scheme. However,

this optimization procedure is not used in the present ap-

proach.

Substituting Eqs. ~9!–~14! in the weak formulation leads

to the following system to be solved:

S @K#2v2@M̃ # 2@C̃1#2@C̃2#

2v2@C̃1#T
2v2@C̃2#T @H̃#2v2@Q̃#

D H un

Pn
J 5 H Fs

Fp
J ,

~15!

where the right-hand side of the equation denotes the loading

vector for the porous material. The application of various

loading conditions is described in the following paragraph.

The coupled system given by Eq. ~15! is similar to the one

obtained in classical finite elements.

2. Application of boundary and loading conditions

The boundary conditions and the loading terms involved

in the $u, P% formulation were presented by Debergue et al.12

Their application in the context of the theory of hierarchical

elements is detailed hereafter. In the present paper, three

boundary conditions are considered. The porous material can

be ~i! bonded onto a rigid wall, ~ii! guided, or ~iii! free ~i.e.,

not subject to any boundary condition!. In case ~i!, the dis-

placement vector of the solid phase is set to 0. In case ~ii!,
the normal component to the interface of the solid phase

displacement is set to 0. In case ~iii!, the fluid pressure is set

to 0 on the interface ~note that this condition is approximate

and its accuracy is discussed by Debergue12!. Therefore, for

an element on the boundary, applying the boundary condi-

tions mentioned above amounts to setting to 0 one or several

components of the fields. This is achieved by constraining

the amplitudes of the modes of the nodes, edges and faces

lying on the boundary and related to the considered compo-

nent of the fields. Practically, the coefficients of the matrices

in Eqs. ~9!–~14! relative to these degrees of freedom are not

assembled. Note that, by construction, the value of internal

modes are worth 0 on each face of the element and thus are

not subject to the above mentioned conditions. In the con-

figurations studied in this paper, two kinds of loads have

been considered. First, the load is a rigid piston motion im-

posed on one side of the porous material. This leads to the

following condition on the interface:

u"n5u0 , ~un2Un!50, ~16!

where n is the normal to the interface, and u0 the amplitude

of the piston motion. Second, the porous medium is submit-

ted to an acoustical excitation, which can be modeled as an

imposed surface pressure of amplitude p0 . The condition at

the interface is then

p5p0 , s̃< t
•n52p0n. ~17!

To be concise, the two considered kinds of excitations lead to

an imposed value q0 of a component q of the fields in the

porous material. Considering the expression of q given by

Eq. ~6! the following conditions must be imposed on the

interface:

$qph%5$q0% and $qgen%50. ~18!

Equation ~18! means that the values of q have to be set to q0

at the nodes on the interface. Besides, the amplitudes of the

hierarchical shape functions related to the edges or faces lo-

cated on the interface are set to 0. By definition, the ampli-

tudes of the internal modes are null on the sides of an ele-

ment. The conditions of imposed degrees of freedom

expressed by Eq. ~18! are taken into account in the dis-

cretized weak formulation using discrete Lagrange multipli-

ers.

In addition, when a surface pressure with amplitude p0

is imposed, Eq. ~17! leads to an elementary force vector

given by

$Fs%elem52E
]Vpelem

p0n•@Ns#dS , ~19!

where @Ns# is the column vector containing the shape func-

tion related to the face if the considered element subject to

the excitation. Note that only node modes, edge modes with

interpolation order p52, and face modes with interpolation

order p54 are taken into account in @Ns# . In fact, the other

modes of analytical expression G verify the following rela-

tion by construction:

E
]Vpelem

G dS50. ~20!

The proof for this assertion is given in the Appendix. Note

that for all the excitations considered in this paper, $Fp%
50 in Eq. ~15!.
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3. Vibroacoustics indicators

In the result section, two vibroacoustic indicators are

considered. For the solid phase of the porous material, the

mean square velocity along the three directions is computed.

