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A mixed displacement-pressure formulation for poroelastic
materials

Noureddine Atalla, Raymond Panneton, and Patricia Debergue
GAUS, Mech. Eng., Univ. de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada

Recently, finite element models based on Biot’s displacement (u,U) formulation for poroelastic materials have been 
extensively used to predict the acoustical and structural behavior of multilayer structures. These models while accurate lead to 
large frequency dependent matrices for three-dimensional problems necessitating important setup time, computer storage and 
solution time. In this paper, a novel exact mixed displacement pressure (u,p) formulation is presented. The formulation derives 
directly from Biot’s poroelasticity equations. It has the form of a classical coupled fluid-structure problem involving the 
dynamic equations of the skeleton in vacuo and the equivalent fluid in the rigid skeleton limit. The governing (u,p) equations 
and their weak integral form are given together with the coupling conditions with acoustic media. The numerical 
implementation of the presented approach in a finite element code is discussed. Examples are presented to show the accuracy 
and effectiveness of the presented formulation. 

INTRODUCTION

The vibroacoustic performance of finite multilayer sys-

tems containing poroelastic materials is of utmost impor-

tance for noise control in automobiles, aircraft and several

other engineering applications. In the absence of absorbing

materials, the vibroacoustic response of complex multilayer

structures are classically modeled using the finite element

and the boundary element methods. To account for absorbing

media, finite element formulations for sound absorbing ma-

terials have been developed. They range from simple ap-

proaches ~impedance techniques: Beranek and Ver, 1992;

equivalent fluid models: Craggs, 1978; Panneton et al.,

1995! to sophisticated approaches based on the Biot theory

~Kang and Bolton, 1995; Johansen et al., 1995; Coyette and

Wynendaele, 1995; Panneton and Atalla, 1996, 1997a!. For

the general case of multilayer systems containing poroelastic

media, the use of the sophisticated approaches becomes nec-

essary. These approaches are mainly based on the classical

displacement (u ,U) formulation of Biot’s poroelasticity

equations ~Biot, 1956!. However, it has been shown that

while accurate the (u ,U) formulation has the disadvantage

of requiring cumbersome calculations for large finite element

models and spectral analyses ~Panneton, 1996; Panneton and

Atalla, 1996, 1997a!. To alleviate these difficulties, a mixed

formulation using the solid phase displacement and the inter-

stitial fluid pressure as variables seems more suitable for

large size finite element models since it requires only four

degrees of freedom per node. However, few efforts have

been devoted to this idea. Lately, a simplified mixed (u ,p)

formulation was proposed by Göransson ~1995!. However, in

his formulation, Göransson neglected the strain couplings

between the fluid and solid phases of the porous material. He

solved the one-dimensional wave propagation in porous me-

dia using a weighted residual formulation based on Galer-

kin’s method. In geomechanics, several authors have inves-

tigated mixed formulations ~see Simon and Zienkiewics,

1986 for references!. However, all these formulations are

based on assumptions that neglect inertia coupling, which is

not acceptable for vibroacoustic applications. Based on these

investigations, it is widely believed in acoustics that a (u ,p)

formulation is not possible without limiting assumptions.

In this paper, an exact (u ,p) formulation recently devel-

oped by the authors is presented ~Atalla et al., 1996!. In this

new formulation, the classical Biot-Allard equations are re-

written in terms of the solid phase macroscopic displacement

vector and the interstitial fluid phase macroscopic pressure.

The new coupled equations have the advantage of recasting

the poroelasticity equations in the classical form of a fluid-

structure coupled problem wherein the coupling is between

an equivalent elastodynamic equation for the skeleton in

vacuo and an equivalent Helmholtz equation for the fluid in

the limit of a rigid skeleton. In the first part of the paper, the

classical formulation is recalled. Next, the new formulation

is derived followed by its numerical implementation. The

coupling conditions between the presented formulation and

acoustic formulation are given. Finally, examples demon-

strating the accuracy and efficiency of the approach are pre-

sented.

