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A mixed displacement-pressure formulation for poroelastic materials

Recently, finite element models based on Biot's displacement (u,U) formulation for poroelastic materials have been extensively used to predict the acoustical and structural behavior of multilayer structures. These models while accurate lead to large frequency dependent matrices for three-dimensional problems necessitating important setup time, computer storage and solution time. In this paper, a novel exact mixed displacement pressure (u,p) formulation is presented. The formulation derives directly from Biot's poroelasticity equations. It has the form of a classical coupled fluid-structure problem involving the dynamic equations of the skeleton in vacuo and the equivalent fluid in the rigid skeleton limit. The governing (u,p) equations and their weak integral form are given together with the coupling conditions with acoustic media. The numerical implementation of the presented approach in a finite element code is discussed. Examples are presented to show the accuracy and effectiveness of the presented formulation.

INTRODUCTION

The vibroacoustic performance of finite multilayer systems containing poroelastic materials is of utmost importance for noise control in automobiles, aircraft and several other engineering applications. In the absence of absorbing materials, the vibroacoustic response of complex multilayer structures are classically modeled using the finite element and the boundary element methods. To account for absorbing media, finite element formulations for sound absorbing materials have been developed. They range from simple approaches ͑impedance techniques: Beranek and Ver, 1992; equivalent fluid models [START_REF] Craggs | A finite element for rigid porous absorbing materials[END_REF][START_REF] Panneton | A finite element formulation for the vibro-acoustic behaviour of double plate structures with cavity absorption[END_REF] to sophisticated approaches based on the Biot theory ͑Kang and Bolton, 1995;[START_REF] Johansen | Finite element method for predicting the acoustical properties of porous samples[END_REF][START_REF] Coyette | A finite element model for predicting the acoustic transmission characteristics of layered structures[END_REF][START_REF] Panneton | Mode ´lisation nume ´rique par e ´le ´ments finis des structures complexes absorbantes[END_REF]Atalla, 1996, 1997a͒. For the general case of multilayer systems containing poroelastic media, the use of the sophisticated approaches becomes necessary. These approaches are mainly based on the classical displacement (u,U) formulation of Biot's poroelasticity equations ͑Biot, 1956͒. However, it has been shown that while accurate the (u,U) formulation has the disadvantage of requiring cumbersome calculations for large finite element models and spectral analyses ͑Panneton, 1996; [START_REF] Panneton | Mode ´lisation nume ´rique par e ´le ´ments finis des structures complexes absorbantes[END_REF]Atalla, 1996, 1997a͒. To alleviate these difficulties, a mixed formulation using the solid phase displacement and the interstitial fluid pressure as variables seems more suitable for large size finite element models since it requires only four degrees of freedom per node. However, few efforts have been devoted to this idea. Lately, a simplified mixed (u, p) formulation was proposed by Go ¨ransson ͑1995͒. However, in his formulation, Go ¨ransson neglected the strain couplings between the fluid and solid phases of the porous material. He solved the one-dimensional wave propagation in porous media using a weighted residual formulation based on Galerkin's method. In geomechanics, several authors have investigated mixed formulations ͑see Simon and Zienkiewics, 1986 for references͒. However, all these formulations are based on assumptions that neglect inertia coupling, which is not acceptable for vibroacoustic applications. Based on these investigations, it is widely believed in acoustics that a (u,p) formulation is not possible without limiting assumptions.

In this paper, an exact (u,p) formulation recently developed by the authors is presented ͑Atalla et al., 1996͒. In this new formulation, the classical Biot-Allard equations are rewritten in terms of the solid phase macroscopic displacement vector and the interstitial fluid phase macroscopic pressure. The new coupled equations have the advantage of recasting the poroelasticity equations in the classical form of a fluidstructure coupled problem wherein the coupling is between an equivalent elastodynamic equation for the skeleton in vacuo and an equivalent Helmholtz equation for the fluid in the limit of a rigid skeleton. In the first part of the paper, the classical formulation is recalled. Next, the new formulation is derived followed by its numerical implementation. The coupling conditions between the presented formulation and acoustic formulation are given. Finally, examples demonstrating the accuracy and efficiency of the approach are presented.

I. THEORY

The problem of interest deals with the prediction of the vibroacoustic response ͑dynamic and acoustic response͒ of multilayer structures made up of elastic, poroelastic and acoustic media. The poroelastic material may be bonded or unbonded to the structure. The classical assumptions concerning linear acoustic, elastic, and poroelastic wave propagation are assumed ͑Allard, 1993͒. Also, the air contained in the porous medium is initially at rest.