Practically, the mean square velocity along direction i is

given by

^v i
2&5

v2

2Vp
E

Vp

uv iu
2 dV

5

v2

2Vp

^un
ph un

gen&*@M i#H un
ph

un
genJ , ~21!

where ^un
ph un

gen& is the row vector containing the physical

and generalized amplitudes relative to the solid phase dis-

placement along direction i. @M i# contains the coefficients of

a partition of the mass matrix @M̃ # divided by r̃ and related

to the appropriate degrees of freedom. In Eq. ~21!, ~*! means

complex conjugate, and Vp is the volume of the poroelastic

domain.

For the fluid phase, the mean square pressure is com-

puted using the following formula:

^P2&5

1

2Vp
E

Vp

uPu2 dV

5

1

2Vp

^Pn
ph Pn

gen&*@Q1#H Pn
ph

Pn
genJ , ~22!

where ^Pn
ph Pn

gen& is the row vector of the physical and gen-

eralized amplitudes related to the pressure in the pores. @Q1#

is the compression matrix of the fluid phase @Q̃# divided by

h2/R̃ .

III. NUMERICAL EXAMPLES

In the following, the validation of the $u ,P% formulation

using hierarchical elements is numerically assessed. The

present approach is compared to a finite element code devel-

oped at the Université de Sherbrooke and based on classical

finite elements. This latter code has been validated both nu-

merically and experimentally, elsewhere.11,12 The accuracy

of the results obtained by the use of hierarchical elements is

underlined. The reduction of the number of degrees of free-

dom provided by the use of high order polynomials for the

basis functions is highlighted, thus illustrating the perfor-

mances of hierarchical poroelastic elements. An emphasis is

made on this latter aspect by showing the benefit of using

different interpolation orders for the basis functions of each

phase. Finally, the convergence of the hierarchical poroelas-

tic elements is investigated in the case of a particular mate-

rial with several boundary conditions and excitations.

The studied problem consists of a single porous material

with a rear face bonded onto a rigid wall ~see Fig. 1!. The

boundary conditions on the lateral faces are either ~i! free, or

~ii! bonded. Two kinds of loads are used in the following,

depending on the boundary conditions on the edges of the

porous medium. In case ~i!, the porous medium is subjected

to a rigid piston motion with a 1023 m amplitude normal

displacement @hereby referred to as configuration ~i!#. In case

~ii! a surface pressure of amplitude 1 Pa is imposed on the

front face @hereby referred to as configuration ~ii!#. A 5 cm

thick porous material with lateral dimensions 0.35 m

30.22 m is considered. Among the vibroacoustic indicators

presented in the preceding section, only the mean square

velocity along z axis ~denoted ^Vz
2&) and the mean quadratic

pressure ~denoted ^P2&) are studied. Actually the mean qua-

dratic velocities along the lateral dimensions of the porous

material are of limited interest in vibroacoustic applications.

A. Validation

In this subsection, the accuracy and the performance of

the present approach is numerically assessed. In the follow-

ing, the results obtained with hierarchical elements and finite

elements are compared to a reference value. In the present

paper, this reference is obtained by increasing considerably

the interpolation orders for a fixed mesh when hierarchical

elements are used, in order to be sure that convergence is

reached. The same results can be obtained with classical fi-

nite elements but require a very refined mesh and thus huge

computational resources. Hence, the classical finite element

implementation has not been used for obtaining the reference

values. In the following, the interpolation orders for the basis

functions given a fixed mesh for the present approach or the

classical finite element mesh are said to be acceptable when

the response of the porous material is predicted within a

tolerance from the reference response. This tolerance is fixed

to 0.5 dB from the reference curve and 5% in the location of

resonance peaks.