I. THEORY

The problem of interest deals with the prediction of the

vibroacoustic response ~dynamic and acoustic response! of

multilayer structures made up of elastic, poroelastic and

acoustic media. The poroelastic material may be bonded or

unbonded to the structure. The classical assumptions con-

cerning linear acoustic, elastic, and poroelastic wave propa-

gation are assumed ~Allard, 1993!. Also, the air contained in

the porous medium is initially at rest.

A. The Biot’s displacement formulation

The modeling of the poroelastic material is based on the

Biot’s poroelasticity equations ~Biot, 1956; Allard, 1993!:
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div s= s
5r11ü1r12Ü1 b̃~ u̇2U̇ !

~1!

div s= f
5r22Ü1r12ü2 b̃~ u̇2U̇ !,

where the tilde symbol indicates that the associated physical

property is complex and frequency dependent. In Eq. ~1!, u

and U denote the solid and fluid macroscopic displacement

vectors, respectively. These displacements are average val-

ues in the sense of the Biot theory, i.e., the average volume

displacements per unit area cross section. Densities r11 and

r22 are mass coefficients which take into account the fact

that the relative flow through the pores is not uniform. They

are related to the mass density of the material from which the

skeleton is made, rs , and to the mass density of the intersti-

tial fluid, r0, by :

r115~12h !rs2r12, r225hr02r12 , ~2!

where h is the porosity of the poroelastic material. The co-

efficient r12 accounts for the interaction between the inertia

forces of the solid and fluid phases; it is function of the

tortuosity of the material ~Allard, 1993!. s= s and s= f denote

the partial stress tensors associated with the skeleton particle

and the macroscopic fluid particle, respectively. Tensor s= f is

related to the averaged pressure prevailing in the saturating

fluid by s= f
52hp1= , while tensor s= s is given by (12h)

times the averaged stress tensor prevailing in the matrix of

the poroelastic material. Note that s= s and s= f are linearly

related to the partial strain tensors «= s and «= f prevailing in the

skeleton and the interstitial fluid, respectively. These rela-

tions define the stiffness coupling between the solid and the

fluid phases and account for dissipation due to thermal ex-

changes between both phases in the material. Also, they in-

clude the structural damping associated with the frame. Fi-

nally, b̃ is a frequency dependent viscous damping

coefficient accounting for viscous interaction forces. It can

be related to the macroscopic flow resistivity of the porous

material ~Allard, 1993!. A detailed discussion about the field

quantities occurring in the Biot theory may be found in De

Vries ~1989! and Geerits ~1996, 1997!.
Using the solid and fluid displacement vectors (u ,U) as

primary variables and assuming harmonic oscillations (e jvt),

the weak integral form of the poroelasticity equations, Eq.

~1!, reads ~Panneton and Atalla, 1996!:

E
Vp

~s= s~u ,U !:«= s~du !2r11v
2u .du2r12v

2U .du

1 jv b̃~u2U !.du)dV

2E
]Vp

du .@s= s~u ,U !.n#dS50,

~3!

E
Vp

~s= f~u ,U !:«= f~dU !2r22v
2U .dU2r12v

2u .dU

2 jv b̃~u2U !.dU)dV

2E
]Vp

dU .@s= f~u ,U !.n#dS50, ;~du ,dU !,

where du and dU denote admissible variations of u and U ,

respectively, and where Vp and ]Vp denote the medium

domain and its boundary.

For the finite element implementation of Eq. ~1!, an

analogy with the three-dimensional elastic solid elements is

used; however, this time, six degrees of freedom per node are

used. They account for three displacement components of the

solid phase and three displacement components of the fluid

phase. However, because of the viscous and thermal dissipa-

tion mechanisms, the system’s matrices are frequency depen-

dent. In consequence, for large 3D multilayer structures, this

formulation has the disadvantage of requiring cumbersome

calculations for large finite element models and spectral

analyses. To alleviate these difficulties, a mixed displace-

ment pressure formulation is presented.

B. The mixed displacement pressure formulation

In the following, an exact mixed formulation valid for

harmonic motion is given. It derives directly from Biot po-

roelasticity equations, Eq. ~1!. The developments assume

that the porous material properties are homogeneous. Note

that a more general time domain formulation valid for aniso-

tropic materials is given by Gorog et al. ~1997!.
For harmonic motion (e jvt), introducing the effective

densities

r̃115r111
b̃

jv

r̃225r221
b̃

jv
~4!

r̃125r122
b̃

jv
,

system ~1! is rewritten:

v2r̃11u1v2r̃12U1div s= s
50

~5!

v2r̃22U1v2r̃12u2h¹p50.