A. The Biot's displacement formulation

The modeling of the poroelastic material is based on the Biot's poroelasticity equations ͑Biot, 1956; Allard, 1993͒:

1 div = s ϭ 11 u ¨ϩ 12 U ¨ϩb ˜͑u ˙ϪU ˙͒ ͑1͒ div = f ϭ 22 U ¨ϩ 12 u ¨Ϫb ˜͑u ˙ϪU ˙͒,
where the tilde symbol indicates that the associated physical property is complex and frequency dependent. In Eq. ͑1͒, u and U denote the solid and fluid macroscopic displacement vectors, respectively. These displacements are average values in the sense of the Biot theory, i.e., the average volume displacements per unit area cross section. Densities 11 and 22 are mass coefficients which take into account the fact that the relative flow through the pores is not uniform. They are related to the mass density of the material from which the skeleton is made, s , and to the mass density of the intersti- tial fluid, 0 ,b y:

11 ϭ͑1Ϫh ͒ s Ϫ 12 , 22 ϭh 0 Ϫ 12 , ͑2͒
where h is the porosity of the poroelastic material. The coefficient 12 accounts for the interaction between the inertia forces of the solid and fluid phases; it is function of the tortuosity of the material ͑Allard, 1993͒. = s and = f denote the partial stress tensors associated with the skeleton particle and the macroscopic fluid particle, respectively. Tensor = f is related to the averaged pressure prevailing in the saturating fluid by = f ϭϪhp1 =, while tensor = s is given by (1Ϫh) times the averaged stress tensor prevailing in the matrix of the poroelastic material. Note that = s and = f are linearly related to the partial strain tensors = s and = f prevailing in the skeleton and the interstitial fluid, respectively. These relations define the stiffness coupling between the solid and the fluid phases and account for dissipation due to thermal exchanges between both phases in the material. Also, they include the structural damping associated with the frame. Finally, b ˜is a frequency dependent viscous damping coefficient accounting for viscous interaction forces. It can be related to the macroscopic flow resistivity of the porous material ͑Allard, 1993͒. A detailed discussion about the field quantities occurring in the Biot theory may be found in De Vries ͑1989͒ and Geerits ͑1996, 1997͒.

Using the solid and fluid displacement vectors (u,U)a s primary variables and assuming harmonic oscillations (e jt ), the weak integral form of the poroelasticity equations, Eq. ͑1͒, reads ͑Panneton and Atalla, 1996͒:

͵ ⍀ p ͑ = s ͑ u,U ͒: = s ͑ ␦u͒Ϫ 11 2 u.␦uϪ 12 2 U.␦u ϩ jb ˜͑uϪU ͒.␦u)d⍀ Ϫ ͵ ץ⍀ p ␦u.͓ = s ͑ u,U ͒.n͔dSϭ0, ͑3͒ ͵ ⍀ p ͑ = f ͑ u,U ͒: = f ͑ ␦U͒Ϫ 22 2 U.␦UϪ 12 2 u.␦U Ϫ jb ˜͑uϪU ͒.␦U)d⍀ Ϫ ͵ ץ⍀ p ␦U.͓ = f ͑ u,U ͒.n͔dSϭ0, ᭙͑␦u,␦U ͒,
where ␦u and ␦U denote admissible variations of u and U, respectively, and where ⍀ p and ץ⍀ p denote the medium domain and its boundary.

For the finite element implementation of Eq. ͑1͒,a n analogy with the three-dimensional elastic solid elements is used; however, this time, six degrees of freedom per node are used. They account for three displacement components of the solid phase and three displacement components of the fluid phase. However, because of the viscous and thermal dissipation mechanisms, the system's matrices are frequency dependent. In consequence, for large 3D multilayer structures, this formulation has the disadvantage of requiring cumbersome calculations for large finite element models and spectral analyses. To alleviate these difficulties, a mixed displacement pressure formulation is presented.

B. The mixed displacement pressure formulation

In the following, an exact mixed formulation valid for harmonic motion is given. It derives directly from Biot poroelasticity equations, Eq. ͑1͒. The developments assume that the porous material properties are homogeneous. Note that a more general time domain formulation valid for anisotropic materials is given by Gorog et al. ͑1997͒.

For harmonic motion (e jt ), introducing the effective densities

˜11 ϭ 11 ϩ b j ˜22 ϭ 22 ϩ b j ͑4͒ ˜12 ϭ 12 Ϫ b j , system ͑1͒ is rewritten: 2 ˜11 uϩ 2 ˜12 Uϩdiv = s ϭ0 ͑5͒ 2 ˜22 Uϩ 2 ˜12 uϪhٌ pϭ0.
Using the second equation in ͑5͒, the displacement vector of the fluid phase U is expressed in terms of the pressure p in the pores and in terms of the displacement vector of the solid phase particle u:

Uϭ h ˜22 2 ٌ pϪ ˜12 ˜22 u. ͑6͒
This last equation will be used to express system ͑5͒ in terms of the (u,p) variables.