The first validation test consists in configuration ~i!. The

material studied is a wool, UGW3, with characteristics given

in Table I. ^P2& is computed as a function of frequency and

is actually the indicator which proves to have the most dif-

ficulties to converge. The results obtained with the classical

code and the present approach with different meshes are pre-

sented in Fig. 2. Note that the maximum difference between

the different meshes, including classical finite elements, and

the reference curve is less than 0.5 dB which is within the

defined convergence criterion. For the modeling with hierar-

chical elements, parameters for the mesh, namely the number

of elements and the order of the basis functions, are given in

the following form nx*ny*nz elements (ps2p f) where nx ,

ny , nz denote the number of elements used in directions x, y,

z, respectively, and ps , p f denote the interpolation order of

FIG. 1. Configuration of the problem.
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the basis functions for the solid phase and the fluid phase,

respectively. Figure 2 shows that the present approach leads

to accurate results for all tested meshes. To test the ability of

the hierarchical poroelastic element to model different mate-

rials in various configurations a foam, FM2, with character-

istics given in Table I is considered in configuration ~ii!. ^Vz
2&

is computed as a function of frequency; this indicator has the

most difficulties to converge. The results are presented in

Fig. 3. Once again, accurate results are obtained with the

hierarchical poroelastic elements for different meshes.

The excellent results for the two previous validation

tests show the validity of the present approach. In addition,

hierarchical poroelastic elements prove to be very perfor-

mant. Tables II and III summarize the number of degrees of

freedom ~dof! required to ensure convergence, either with

classical finite elements or hierarchical elements. Each of the

two configurations studied above are considered. For the

present approach, the number of degrees of freedom is given

for different meshes and the corresponding required interpo-

lation orders. Actually, the present approach allows for an

important decrease of the number of dof required to satisfy

the convergence criterion defined previously ~0.5 dB from

the reference curve and 5% accuracy in the location of reso-

nance peaks!. Moreover, the best performance is achieved

using a coarse mesh and a high interpolation order for the

basis functions. This trend has already been pointed out for

the modeling of elastic materials using hierarchical elements

in static problems.22

As seen in Tables II and III, the interpolation order for

the basis functions can be chosen to be different for the two

phases of the porous material. Actually, the solid and the

fluid phase exhibit different physical behaviors depending on

the studied configuration. This feature of the hierarchical po-

roelastic elements is of great interest since convergence is

ensured by choosing the adequate interpolation order for

each phase separately. On the other hand, convergence in

classical finite elements is ensured by refining the mesh, i.e.,

a refined description of both phases of the porous material.

Hence, the former approach provides an efficient way for the

reduction of the number of degrees of freedom required for a

correct modeling of the material.

B. Convergence of the vibroacoustic indicators

In the following, foam FM2 is studied in configurations

~i! and ~ii!. The geometry of the porous sample is identical to

the one considered previously. The frequency range of inter-

est is @0 Hz; 500 Hz#. Biot’s theory of poroelasticity2 indi-

cates that two compression waves ~denoted P1 and P2 in the

following! and a shear wave ~denoted S! can propagate si-

multaneously in a porous medium. For each kind of wave,

the ratio m of the fluid phase displacement to the solid phase

displacement can be computed.3 These ratio at 500 Hz for

foam FM2 are given in Table IV. Table IV indicates that

waves P1 and S propagate in both phases. On the contrary,

wave P2 propagates mainly in the fluid phase, so that the two

phases of the porous material can be considered as decoupled

as far as wave P2 is concerned. This point strongly influ-

ences the behavior of the porous materials according to the

configuration studied. Foam FM2 has been previously stud-

ied in configuration ~ii!. Excellent values for ^Vz
2&, repre-

sented in Fig. 3, can be obtained with low interpolation order

for the basis functions of the fluid phase. This means that a

coarse description of the fluid phase suffices for the conver-

gence of this indicator related to the solid phase. Indeed, this

porous material in configuration ~ii! is subjected to an acous-

tical excitation acting on both phases. The pressure in the

pores and the stress tensor in the solid phase in vacuo are

imposed at the interface where the material is excited. Be-

cause wave P2 mainly propagates in the fluid phase, the fluid

phase has a weak influence on the solid phase and thus does

FIG. 3. ^Vz
2& for a foam FM2 in configuration ~ii!.

TABLE II. Convergence of ^Vz
2& for FM2 in configuration ~ii!.