Using the second equation in ~5!, the displacement vector of

the fluid phase U is expressed in terms of the pressure p in

the pores and in terms of the displacement vector of the solid

phase particle u:

U5
h

r̃22v
2

¹p2
r̃12

r̃22

u . ~6!

This last equation will be used to express system ~5! in terms

of the (u ,p) variables.

1. The solid phase equation in terms of (u,p)
variables

Using Eq. ~6!, the first equation in ~5! transforms into:

v2r̃u1h
r̃12

r̃22

¹p1div s= s
50, ~7!

where the following effective density has been introduced:

r̃5 r̃112
~ r̃12!

2

r̃22

. ~8!
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Equation ~7! is still dependent on the fluid phase displace-

ment vector U because of the dependency s= s
5s= s(u ,U). In-

deed, the stress-strain relations in the Biot theory are given

by ~Allard, 1993!:

s= s~u ,U !5Ã div u1=12N«= s
1Q̃ div U1=

~9!

2hp1=5R̃ div U1=1Q̃ div u1= ,

in which 1= denotes the identity tensor, the elastic coefficients

Ã and N correspond to the Lamé coefficients for elastic sol-

ids, Q̃ is a coupling coefficient between the dilatation and

stress of the two phases, and R̃ may be interpreted as the

bulk modulus of the air occupying a fraction h of a unit

volume of aggregate. R̃ is related to the bulk modulus K̃ f of

the air in the pores by the scale factor h: R̃5hK̃ f . The elas-

tic coefficients Ã , Q̃ and R̃ are related to Kb , the bulk modu-

lus of the skeleton in vacuo, to Ks , the bulk modulus of the

elastic solid from which the skeleton is made and to K̃ f , the

bulk modulus of the air in the pores by ~Allard, 1993!:

Ã5
~12h !@12h2Kb /Ks#Ks1h~Ks /K̃ f !)Kb

12h2Kb /Ks1hKs /K̃ f

2
2

3
N ,

~10!

Q̃5
@12h2Kb /Ks#hKs

12h2Kb /Ks1hKs /K̃ f

, ~11!

R̃5
h2Ks

12h2Kb /Ks1hKs /K̃ f

, ~12!

where N is the complex in vacuo shear modulus of the skel-

eton taking into account structural damping. Since K̃ f takes

into account the thermal effects in the pore, it has a fre-

quency dependent complex amplitude, and so do the elastic-

ity tensors. In consequence, in the numerical implementation

of the (u ,U) formulation, the stiffness matrix associated to

the frame is frequency dependent, which limits the compu-

tational efficiency of this formulation ~the corresponding ma-

trix should be reconstructed at each computational fre-

quency!.
To eliminate the dependency s= s

5s= s(u ,U), the first and

second equation in Eq. ~9! are combined to obtain:

s= s~u ,U !5S Ã2
Q̃2

R̃
D div u1=12N«= s

2h
Q̃

R̃
p1= . ~13!

Next, introducing the tensor ŝ= s defined by

ŝ= s~u !5S Ã2
Q̃2

R̃
D div u1=12N«= s, ~14!

the solid phase stress tensor writes:

s= s~u ,U !5ŝ= s~u !2h
Q̃

R̃
p1= . ~15!

Since tensor ŝ= s depends only on the solid phase displace-

ment vector, Eq. ~15! may be used to eliminate the depen-

dency s= s
5s= s(u ,U) in Eq. ~7!. Substituting ~15! into ~7!, the

solid phase equation is obtained in terms of the (u ,p) vari-

ables:

div ŝ= s~u !1 r̃v2u1g̃¹p50, ~16!

where the following notation is used:

g̃5hS r̃12

r̃22

2
Q̃

R̃
D . ~17!

To grasp the physical meaning of Eq. ~16!, note from Eqs.