The solid phase equation in terms of (u,p) variables

Using Eq. ͑6͒, the first equation in ͑5͒ transforms into:

2 ˜uϩh ˜12 ˜22 ٌ pϩdiv = s ϭ0, ͑7͒
where the following effective density has been introduced:

˜ϭ ˜11 Ϫ ͑ ˜12 ͒ 2 ˜22 . ͑8͒
Equation ͑7͒ is still dependent on the fluid phase displacement vector U because of the dependency = s ϭ = s (u,U). Indeed, the stress-strain relations in the Biot theory are given by ͑Allard, 1993͒:

= s ͑ u,U ͒ϭA ˜div u1 =ϩ2N = s ϩQ ˜div U1 = ͑9͒ Ϫhp1 =ϭR ˜div U1 =ϩQ ˜div u1 =,
in which 1 = denotes the identity tensor, the elastic coefficients A ˜and N correspond to the Lame ´coefficients for elastic solids, Q ˜is a coupling coefficient between the dilatation and stress of the two phases, and R ˜may be interpreted as the bulk modulus of the air occupying a fraction h of a unit volume of aggregate. R ˜is related to the bulk modulus K ˜f of the air in the pores by the scale factor h: R ˜ϭhK ˜f . The elastic coefficients A ˜, Q ˜and R ˜are related to K b , the bulk modulus of the skeleton in vacuo,t oK s , the bulk modulus of the elastic solid from which the skeleton is made and to K ˜f , the bulk modulus of the air in the pores by ͑Allard, 1993͒:

A ˜ϭ ͑ 1Ϫh ͓͒1ϪhϪK b /K s ͔K s ϩh͑K s /K ˜f ͒)K b 1ϪhϪK b /K s ϩhK s /K ˜f Ϫ 2 3 N, ͑10͒ Q ˜ϭ ͓1ϪhϪK b /K s ͔hK s 1ϪhϪK b /K s ϩhK s /K ˜f , ͑11͒ R ˜ϭ h 2 K s 1ϪhϪK b /K s ϩhK s /K ˜f , ͑12͒
where N is the complex in vacuo shear modulus of the skeleton taking into account structural damping. Since K ˜f takes into account the thermal effects in the pore, it has a frequency dependent complex amplitude, and so do the elasticity tensors. In consequence, in the numerical implementation of the (u,U) formulation, the stiffness matrix associated to the frame is frequency dependent, which limits the computational efficiency of this formulation ͑the corresponding matrix should be reconstructed at each computational fre-quency͒.

To eliminate the dependency = s ϭ = s (u,U), the first and second equation in Eq. ͑9͒ are combined to obtain:

= s ͑ u,U ͒ϭ ͩ A ˜Ϫ Q ˜2 R ˜ͪ div u1 =ϩ2N = s Ϫh Q R ˜p1 =. ͑13͒ 
Next, introducing the tensor = s defined by

= s ͑ u ͒ϭ ͩ A ˜ϪQ ˜2 R ˜ͪ div u1 =ϩ2N = s , ͑14͒
the solid phase stress tensor writes:

= s ͑ u,U ͒ϭ = s ͑ u ͒Ϫh Q R ˜p1 =. ͑15͒
Since tensor = s depends only on the solid phase displace- ment vector, Eq. ͑15͒ may be used to eliminate the dependency = s ϭ = s (u,U) in Eq. ͑7͒. Substituting ͑15͒ into ͑7͒, the solid phase equation is obtained in terms of the (u, p) variables:

div = s ͑ u ͒ϩ ˜2 uϩ␥ ˜ٌ pϭ0, ͑16͒
where the following notation is used:

␥ ˜ϭh ͩ ˜12 ˜22 Ϫ Q R ˜ͪ . ͑17͒
To grasp the physical meaning of Eq. ͑16͒, note from Eqs. ͑10͒ to ͑12͒ that the expression ͑14͒ for = s is equivalent to:

= s ͑ u ͒ϭ͑ K b Ϫ 2 3 N ͒div u1 =ϩ2N = s , ͑18͒
which is the classical stress-strain relation for an elastic solid. Moreover, since K b and N denote the bulk modulus and the shear modulus of the skeleton in vacuo, respectively, tensor = s is the stress tensor of the material in vacuo.I n other words, = s represents the stress tensor prevailing in the poroelastic material when the fluid is totally drained off. In consequence, the first two terms of Eq. ͑16͒ represent the elastodynamic equation of the material in vacuo. One valuable feature is that = s is independent of the bulk modulus of the air and hence does not depend on frequency thus increasing the efficiency of the numerical implementation.