Nb of elements

interpolation order ~solid–fluid! Classical code

1–1–1

7–2

2–2–1

4–2

3–3–1

3–2

Number of dof 2144 70 144 244

TABLE I. Characteristics of the materials.

Material h

s

kN s/m4 a`

L

mm

L8

mm

rS

kg/m3

N

kPa n h

FM2 0.9 25 7.8 226 226 300 286 0.4 0.265

UGW3 0.95 25 1.4 93.2 93.2 600 21 0 0.05

FIG. 2. ^P2& for glasswool UGW3 in configuration ~i!.
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not require a very accurate description for the convergence

of ^Vz
2&: the motion in the solid phase is due to wave P1 and

S. In comparison, indicator ^P2& for foam FM2 in the same

configuration is represented in Fig. 4. Different interpolation

orders have been used with a fixed 23231 elements mesh

for the present approach. Compared to ^Vz
2& , ^P2& requires a

noticeable lower interpolation order for the basis functions in

the solid phase. This indicates that a coarse representation of

the solid phase suffices for the convergence of this latter

indicator. The influence of waves P1 and S on the motion of

the fluid phase is not significant. Actually the motion of the

fluid phase is mainly due to wave P2 .

Next, consider foam FM2 in configuration ~i!. As previ-

ously, ^P2& is plotted as a function of frequency in Fig. 5. It

can be observed that a higher interpolation order for the basis

functions of the solid phase in comparison with configuration

~ii! is required for the convergence of ^P2&. In this configu-

ration, the porous is submitted to a rigid piston motion. For

that kind of excitation, the solid phase is directly excited and

its motion is strongly transmitted to the fluid when the am-

plitude ratios m are important for waves P1 and S. Hence, in

configuration ~i! the motion of the fluid phase is mainly due

to these latter waves. In conclusion, the two phases of a

porous material can exhibit very different behaviors accord-

ing to the excitation. This induces a convergence which

highly depends on the configuration studied for the consid-

ered vibroacoustic indicators, namely ^Vz
2& or ^P2&. Hence,

it is difficult to conclude about the convergence of a set of

indicators in a general manner.

C. Investigation of the convergence of hierarchical
poroelastic elements

For 3D deformations, the classical convergence criterion

gives indications for a minimal mesh but is insufficient be-

cause of locking of 3D linear elements and discrepancies of

the fields in the two phases of the porous material. As stated

in Sec. III A, the use of the theory of hierarchical elements

together with the $u, P% formulation enables one to solve

these latter problems and to get smaller linear systems to

solve.

In this section, the convergence of hierarchical poroelas-

tic elements is investigated for a particular material, wool

UGW3. The aim of this study is to determine the interpola-

tion order for the basis functions in the two phases of the

porous material that allows for convergence given the ele-

ment size. Initially, the motivation for this study was to de-

rive a convergence criterion that could be reused for other

porous materials. However, it appears that the results for

wool UGW3 cannot be directly transposed and that only a

convergence study performed on different materials would

enable one to draw general trends for the convergence of

hierarchical poroelastic elements. This task implies a huge

amount of calculations. Therefore, only preliminary results

are given here. This convergence study is however helpful to

highlight the influence of the coupling between the two

phases of wool UGW3 as it is shown thereafter and to con-

firm the observations made on foam FM2 in Sec. III B.

In the following, the mesh in the lateral dimensions of a

3D porous sample is studied. As a consequence, the number

of elements along the thickness is chosen large enough so

that only the lateral mesh influences the results. For a chosen

indicator, the interpolation order in both phases can be rep-

resented as a function of the element size. In order to have

nondimensional data in the abscissa, the element size is

scaled to the wavelength l of wave P1 , P2 or S at the high-

est frequency in the frequency range of interest. These wave-

lengths at 500 Hz are given in Table V. As these wavelengths

are rather short, a wide range of element size to wavelength

ratio is provided. The study that follows is carried out for

each of the two configurations ~i! and ~ii! depicted in Sec.