~10! to ~12! that the expression ~14! for ŝ= s is equivalent to:

ŝ= s~u !5~Kb2
2
3N !div u1=12N«= s, ~18!

which is the classical stress-strain relation for an elastic

solid. Moreover, since Kb and N denote the bulk modulus

and the shear modulus of the skeleton in vacuo, respectively,

tensor ŝ= s is the stress tensor of the material in vacuo. In

other words, ŝ= s represents the stress tensor prevailing in the

poroelastic material when the fluid is totally drained off. In

consequence, the first two terms of Eq. ~16! represent the

elastodynamic equation of the material in vacuo. One valu-

able feature is that ŝ= s is independent of the bulk modulus of

the air and hence does not depend on frequency thus increas-

ing the efficiency of the numerical implementation.

2. The fluid phase equation in terms of (u,p) variables

Next, to derive the fluid phase equation in terms of

(u ,p) variables, the divergence of Eq. ~6! is taken and gives:

div U5
h

v2r̃22

Dp2
r̃12

r̃22

div u . ~19!

Combining this equation with the second equation in ~9!, the

fluid phase equation is obtained in terms of the (u ,p) vari-

ables:

Dp1
r̃22

R̃
v2p1

r̃22

h2 g̃v2div u50, ~20!

where g̃ is defined in ~17!.
Note that Eq. ~20! is exactly the classical equivalent

fluid equation for absorbing media with a source term ~Al-

lard, 1993; Panneton et al., 1995!. The first two terms of this

equation may be obtained directly from Biot’s equations in

the limit of a rigid skeleton. Those two terms represent the

dynamic behavior of the material when its frame is supposed

motionless. It is well known that Eq. ~20! models correctly

the behavior of rigid porous materials and/or situations in

which the material is not mechanically excited or directly

bonded to a vibrating structure and that for frequencies

higher than the decoupling frequency ~Panneton and Atalla,

1996!.

3. Poroelasticity equations in terms of (u,p) variables

Grouping Eqs. ~16! and ~20!, the Biot poroelasticity

equations in terms of (u ,p) variables are given by:
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div ŝ= s~u !1w2r̃u1g̃¹p50
~21!

Dp1v2
r̃22

R̃
p2v2

r̃22

h2
g̃ div u50.

This system exhibits the classical form of a fluid-structure

coupled equation. However, the coupling is of a volume na-

ture since the poroelastic material is a superposition in space

and time of the elastic and fluid phases. The first two terms

of the structure equation represent the dynamic behavior of

the material in vacuo while the first two terms of the fluid

equation represent the dynamic behavior of the fluid when

the frame is supposed motionless. The third terms in both

equations couple the dynamics of the two phases.

The next section discusses the implementation of this

formulation in a finite element code. It will be shown that

this formulation is symmetric. One obvious advantage of the

presented formulation is that four degrees of freedom are

needed rather than 6 for the classical (u ,U) formulation.

C. The weak integral formulation

Let du and dp be two admissible variations of the dis-

placement field u and the pressure field p , respectively.

Then, using Galerkin’s procedure ~Reddy, 1991!, the follow-

ing symmetric (u ,p) coupled weak integral formulation is

obtained after few algebraic manipulations:

E
Vp

ŝ= s~u !:«= s~du !dV2v2E
Vp

r̃u .dudV

2E
Vp

g̃¹p .dudV2E
]Vp

@ ŝ= s.n# .dudS50,

~22!

E
Vp

F h2

v2r̃22

¹p .¹dp2
h2

R̃
pdpGdV2E

Vp

g̃¹dp .udV

1E
]Vp

F g̃un2
h2

r̃22v
2

]p

]nGdpdS50, ;~du ,dp !,

where Vp and ]Vp denote the poroelastic domain and its

boundary. Note from Eq. ~22! the volume nature of the sym-

metric coupling between the two phases.