The fluid phase equation in terms of (u,p) variables

Next, to derive the fluid phase equation in terms of (u, p) variables, the divergence of Eq. ͑6͒ is taken and gives:

div Uϭ h 2 ˜22 ⌬ pϪ ˜12 ˜22 div u. ͑19͒
Combining this equation with the second equation in ͑9͒, the fluid phase equation is obtained in terms of the (u,p) variables:

⌬ pϩ ˜22 R ˜2 pϩ ˜22 h 2 ␥ ˜2 div uϭ0, ͑20͒
where ␥ ˜is defined in ͑17͒. Note that Eq. ͑20͒ is exactly the classical equivalent fluid equation for absorbing media with a source term ͑Allard, 1993; [START_REF] Panneton | A finite element formulation for the vibro-acoustic behaviour of double plate structures with cavity absorption[END_REF] The first two terms of this equation may be obtained directly from Biot's equations in the limit of a rigid skeleton. Those two terms represent the dynamic behavior of the material when its frame is supposed motionless. It is well known that Eq. ͑20͒ models correctly the behavior of rigid porous materials and/or situations in which the material is not mechanically excited or directly bonded to a vibrating structure and that for frequencies higher than the decoupling frequency ͑Panneton and Atalla, 1996͒.

Poroelasticity equations in terms of (u,p) variables

Grouping Eqs. ͑16͒ and ͑20͒, the Biot poroelasticity equations in terms of (u, p) variables are given by:

div = s ͑ u ͒ϩw 2 ˜uϩ␥ ˜ٌ pϭ0 ͑21͒ ⌬ pϩ 2 ˜22 R ˜pϪ 2 ˜22 h 2 ␥ ˜div uϭ0.
This system exhibits the classical form of a fluid-structure coupled equation. However, the coupling is of a volume nature since the poroelastic material is a superposition in space and time of the elastic and fluid phases. The first two terms of the structure equation represent the dynamic behavior of the material in vacuo while the first two terms of the fluid equation represent the dynamic behavior of the fluid when the frame is supposed motionless. The third terms in both equations couple the dynamics of the two phases.

The next section discusses the implementation of this formulation in a finite element code. It will be shown that this formulation is symmetric. One obvious advantage of the presented formulation is that four degrees of freedom are needed rather than 6 for the classical (u,U) formulation.

C. The weak integral formulation

Let ␦u and ␦p be two admissible variations of the displacement field u and the pressure field p, respectively. Then, using Galerkin's procedure ͑Reddy, 1991͒, the following symmetric (u,p) coupled weak integral formulation is obtained after few algebraic manipulations:

͵ ⍀ p = s ͑ u ͒: = s ͑ ␦u͒d⍀Ϫ 2 ͵ ⍀ p ˜u.␦ud⍀ Ϫ ͵ ⍀ p ␥ ˜ٌp.␦ud⍀Ϫ ͵ ץ⍀ p ͓ =s .n͔.␦udSϭ0, ͑22͒ ͵ ⍀ p ͫ h 2 2 ˜22 ٌ p.ٌ␦ pϪ h 2 R ˜p␦ p ͬ d⍀Ϫ ͵ ⍀ p ␥ ˜ٌ␦ p.ud⍀ ϩ ͵ ץ⍀ p ͫ ␥ ˜un Ϫ h 2 ˜22 2 ץp ץn ͬ ␦pdSϭ0, ᭙͑␦u,␦ p ͒,
where ⍀ p and ץ⍀ p denote the poroelastic domain and its boundary. Note from Eq. ͑22͒ the volume nature of the symmetric coupling between the two phases.

Equation ͑22͒ exhibits several advantages of the presented formulation over the (u,U) formulation. First, the stiffness matrix associated with the solid phase is frequency independent. Second, it accounts naturally for poroelasticporoelastic interfaces; no essential boundary conditions are needed. Indeed, let indices 1 and 2 denote the two interfacing poroelastic media, respectively. The continuity equations are given by ͑Panneton and Atalla, 1996͒:

u 1 ϭu 2 h 1 ͑ u 1n ϪU 1n ͒ϭh 2 ͑ u 2n ϪU 2n ͒ ͑23͒ p 1 ϭp 2 = 1 t .nϭ = 2 t .n,
where the first condition ensures the continuity of the solid phase displacement vector. The second equation ensures the continuity of the relative mass flux across the boundary. The two last equations ensure the continuity of the total normal stresses and the interstitial fluid pressure, respectively. Note that the total stress tensor = t is the total stress tensor given by:

= t ͑ u,U ͒ϭ = s ͑ u,U ͒ϩ = f ͑ u,U ͒ϭ = s ͑ u,U ͒Ϫhp1 =, ͑24͒
which may be written in terms of the in-vacuo stress tensor = S using Eq. ͑15͒:

= t ͑ u,U ͒ϭ = s ͑ u,U ͒Ϫh ͫ 1ϩ Q R ˜ͬ p1 =. ͑25͒
Using the following two relations, derived easily from Eqs. ͑6͒, ͑16͒ and ͑17͒:

͑ 1Ϫh ͒u.nϩhU.nϭ ͫ 1ϪhϪh Q R ˜ͬ u.n Ϫ ͫ ␥ ˜u.nϪ h 2 ˜22 2 ץp ץn ͬ , ͑26͒ h͑uϪU ͒.nϭ ͫ ␥ ˜u.nϪ h 2 ˜22 2 ץp ץn ͬ ϩh ͫ 1ϩ Q R ˜ͬ u.n, ͑27͒
the coupling conditions given by Eq. ͑23͒ may be written in terms of the (u,p) variables as follows

u 1 ϭu 2 ͫ ␥ ˜1u 1n Ϫ h 1 2 ˜22 2 ץp 1 ץn ͬ ϩh ͫ 1ϩ Q ˜1 R ˜1 ͬ u 1n ϭ ͫ ␥ ˜2 u 2n Ϫ h 2 2 ˜22 2 ץp 2 ץn ͬ ϩh ͫ 1ϩ Q ˜2 R ˜2 ͬ u 2n ͑28͒ p 1 ϭp 2 = 1 s .nϪh ͫ 1ϩ Q ˜1 R ˜1 ͬ u 1n ϭ = 2 s .nϪh ͫ 1ϩ Q ˜2 R ˜2 ͬ u 2n .
Using the fourth relation, the first boundary integrals in Eq. ͑22͒ related to the interface ץ⍀ p between the two coupled domains reads:

I 1 ϭϪ ͵ ץ⍀ p h 1ͩ 1ϩ Q ˜1 R ˜1 ͪ p 1 ␦u 1n dS ϩ ͵ ץ⍀ p h 2ͩ 1ϩ Q ˜2 R ˜2 ͪ p 2 ␦u 2n dS.

͑29͒

Similarly, using the second and fourth relations of Eq. ͑28͒, the second boundary integral of Eq. ͑22͒ reduces to

I 2 ϭϪ ͵ ץ⍀ p h 1ͩ 1ϩ Q ˜1 R ˜1 ͪ u 1n ␦p 1 dS ϩ ͵ ץ⍀ p h 2ͩ 1ϩ Q ˜2 R ˜2 ͪ u 2n ␦p 2 dS.

͑30͒

The signs in both equations account for the direction of the normal vector which is assumed to be directed from medium 1 toward medium 2. Equations ͑29͒ and ͑30͒ show that the two poroelastic media will be coupled through symmetrical coupling terms. This coupling occurs naturally between the solid phase normal displacement of one medium and the interstitial fluid pressure of the other medium. In addition to these surface coupling terms, the kinematic relation u 1 ϭu 2 and p 1 ϭp 2 will have to be explicitly applied on ץ⍀ p . For the majority of poroelastic media used in acoustics K b /K S Ӷ1 ͑Allard, 1993͒. Thus since ͓see Eqs. ͑11͒ and ͑12͔͒:

h Q R ˜ϭ1ϪhϪ K b K s , ͑31͒
we have:

h ͩ 1ϩ Q R ˜ͪ Х1. ͑32͒
In this case, both integrals I 1 and I 2 fall to zero and only the kinematic relations have to be applied. These conditions are taken into account through assembling. This is in contrast with the (u,U) formulation which involves the imposition of the second boundary condition in ͑23͒ through kinematic relations.

Another advantage of the presented (u, p) formulation over the (u,U) formulation lies in its coupling with air media. Indeed, denoting by p a the pressure in the air layer, the continuity equations are given by ͑Panneton and Atalla, 1996͒:

1 0 2 ץp a ץn ϭ͑1Ϫh ͒u n ϩhU n = t .nϭϪp a 1 =.n ͑33͒ 
= s .nϭϪ͑1Ϫh͒p a 1 =.n; = f .nϭϪhp a 1 =.n.