III A and for each vibroacoustic indicator (^Vz
2& and P2) ac-

cording to remarks in Sec. III B.

Configuration (i): The interpolation orders for the solid

phase ~respectively, fluid phase! basis functions that ensure

the convergence of the two indicators ^P2& and ^Vz
2& are

plotted as a function of the ratio of the element size to lP1
,

where lP1
denotes the wavelength of wave P1 at 500 Hz.

The results are represented in Fig. 6 ~respectively, Fig. 7!. In

these figures, fit curves are provided for clarity. Note that the

wavelength of another kind of wave, e.g., S wave or P2 , can

be chosen to scale the element size simply by multiplying the

FIG. 4. ^P2& for foam FM2 in configuration ~ii!.

TABLE III. Convergence of ^P2& for UGW3 in configuration ~i!.

Nb of elements

interpolation order ~solid–fluid! Classical code

4–3–2

3–2

5–3–2

3–2

6–4–3

3–2

9–7–4

2–2

Number of dof 5214 895 1094 2397 4828

TABLE IV. Amplitude ratios for foam FM2 at 500 Hz.

Kind of wave P1 P2 S

Amplitude ratio m 0.99810.1613i 210.4311.703i 0.9721.143i
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abscissa in Figs. 6 and 7 by the factor lP1
/lS or lP1

/lP2
.

Considering a fixed mesh, it is seen in Figs. 6 and 7 that

the convergence of indicator ^P2& is not solely governed by

the interpolation order for the basis functions in the fluid

phase. Indeed, a sufficiently high interpolation order for the

basis functions in the solid phase is required to ensure the

convergence of ^P2&. This interpolation is even higher than

the one needed for the convergence of ^Vz
2&. The opposite is

observed regarding the interpolation order for the basis func-

tions in fluid phase. This is because of important coupling

phenomena between the two phases when the solid phase of

the porous material is directly excited.

Configuration (ii): Like in configuration ~i!, the interpo-

lation orders required for the convergence of the two indica-

tors ^P2& and ^Vz
2& are plotted as a function of the ratio of

the element size to lP1
. These interpolation orders for the

solid and the fluid phase are represented in Figs. 8 and 9,

respectively. As previously, fit curves are provided for clar-

ity. When considering the basis functions in the solid phase,

Fig. 8 shows that for a fixed element size to lP1
, the inter-

polation order required for the convergence of ^P2& is as

high as the one for ^Vz
2& , except for low size element to

wavelength ratio. For the basis functions of the fluid phase,

the interpolation order ensuring the convergence of ^Vz
2& is

smaller than the one ensuring the convergence of ^P2&.

Hence, from these observations, coupling phenomena be-

tween the two phases of the porous material appear to influ-

ence weakly the response of the porous material. This latter

phenomenon can be explained by the fact that the porous

material has bonded edges and is submitted to an acoustical

excitation. To sum up the results found in this particular con-

figuration, given a fixed mesh, the interpolation orders for

the basis functions in the two phases of the porous material

chosen to ensure simultaneously the convergence of ^P2&
and ^Vz

2& exhibit the following feature: regarding the basis

functions in the solid phase ~respectively, fluid phase!, the

choice of the interpolation order ensuring the convergence of

^Vz
2& ~respectively, ^P2&) allows for the convergence of both

indicators.

IV. CONCLUSION

The implementation of the $u, P% formulation for porous

materials using the theory of hierarchical elements has been

presented. The use or high order polynomials for the basis

functions enables one to solve some of the problems met

with linear poroelastic elements, among them numerical

locking and the presence of two different scale phenomena.

Hence, hierarchical poroelastic elements allows for the pre-

diction of the forced response of a porous material using a

reduced number of degrees of freedom. The reduction of the

number of unknowns is all the more effective than a coarse

mesh with high interpolation orders is provided. Besides, the

FIG. 5. ^P2& for foam FM2 in configuration ~i!. FIG. 6. Convergence criterion for the solid phase. Configuration ~i!. Given

an element size for the mesh, an interpolation order in the solid phase that

suffices for the convergence of ^P2& ~respectively, ^Vz
2&) is determined by

numerical experiments. n ~respectively, s! stands for the corresponding

couple of values interpolation order-element size to wavelength ratio.