Equation ~22! exhibits several advantages of the pre-

sented formulation over the (u ,U) formulation. First, the

stiffness matrix associated with the solid phase is frequency

independent. Second, it accounts naturally for poroelastic–

poroelastic interfaces; no essential boundary conditions are

needed. Indeed, let indices 1 and 2 denote the two interfacing

poroelastic media, respectively. The continuity equations are

given by ~Panneton and Atalla, 1996!:

u15u2

h1~u1n2U1n!5h2~u2n2U2n!
~23!

p15p2

s= 1
t .n5s= 2

t .n ,

where the first condition ensures the continuity of the solid

phase displacement vector. The second equation ensures the

continuity of the relative mass flux across the boundary. The

two last equations ensure the continuity of the total normal

stresses and the interstitial fluid pressure, respectively. Note

that the total stress tensor s= t is the total stress tensor given

by:

s= t~u ,U !5s= s~u ,U !1s= f~u ,U !5s= s~u ,U !2hp1= , ~24!

which may be written in terms of the in-vacuo stress tensor

ŝ= S using Eq. ~15!:

s= t~u ,U !5ŝ= s~u ,U !2hF11
Q̃

R̃
Gp1= . ~25!

Using the following two relations, derived easily from Eqs.

~6!, ~16! and ~17!:

~12h !u .n1hU .n5F12h2h
Q̃

R̃
Gu .n

2F g̃u .n2
h2

r̃22v
2

]p

]n G , ~26!

h~u2U !.n5F g̃u .n2
h2

r̃22v
2

]p

]n G1hF11
Q̃

R̃
Gu .n , ~27!

the coupling conditions given by Eq. ~23! may be written in

terms of the (u ,p) variables as follows

u15u2

F g̃1u1n2
h1

2

r̃22v
2

]p1

]n G1hF11
Q̃1

R̃1

Gu1n

5F g̃2 u2n2
h2

2

r̃22v
2

]p2

]n G1hF11
Q̃2

R̃2

Gu2n

~28!

p15p2

ŝ= 1
s .n2hF11

Q̃1

R̃1

Gu1n5ŝ= 2
s .n2hF11

Q̃2

R̃2

Gu2n .

Using the fourth relation, the first boundary integrals in Eq.

~22! related to the interface ]Vp between the two coupled

domains reads:

I152E
]Vp

h1S 11
Q̃1

R̃1

D p1du1ndS

1E
]Vp

h2S 11
Q̃2

R̃2

D p2du2ndS . ~29!

Similarly, using the second and fourth relations of Eq. ~28!,
the second boundary integral of Eq. ~22! reduces to

I252E
]Vp

h1S 11
Q̃1

R̃1

D u1ndp1dS

1E
]Vp

h2S 11
Q̃2

R̃2

D u2ndp2dS . ~30!

The signs in both equations account for the direction of the

normal vector which is assumed to be directed from medium
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1 toward medium 2. Equations ~29! and ~30! show that the

two poroelastic media will be coupled through symmetrical

coupling terms. This coupling occurs naturally between the

solid phase normal displacement of one medium and the in-

terstitial fluid pressure of the other medium. In addition to

these surface coupling terms, the kinematic relation u15u2

and p15p2 will have to be explicitly applied on ]Vp.

For the majority of poroelastic media used in acoustics

Kb /KS!1 ~Allard, 1993!. Thus since @see Eqs. ~11! and

~12!#:

h
Q̃

R̃
512h2

Kb

Ks

, ~31!

we have:

hS 11
Q̃

R̃
D >1. ~32!

In this case, both integrals I1 and I2 fall to zero and only the

kinematic relations have to be applied. These conditions are

taken into account through assembling. This is in contrast

with the (u ,U) formulation which involves the imposition of

the second boundary condition in ~23! through kinematic re-

lations.

Another advantage of the presented (u ,p) formulation

over the (u ,U) formulation lies in its coupling with air me-

dia. Indeed, denoting by pa the pressure in the air layer, the

continuity equations are given by ~Panneton and Atalla,

1996!:

1

r0v2

]pa

]n
5~12h !un1hUn

s= t.n52pa1= .n ~33!

s= s.n52~12h !pa1= .n; s= f .n52hpa1= .n .

The first equation ensures the continuity of the normal vol-

ume velocity ~modified Euler’s equation due to the porosity!,
while the second and third equations ensure the continuity of

the normal stresses. Using Eqs. ~25! and ~26!, the coupling

conditions in Eq. ~33! are proved to be equivalent to:

F12h2h
Q̃

R̃
2Gun2F g̃un2

h2

r̃22v
2

]p

]n G5
1

r0v2

]pa

]n

p5pa ~34!