The first equation ensures the continuity of the normal volume velocity ͑modified Euler's equation due to the porosity͒, while the second and third equations ensure the continuity of the normal stresses. Using Eqs. ͑25͒ and ͑26͒, the coupling conditions in Eq. ͑33͒ are proved to be equivalent to:

ͫ 1ϪhϪh Q R ˜Ϫͬ u n Ϫ ͫ ␥ ˜un Ϫ h 2 ˜22 2 ץp ץn ͬ ϭ 1 0 2 ץp a ץn pϭp a ͑34͒ = s •nϭ ͫ h Q R ˜Ϫ͑1Ϫh ͒ ͬ pn.
Note that the first and third conditions in ͑34͒ lead to symmetric coupling terms of the form ͓see Eq. ͑22͔͒:

I 1 ϭ ͵ ץ⍀ p ͩ 1ϪhϪ Q R ˜ͪ p␦ u n dS ͑35͒
and

I 2 ϭ ͵ ץ⍀ p ͩ 1ϪhϪ Q R ˜ͪ u n ␦pdS, ͑36͒
where ץ⍀ p denotes the poroelastic-air interface. Once again for the majority of porous materials used in acoustics, the approximation given by Eq. ͑32͒ applies and these coupling terms vanish. Thus, only the continuity of the pressure at the poroelastic-air interface should be accounted for. In this case, contrary to the (u,U) formulation, no coupling matrix is needed. This represents another advantage and time saving feature of the presented formulation. Finally, it is worth mentioning that a detailed description of the boundary, support and loading conditions of the presented (u, p) formulation together with corresponding validation examples will be presented in a sequel paper ͑Debergue et al., 1998͒.

II. NUMERICAL IMPLEMENTATION

In the presented work, the weak formulation ͓Eq. ͑22͔͒ has been discretized using linear volume elements with four degrees of freedom per node: the three solid macroscopic displacements u and the pressure p in the interstitial fluid. Two finite volume elements have been implemented: a six node wedge element and an eight node brick element. Accordingly, within a finite element, it is assumed that the solid phase displacement vector and the pressure can be represented in matrix form following u e ϭ͓N s ͔͕u n ͖ e and p e ϭ͓N f ͔͕p n ͖ e ,

͑37͒

where ͓N s ͔ and ͓N f ͔ are the element's shape functions used to approximate the solid phase displacement vector and the interstitial pressure within element ''e.'' ͕u n ͖ e and ͕p n ͖ e are respectively the nodal displacement and the nodal pressure variables.

Since the solid phase governing equation is similar to a 3D elastodynamic equation, an analogy with solid elements is used. Similarly, since the fluid phase equation is similar to the Helmholtz's equation, an analogy with acoustic finite elements is used.

Substituting Eq. ͑37͒ into Eq. ͑22͒, the following matrices are obtained:

͵ ⍀ p = s ͑ u ͒: = s ͑ ␦u͒d⍀⇒͗␦u n ͓͘K͔͕u n ͖, ͑38͒ ͵ ⍀ p ˜u.␦ud⍀⇒͗␦u n ͓͘M ˜͔͕u n ͖, ͑39͒ ͵ ⍀ p ␥ ˜ٌ p.␦udS⇒͗␦u n ͓͘C ˜͔͕p n ͖, ͑40͒ ͵ ⍀ p h 2 ˜22 ͑ ٌ p.ٌ␦p ͒d⍀⇒͗␦ p n ͓͘H ˜͔͕p n ͖, ͑41͒ ͵ ⍀ p h 2 R ˜p.␦ pd⍀⇒͗␦p n ͓͘Q ˜͔͕p n ͖, ͑42͒ ͵ ⍀ p ␥ ˜u.ٌ␦ pdS⇒͗␦p n ͓͘C ˜͔T ͕u n ͖, ͑43͒
where ͕u n ͖ and ͕p n ͖ represent the solid phase and the fluid phase global nodal variables, respectively. ͓ M ˜͔ and ͓K͔ represent equivalent mass and stiffness matrices for the solid phase, respectively. ͓H ˜͔ and ͓Q ˜͔ represent equivalent kinetic and compression energy matrices for the fluid phase, respectively. Finally, ͓C ˜͔ is a volume coupling matrix between the solid phase displacement variables and the fluid phase pressure variable. Note that contrary to a classical fluid-structure coupling problem, the coupling within a poroelastic system is of a volume nature. The numerical evaluation of the different matrices is classical and will not be detailed in this paper. Note finally that the discretization of the interface integrals depends on the boundary conditions of the system ͑ϭ loading conditions͒.