FIG. 7. Convergence criterion for the fluid phase. Configuration ~i!. Given

an element size for the mesh, an interpolation order in the fluid phase that

suffices for the convergence of ^P2& ~respectively, ^Vz
2&) is determined by

numerical experiments. n ~respectively, s! stands for the corresponding

couple of values interpolation order-element size to wavelength ratio.

TABLE V. Wave numbers for the different kinds of waves in wool UGW3

at 500 Hz.

Kind of wave P1 P2 S

Wavelength ~m! 7.23731022 1.96231021 5.19931022
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performance of hierarchical elements is enhanced by the use

of different interpolation orders for the basis functions of

each phase separately.

Considering a particular material, a preliminary study

has been conducted in order to link the interpolation order of

the basis functions in the two phases of the porous material

to the ratio of the element size to the wavelength. It has been

found that for a mechanical excitation, each phase happens

to influence strongly the vibratory state of the other phase,

showing the importance of the coupling between the two

phases of the porous material. Regarding interpolation order

for the basis functions in the solid phase, this implies, for

example, to chose an interpolation order for the convergence

of ^P2& larger than the one for ^Vz
2&. This interaction phe-

nomenon proves to be of least importance for an acoustical

excitation. In this case, considering the basis functions in the

solid phase, the interpolation order for the convergence of

^Vz
2& is found to be as large as for ^P2& . To derive more

general trends for the convergence of hierarchical poroelastic

elements, further works involving the study of other kinds of

materials are required. However, the presented examples

show the difficulty of deriving a general meshing criterion

for porous-elastic materials. More importantly, they highlight

the importance of conducting a serious convergence study

before any vibroacoustic study regarding the behavior of

porous-elastic materials, based on using finite element codes.

APPENDIX

The shape functions involved in the approximation of

the fields on one element @Eq. ~6!# are defined on a parent

element, which is an 8-noded brick element represented in

Fig. 10. On that element, the geometrical entities ~nodes,

edges, and faces! are assigned a number. From this follows

the definition of the basis shape functions.

1. Node modes

A node mode of analytical expression Ni , is related to

node i on the parent element. Ni is a linear function of the

local coordinates and has value 1 at node i and 0 at the other

nodes. Node modes are given by

Ni~j ,h ,z !5
1
8~12j !~12h !~12z !,

N2~j ,h ,z !5
1
8~11j !~12h !~12z !,

N3~j ,h ,z !5
1
8~11j !~11h !~12z !,

N4~j ,h ,z !5
1
8~12j !~11h !~12z !,

N5~j ,h ,z !5
1
8~12j !~12h !~11z !,

N6~j ,h ,z !5
1
8~11j !~12h !~11z !,

N7~j ,h ,z !5
1
8~11j !~11h !~11z !,

N8~j ,h ,z !5
1
8~12j !~11h !~11z !.

2. Edge modes

The edge i linking two nodes of the parent element is

associated one or several edge modes. One particular edge

FIG. 8. Convergence criterion for the solid phase. Configuration ~ii!. Given

an element size for the mesh, an interpolation order in the solid phase that

suffices for the convergence of ^P2& ~respectively, ^Vz
2&) is determined by

numerical experiments. s ~respectively, n! stands for the corresponding

couple of values interpolation order-element size to wavelength ratio.

FIG. 9. Convergence criterion for the fluid phase. Configuration ~ii!. Given

an element size for the mesh, an interpolation order in the fluid phase that

suffices for the convergence of ^P2& ~respectively, ^Vz
2&) is determined by

numerical experiments. n ~respectively, s! stands for the corresponding

couple of values interpolation order-element size to wavelength ratio.