ŝ= s
•n5Fh

Q̃

R̃
2~12h !Gpn .

Note that the first and third conditions in ~34! lead to sym-

metric coupling terms of the form @see Eq. ~22!#:

I15E
]Vp

S 12h2
Q̃

R̃
D pd undS ~35!

and

I25E
]Vp

S 12h2
Q̃

R̃
D undp dS , ~36!

where ]Vp denotes the poroelastic-air interface. Once again

for the majority of porous materials used in acoustics, the

approximation given by Eq. ~32! applies and these coupling

terms vanish. Thus, only the continuity of the pressure at the

poroelastic-air interface should be accounted for. In this case,

contrary to the (u ,U) formulation, no coupling matrix is

needed. This represents another advantage and time saving

feature of the presented formulation.

Finally, it is worth mentioning that a detailed description

of the boundary, support and loading conditions of the pre-

sented (u ,p) formulation together with corresponding vali-

dation examples will be presented in a sequel paper

~Debergue et al., 1998!.

II. NUMERICAL IMPLEMENTATION

In the presented work, the weak formulation @Eq. ~22!#
has been discretized using linear volume elements with four

degrees of freedom per node: the three solid macroscopic

displacements u and the pressure p in the interstitial fluid.

Two finite volume elements have been implemented: a six

node wedge element and an eight node brick element. Ac-

cordingly, within a finite element, it is assumed that the solid

phase displacement vector and the pressure can be repre-

sented in matrix form following

ue
5@Ns#$un%

e and pe
5@N f #$pn%

e, ~37!

where @Ns# and @N f # are the element’s shape functions used

to approximate the solid phase displacement vector and the

interstitial pressure within element ‘‘e.’’ $un%
e and $pn%

e are

respectively the nodal displacement and the nodal pressure

variables.

Since the solid phase governing equation is similar to a

3D elastodynamic equation, an analogy with solid elements

is used. Similarly, since the fluid phase equation is similar to

the Helmholtz’s equation, an analogy with acoustic finite el-

ements is used.

Substituting Eq. ~37! into Eq. ~22!, the following matri-

ces are obtained:

E
Vp

ŝ= s~u !:«= s~du !dV⇒^dun&@K#$un%, ~38!

E
Vp

r̃u .du dV⇒^dun&@M̃ #$un%, ~39!

E
Vp

g̃¹p .du dS⇒^dun&@C̃#$pn%, ~40!

E
Vp

h2

r̃22

~¹p .¹dp !dV⇒^dpn&@H̃#$pn%, ~41!

E
Vp

h2

R̃
p .dp dV⇒^dpn&@Q̃#$pn%, ~42!

E
Vp

g̃u .¹dp dS⇒^dpn&@C̃#T$un%, ~43!

where $un% and $pn% represent the solid phase and the fluid

phase global nodal variables, respectively. @M̃ # and @K# rep-

resent equivalent mass and stiffness matrices for the solid
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phase, respectively. @H̃# and @Q̃# represent equivalent ki-

netic and compression energy matrices for the fluid phase,

respectively. Finally, @C̃# is a volume coupling matrix be-

tween the solid phase displacement variables and the fluid

phase pressure variable. Note that contrary to a classical

fluid-structure coupling problem, the coupling within a po-

roelastic system is of a volume nature. The numerical evalu-

ation of the different matrices is classical and will not be

detailed in this paper. Note finally that the discretization of

the interface integrals depends on the boundary conditions of

the system ~5 loading conditions!.
Substituting Eqs. ~38! to ~43! into Eq. ~22!, the follow-

ing coupled system is formed:

S @K#2v2@M̃ # 2@C̃#

2v2@C̃#T @H̃#2v2@Q̃#D H un

pnJ 5H Fs

FpJ , ~44!