Substituting Eqs. ͑38͒ to ͑43͒ into Eq. ͑22͒, the following coupled system is formed:

ͩ ͓K͔Ϫ 2 ͓ M ˜͔ Ϫ͓C ˜͔ Ϫ 2 ͓C ˜͔T ͓H ˜͔Ϫ 2 ͓Q ˜͔ ͪͭ u n p n ͮ ϭ ͭ F s F p ͮ , ͑44͒
where ͕ F p F s ͖ denotes the loading vector for the poroelastic medium ͑these vectors depends on the nature of the excitation; they are not detailed here͒. Solution of system ͑44͒ leads simultaneously to the nodal displacements of the solid phase and to the nodal pressures of the fluid phase. Once more, note that system ͑44͒ exhibits the classical form of a fluid structure coupled system. This system is smaller compared to the corresponding system in the classical (u,U) formulation since four degrees of freedom are used rather than six. Moreover, for a homogeneous poroelastic medium, all the frequency dependency in matrices ͑38͒ to ͑43͒ show up as multiplication coefficients that may be taken out of the integrals. Thus, the matrices may be calculated and assembled, once for all, for a given mesh. The spectra of the frequency dependent coefficient are accounted for during the formation of the global system ͑44͒. This is in contrast with the (u,U) formulation where the frequency dependence of the stiffness matrix is implicit in the stress-strain relations, thus necessitating recalculation of the matrix at each frequency. Moreover, it is worth mentioning that the presented formulation while improving significantly the performances of the numerical solutions of the Biot's poroelasticity equations still suffers from the necessity of using a spectral approach necessitated by the nonlinearity of the frequency dependence of the final matrix system. At this stage of the research, two potential solutions may be mentioned. The first is the use of a set of acceptable approximations that lead to a linearisation of the matrix system ͑see Panneton and Atalla, 1997b͒. The second is to use the selective modal reduction technique developed by [START_REF] Sgard | A model reduction technique the finite-element formulation of Biot's poroelasticity equations in acoustics[END_REF] Finally, recall from the previous section that coupling conditions are accounted for naturally in the presented formulation compared to the (u,U) formulation. The above mentioned features of the presented approach lead to important savings in setup and solution time as it will be demonstrated in the following numerical examples.

III. NUMERICAL EXAMPLES

In the following, the presented (u,p) formulation is validated by comparisons with the (u,U) formulation for both two-dimensional and three-dimensional problems. Note that detailed validation examples for the (u,U) formulation and its interface with elastic and poroelastic media have been presented elsewhere ͑Panneton and Atalla, 1996.

A. Surface impedance for a single poroelastic layer

As a first example, the surface impedance of laterally infinite poroelastic materials predicted by the presented (u, p) finite element Biot model of Eq. ͑21͒ is compared with the prediction of the (u,U) formulation. The configuration under study is depicted in Fig. 1͑a͒. A laterally infinite glass wool layer, described in Table I, is bonded onto a rigid impervious wall. A normal incidence plane wave of unit amplitude excites the absorbing material. To simulate the laterally infinite extent with the finite element model, only the axial macroscopic displacements are considered, i.e., the lateral displacements are set to zero. For both formulations, the poroelastic domain is meshed using an eight node linear brick element. A mesh of 7ϫ7ϫ5 elements was used. The normal incidence surface impedance is calculated using the axial nodal solid and fluid components, u n and U n respectively, at the input surface for the unit acoustic pressure excitation by the following equation: For the formulation, the normal displacement of the fluid phase U n is calculated using Eq. ͑6͒. This equation necessitates the evaluation of the nodal values of the pressure gradient. The classical procedure relying on evaluation of the pressure gradients at Gauss integration points followed by a least-square procedure in order to get nodal values is used.

Z n ϭ 1 j͑hU n ϩ͑1Ϫh͒u n ͒ . ͑45͒
Note that the results of the (u,U) finite element Biot model have been validated by comparison with an exact analytical calculation ͑Allard, 1993͒. Figure 2 presents the real and imaginary parts of the surface impedance predicted by both models. An excellent agreement is observed. For this simple problem, the (u,p) formulation took approximately one-fifth of the time needed for the (u,U) formulation.

B. Surface impedance for a multilayer poroelastic material

To show the efficiency of the approach, the surface impedance of a laterally infinite multilayer poroelastic material is calculated. The configuration under study is depicted in Fig. 1͑b͒. A laterally infinite multilayer poroelastic material is bonded onto a rigid impervious wall. From the front face to the rear face, the multilayer consists of a blanket, a screen, foam A, and foam B. The material properties are listed in Table I. A normal incidence plane wave of unit amplitude excites the absorbing material. To simulate the laterally infi-nite extent with the finite element model, only the axial macroscopic displacements are considered, i.e., the lateral displacements are set to zero. Identical meshes using eight node linear brick elements are used for both formulations. The cross section of the material was meshed using 7ϫ7 elements. The blanket, the screen, foam A and foam B were meshed using five elements. Note that this problem has been validated elsewhere by comparison with an analytical calculation ͑Allard, 1993͒. Figure 3 compares the real and imaginary parts of the surface impedance predicted by both models. A perfect agreement is observed. For this problem, the (u, p) formulation took approximately one-fourth the time needed for the (u,U) formulation.