FIG. 10. The reference element and the standard numbering of nodes.
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mode of analytical expression Ep has zero value on all the

edges of the parent element except on edge j. On this par-

ticular edge, its expression is a polynomial with order p. The

general expression of the edges modes for p>2 are given by

Ep
12

5
1
4fp~j !~12h !~12z !,

Ep
23

5
1
4fp~h !~11j !~12z !,

Ep
34

5
1
4fp~j !~11h !~12z !,

Ep
41

5
1
4fp~h !~12j !~12z !,

Ep
15

5
1
4fp~z !~12j !~12h !,

Ep
26

5
1
4fp~z !~11j !~12h !,

Ep
37

5
1
4fp~z !~12j !~11h !,

Ep
48

5
1
4fp~z !~11j !~11h !,

Ep
56

5
1
4fp~j !~12h !~11z !,

Ep
67

5
1
4fp~h !~11j !~11z !,

Ep
78

5
1
4fp~j !~11h !~11z !,

Ep
85

5
1
4fp~h !~12j !~11z !,

where the superscript kl indicates that the considered edges is

defined by node k and node l on the parent element. Func-

tions fp are built using orthogonal Legendre polynomials Lp

and are obtained by the formula

fp~j !5

1

A2~2 j21 !
~Lp~j !2Lp22~j !! with p>2.

~A1!

The relations verified by functions fp are given further on.

3. Face modes

Each face i of the parent element is associated with face

modes which are zero on all the faces of the parent element

except for face i. Considering the interpolation order p>4,

one or several couples of integers (k1 ,k2) verifying k11k2

5p are constituted. Note that the couple (k1 ,k2) is different

from the couple (k2 ,k1). Each couple is associated a mode

related to face i. The general expression for this mode Fk1k2

is given by

Fk1k2

1265
5

1
2fk1

~j !fk2
~z !~12h !,

Fk1k2

2376
5

1
2fk71~h !fk2

~z !~12j !,

Fk1k2

1234
5

1
2fk1

~j !fk2
~h !~12z !,

Fk1k2

4158
5

1
2fk1

~h !fk2
~z !~11j !,

Fk1k2

3487
5

1
2fk1

~j !fk2
~z !~11h !,

Fk1k2

5678
5

1
2fk1

~j !fk2
~h !~11z !,

where the superscript klmn states for the face defined by the

nodes k, l, m, and n.

4. Internal modes

For an interpolation order p>6, sets of three integers

(k1 ,k2 ,k3) verifying k11k21k35p are considered. Note

that the set (k1 ,k2 ,k3) is different from the set (k1 ,k3 ,k2)

and (k2 ,k3 ,k1). Each set is associated with an internal mode

of analytical expression Ik1k2k3
given by

Ik1k2k3
5fk1

~j !•fk2
~h !•fk3

~z !.

5. Features of functions fk

The functions fk introduced in the preceding sections

satisfy some interesting properties. First, by construction,

fk~21 !5fk~1 !50. ~A2!

Also the first derivative of these functions are orthogonal,

namely,

E
21

1

fm8 ~j !fn8~j !dj5dmn . ~A3!

Finally, let’s consider the analytical expression of a particular

edge mode with an interpolation order k, for example, Ek
12 .

The integration of this mode on the parent element face per-

taining to the nodes 1, 2, 3, 4 leads to

E
1234

E12 dS5E
21

1

~12h !dh•E
21

1

fk~j !dj . ~A4!

For k.2, the function fk verify the relation

E
21

1

fk~j !dj5A 2

2 j11
F 1

2k11
@fk11~1 !2fk11~21 !#

2

1

2k23
@fk21~1 !2fk21~21 !#G . ~A5!

Given Eq. ~A2!, the value of this integral is 0. Hence all the

edge modes with an interpolation order k.2 satisfy Eq. ~20!.
The extension of this relation for the face modes with inter-

polation order p.4 is straightforward.
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24 A. Côté, ‘‘Modélisation vibroacoustique dans le domaine des moyennes
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