where $
Fp

Fs % denotes the loading vector for the poroelastic

medium ~these vectors depends on the nature of the excita-

tion; they are not detailed here!. Solution of system ~44!
leads simultaneously to the nodal displacements of the solid

phase and to the nodal pressures of the fluid phase. Once

more, note that system ~44! exhibits the classical form of a

fluid structure coupled system. This system is smaller com-

pared to the corresponding system in the classical (u ,U)

formulation since four degrees of freedom are used rather

than six. Moreover, for a homogeneous poroelastic medium,

all the frequency dependency in matrices ~38! to ~43! show

up as multiplication coefficients that may be taken out of the

integrals. Thus, the matrices may be calculated and as-

sembled, once for all, for a given mesh. The spectra of the

frequency dependent coefficient are accounted for during the

formation of the global system ~44!. This is in contrast with

the (u ,U) formulation where the frequency dependence of

the stiffness matrix is implicit in the stress-strain relations,

thus necessitating recalculation of the matrix at each fre-

quency.

Moreover, it is worth mentioning that the presented for-

mulation while improving significantly the performances of

the numerical solutions of the Biot’s poroelasticity equations

still suffers from the necessity of using a spectral approach

necessitated by the nonlinearity of the frequency dependence

of the final matrix system. At this stage of the research, two

potential solutions may be mentioned. The first is the use of

a set of acceptable approximations that lead to a linearisation

of the matrix system ~see Panneton and Atalla, 1997b!. The

second is to use the selective modal reduction technique de-

veloped by Sgard et al. ~1997!.
Finally, recall from the previous section that coupling

conditions are accounted for naturally in the presented for-

mulation compared to the (u ,U) formulation. The above

mentioned features of the presented approach lead to impor-

tant savings in setup and solution time as it will be demon-

strated in the following numerical examples.

III. NUMERICAL EXAMPLES

In the following, the presented (u ,p) formulation is

validated by comparisons with the (u ,U) formulation for

both two-dimensional and three-dimensional problems. Note

that detailed validation examples for the (u ,U) formulation

and its interface with elastic and poroelastic media have been

presented elsewhere ~Panneton and Atalla, 1996, 1997a!.

A. Surface impedance for a single poroelastic layer

As a first example, the surface impedance of laterally

infinite poroelastic materials predicted by the presented

(u ,p) finite element Biot model of Eq. ~21! is compared with

the prediction of the (u ,U) formulation. The configuration

under study is depicted in Fig. 1~a!. A laterally infinite glass

wool layer, described in Table I, is bonded onto a rigid im-

pervious wall. A normal incidence plane wave of unit ampli-

tude excites the absorbing material. To simulate the laterally

infinite extent with the finite element model, only the axial

macroscopic displacements are considered, i.e., the lateral

displacements are set to zero. For both formulations, the po-

roelastic domain is meshed using an eight node linear brick

element. A mesh of 73735 elements was used. The normal

incidence surface impedance is calculated using the axial

nodal solid and fluid components, un and Un respectively, at

the input surface for the unit acoustic pressure excitation by

the following equation:

Zn5
1

jv~hUn1~12h !un!
. ~45!

FIG. 1. Geometry of the surface impedance problem. ~a! Single poroelastic

layer; and ~b! multilayered poroelastic material.
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For the formulation, the normal displacement of the fluid

phase Un is calculated using Eq. ~6!. This equation necessi-

tates the evaluation of the nodal values of the pressure gra-

dient. The classical procedure relying on evaluation of the

pressure gradients at Gauss integration points followed by a

least-square procedure in order to get nodal values is used.

Note that the results of the (u ,U) finite element Biot model

have been validated by comparison with an exact analytical

calculation ~Allard, 1993!. Figure 2 presents the real and

imaginary parts of the surface impedance predicted by both

models. An excellent agreement is observed. For this simple

problem, the (u ,p) formulation took approximately one-fifth

of the time needed for the (u ,U) formulation.