C. A rigid cavity with surface absorption

Next, a coupled acoustic-poroelastic problem is considered. The geometry of the problem is depicted in Fig. 4. A wall of a rigid cavity ͑dimensions: 0.35 m ϫ 0.22 m ϫ 0.01 m͒ is treated with 10 cm of the fiberglass of Table I. The fiberglass is totally bonded to the rigid wall. The system is excited with a point source positioned at a corner of the rigid cavity. The quadratic pressure in the cavity is calculated using the (u,U) and the (u, p) formulations. Identical meshes are used for both formulations. The cavity is discretized using six-node linear pentahedron acoustic elements with one FIG. 2. Comparison of the surface impedance calculated with the (u,U) and the (u, p) Biot finite element models for the laterally infinite glass wool layer of Table I. degree-of-freedom per node: the acoustic pressure. A 7ϫ7 ϫ7 mesh is used for the cavity. For the poroelastic domain, a7 ϫ 7 ϫ 3 mesh is used. Note that this problem has been validated elsewhere by comparison with an impedance model for the poroelastic material ͑Atalla and Panneton, 1996͒. The results of the calculation are given in Fig. 5. Once again, excellent agreement is found between the two approaches. The (u,p) formulation took approximately onetwelfth of the time needed with the (u,U) formulation. This is mostly due to the reduction of the number of degrees of freedom for the problem and the more natural way of accounting for the coupling between the poroelastic and the acoustic domain.

IV. CONCLUSION

The presented mixed (u, p) formulation for poroelastic materials has several features: ͑1͒ It is exact, in the sense that no new assumptions introduced beyond those governing Biot's poroelastic equations. ͑2͒ It leads to a classical coupled fluid-structure problem involving the dynamic equations of the skeleton in vacuo and the equivalent fluid in the rigid skeleton limit.

͑3͒ It handles naturally coupling conditions with acoustic and other pyroelastic media. ͑4͒ It involves four degrees of freedom per node element compared to six for the classical (u,U) formulation; important savings in computer storage and solution time are achieved. ͑5͒ The physical nature of its coupled equations and its variables allows for efficient numerical implementation; important savings in setup and solution time are achieved. ͑6͒ For the presented numerical simulations, the (u,p) was shown to be 5 to 12 times faster than the (u,U) formulation with identical accuracy. 

FIG. 1 .

 1 FIG. 1. Geometry of the surface impedance problem. ͑a͒ Single poroelastic layer; and ͑b͒ multilayered poroelastic material.

FIG. 3 .

 3 FIG.3. Comparison of the surface impedance between the (u,U) and the (u, p) Biot finite element models for the laterally infinite multilayer.

FIG. 5 .

 5 FIG. 5. Comparison of the quadratic velocity at the poroelastic surface calculated with the (u,U) and the (u, p) Biot finite element models for the cavity problem of Fig. 4.

TABLE I .

 I Physical properties and dimensions of the poroelastic materials.

			l			N		⌳	⌳Ј	Thickness
		k s	(kg/m 3 )	(Ns/m 4 )	h	͑kPa͒		͑m͒	͑m͒	͑cm͒
	Glass wool 1.06	130	40 000	0.94 2200 ͑1ϩj0.1͒ 0	0.56ϫ10 Ϫ4 1.10ϫ10 Ϫ4	10
	Blanket	1.18	41	34 000	0.98 110͑1ϩj0.015͒ 0.3 0.60ϫ10 Ϫ4 0.87ϫ10 Ϫ4	0.4
	Screen	2.56	125	320ϫ10 4 0.80 1000 ͑1ϩj0.1͒ 0.3 0.06ϫ10 Ϫ4 0.24ϫ10 Ϫ4	0.08
	Foam A	2.52	31	87 000	0.97 55 ͑1ϩj0.055͒ 0.3 0.37ϫ10 Ϫ4 1.19ϫ10 Ϫ4	0.5
	Foam B	1.98	16	65 000	0.99 18 ͑1ϩj0.1͒	0.3 0.37ϫ10 Ϫ4 1.21ϫ10 Ϫ4	1.6
	Fiberglass 1.4	30	25 000	0.95 21 ͑1ϩj0.05͒	0.0 0.93ϫ10 Ϫ4 0.93ϫ10 Ϫ4	7.62
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