B. Surface impedance for a multilayer poroelastic
material

To show the efficiency of the approach, the surface im-

pedance of a laterally infinite multilayer poroelastic material

is calculated. The configuration under study is depicted in

Fig. 1~b!. A laterally infinite multilayer poroelastic material

is bonded onto a rigid impervious wall. From the front face

to the rear face, the multilayer consists of a blanket, a screen,

foam A, and foam B. The material properties are listed in

Table I. A normal incidence plane wave of unit amplitude

excites the absorbing material. To simulate the laterally infi-

nite extent with the finite element model, only the axial mac-

roscopic displacements are considered, i.e., the lateral dis-

placements are set to zero. Identical meshes using eight node

linear brick elements are used for both formulations. The

cross section of the material was meshed using 737 ele-

ments. The blanket, the screen, foam A and foam B were

meshed using five elements. Note that this problem has been

validated elsewhere by comparison with an analytical calcu-

lation ~Allard, 1993!. Figure 3 compares the real and imagi-

nary parts of the surface impedance predicted by both mod-

els. A perfect agreement is observed. For this problem, the

(u ,p) formulation took approximately one-fourth the time

needed for the (u ,U) formulation.

C. A rigid cavity with surface absorption

Next, a coupled acoustic-poroelastic problem is consid-

ered. The geometry of the problem is depicted in Fig. 4. A

wall of a rigid cavity ~dimensions: 0.35 m 3 0.22 m 3 0.01

m! is treated with 10 cm of the fiberglass of Table I. The

fiberglass is totally bonded to the rigid wall. The system is

excited with a point source positioned at a corner of the rigid

cavity. The quadratic pressure in the cavity is calculated us-

ing the (u ,U) and the (u ,p) formulations. Identical meshes

are used for both formulations. The cavity is discretized us-

ing six-node linear pentahedron acoustic elements with one

FIG. 2. Comparison of the surface impedance calculated with the (u ,U) and

the (u ,p) Biot finite element models for the laterally infinite glass wool

layer of Table I.

FIG. 3. Comparison of the surface impedance between the (u ,U) and the

(u ,p) Biot finite element models for the laterally infinite multilayer.

TABLE I. Physical properties and dimensions of the poroelastic materials.

ks

r l

(kg/m3)

s

(Ns/m4) h

N

~kPa! n

L

~m!

L8

~m!

Thickness

~cm!

Glass wool 1.06 130 40 000 0.94 2200 ~11j0.1! 0 0.5631024 1.1031024 10

Blanket 1.18 41 34 000 0.98 110~11j0.015! 0.3 0.6031024 0.8731024 0.4

Screen 2.56 125 3203104 0.80 1000 ~11j0.1! 0.3 0.0631024 0.2431024 0.08

Foam A 2.52 31 87 000 0.97 55 ~11j0.055! 0.3 0.3731024 1.1931024 0.5

Foam B 1.98 16 65 000 0.99 18 ~11j0.1! 0.3 0.3731024 1.2131024 1.6

Fiberglass 1.4 30 25 000 0.95 21 ~11j0.05! 0.0 0.9331024 0.9331024 7.62
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degree-of-freedom per node: the acoustic pressure. A 737

37 mesh is used for the cavity. For the poroelastic domain,

a 73733 mesh is used. Note that this problem has been

validated elsewhere by comparison with an impedance

model for the poroelastic material ~Atalla and Panneton,

1996!. The results of the calculation are given in Fig. 5.

Once again, excellent agreement is found between the two

approaches. The (u ,p) formulation took approximately one-

twelfth of the time needed with the (u ,U) formulation. This

is mostly due to the reduction of the number of degrees of

freedom for the problem and the more natural way of ac-

counting for the coupling between the poroelastic and the

acoustic domain.

IV. CONCLUSION

The presented mixed (u ,p) formulation for poroelastic

materials has several features:

~1! It is exact, in the sense that no new assumptions are

introduced beyond those governing Biot’s poroelastic

equations.

~2! It leads to a classical coupled fluid-structure problem in-

volving the dynamic equations of the skeleton in vacuo

and the equivalent fluid in the rigid skeleton limit.

~3! It handles naturally coupling conditions with acoustic

and other pyroelastic media.

~4! It involves four degrees of freedom per node element

compared to six for the classical (u ,U) formulation; im-

portant savings in computer storage and solution time

are achieved.

~5! The physical nature of its coupled equations and its vari-

ables allows for efficient numerical implementation; im-

portant savings in setup and solution time are achieved.

~6! For the presented numerical simulations, the (u ,p) was

shown to be 5 to 12 times faster than the (u ,U) formu-

lation with identical accuracy.
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