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Appendix A. Datasets

Table 1 summarizes the datasets. Figure 1 shows sample images per dataset.

Appendix B. Related Work

While deep neural networks are capable of achieving performance superior to humans on
various tasks (Krizhevsky et al., 2012; Mnih et al., 2015; He et al., 2015), they are notori-
ous for requiring large amounts of data and processing power, restricting their success to
domains where such resources are available. Humans, on the other hand, are more effi-
cient learners as they can effectively draw on their prior knowledge and learning experience

∗ The two first authors are principal challenge organizer and dataset preparer; the other authors are in
alphabetical order.
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Table 1: MetaDL 2021 datasets summary

Domain Dataset
Competition
Phase

Categories Images Source

Ecology
Plankton Feedback 91 3,640 Heidi M. Sosik (2015)

Insects Final 114 4,560 Serret et al. (2019)

Bio-medicine
Multiderma Feedback 51 2,040 Sun et al. (2016)

Plant Village Final 37 1,480
Hughes and Salathé (2015)
Geetharamani and Arun Pandian (2019)

Manufacturing

Texture DTD Feedback 47 1,880 Cimpoi et al. (2014)

Textures Final 64 2,560

Fritz et al. (2004)
Mallikarjuna et al. (2006)
Kylberg (2011)
Lazebnik et al. (2005)

Remote sensing
Mini RSICB Feedback 45 1,800 Li et al. (2020)

Mini RESISC Final 45 1,800 Cheng et al. (2017)

OCR
OmniPrint-MD-mix Feedback 706 28,240 Sun et al. (2021)

OmniPrint-MD-5-bis Final 706 28,240 Sun et al. (2021)

(a) Insects (b) Plant Village (c) Textures (d) Mini RESISC (e) OmniPrint-
MD-mix

(f ) Plankton (g) Multiderma (h) Texture DTD (i) Mini RSICB (j ) OmniPrint-
MD-5-bis

Figure 1: NeurIPS 2021 meta-learning challenge datasets sample images

(Jankowski et al., 2011). Improving the learning efficiency of deep neural networks is being
extensively studied within the area of few-shot learning (Wang et al., 2020; Bendre et al.,
2020; Lu et al., 2020). We discuss the two main paradigms that are used to address this.

Meta-learning Meta-learning (Naik and Mammone, 1992; Thrun, 1998; Schmidhuber,
1987; Brazdil et al., 2022) aims to learn, from previous learning experiences, how to learn
(Vanschoren, 2018; Hospedales et al., 2021; Huisman et al., 2021b). Matching networks
aim to learn a good embedding such that a nearest-neighbour classifier can be effective
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(Vinyals et al., 2016). Prototypical networks build on this technique by comparing inputs
to class prototypes instead of instances (Snell et al., 2017). Relation networks replace
the distance metric with a neural network (Sung et al., 2018). Model-based approaches,
such as MANNs (Santoro et al., 2016), Meta-Nets (Munkhdalai and Yu, 2017), TURTLE
(Huisman et al., 2021a) and SNAIL (Mishra et al., 2018), embed a given dataset into an
activation state and use this state to make predictions for new data points. Optimization-
based approaches use optimization, such as gradient descent, to learn new tasks. One of
the most popular techniques from this approach is MAML (Finn et al., 2017), which aims
to learn good initialization hyperparameters from which new tasks can be learned in a few
gradient update steps. This work has been the inspiration for many follow-up works, such
as Meta-SGD (Li et al., 2017), which also learns suitable learning rates, Reptile (Nichol
et al., 2018), which is a first-order variant on MAML, and LEO (Rusu et al., 2019), whose
goal is to learn the initialization hyperparameters in a low-dimensional latent space.

Transfer learning Transfer learning (Weiss et al., 2016; Tan et al., 2018; Pan and Yang,
2009) aims to transfer knowledge from a source task or domain (or set thereof), where a
large amount of data may be present, to a target domain, where data may be sparse. One
popular transfer learning approach in deep learning is to pre-train a network on a given
source domain (e.g., ImageNet (Krizhevsky et al., 2012)), followed by fine-tuning parts
(such as only the output layer) of the network on the target domain (Huang et al., 2013;
Oquab et al., 2014). In this case, the knowledge transfer is parameter-based. Many other
forms of transfer also exist, such as mapping-based, instance-based, and adversarial-based
transfer (Tan et al., 2018).

Recent works illustrate that simple pre-training and fine-tuning can outperform more
complicated meta-learning techniques (Chen et al., 2019; Tian et al., 2020) which raises
the question of whether a good embedding is enough for achieving good few-shot learning
performance. However, this could also indicate that the few-shot benchmarks such as Mini-
ImageNet (Vinyals et al., 2016; Ravi and Larochelle, 2017), TieredImageNet (Ren et al.,
2018), and CUB (Wah et al., 2011) are not challenging enough because test examples come
from the same dataset as the one used for training.

Related competitions and benchmarks This competition is part of an established
series of competitions such as the AutoML competition series (Guyon et al., 2019), the Au-
toDL competition series (Liu et al., 2021), the AutoCV competition series and the MetaDL
competition series (El Baz et al., 2021). This competition is an extension to our previous
hosted competition in the MetaDL series (El Baz et al., 2021). It challenges participants
with a more challenging set of datasets, that were specifically designed for this challenge.

The Open Algorithm Selection Competition (OASC) is a competition that is closely re-
lated to meta-learning (Lindauer et al., 2017, 2019). In that competition, for a given dataset,
an appropriate algorithm needs to be selected. While several machine learning datasets are
present in the competition, it focuses also on algorithm selection beyond machine learning
(e.g., MIP and SAT).

Meta-dataset is another notable benchmark used for few-shot learning. It is a collection
of 10 datasets that are commonly used in few-shot learning (Triantafillou et al., 2020). Our
competition setup with various datasets is partly inspired by this initiative.
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Statnikov, Wei-Wei Tu, and Evelyne Viegas. Analysis of the AutoML Challenge Series
2015–2018, pages 177–219. Springer International Publishing, Cham, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In Proceedings of the
IEEE international conference on computer vision, pages 1026–1034, 2015.

Emily F. Brownlee Heidi M. Sosik, Emily E. Peacock. Annotated plankton images - data set
for developing and evaluating classification methods., 2015. URL https://hdl.handle.

net/10.1575/1912/7341.

4

https://www.csc.kth.se/cvap/databases/kth-tips/index.html
https://hdl.handle.net/10.1575/1912/7341
https://hdl.handle.net/10.1575/1912/7341


Supplementary Material for Lessons learned from the NeurIPS 2021 MetaDL challenge

Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-learning
in neural networks: A survey. IEEE Transactions on Pattern Analysis & Machine Intel-
ligence, 2021.

Jui-Ting Huang, Jinyu Li, Dong Yu, Li Deng, and Yifan Gong. Cross-language knowledge
transfer using multilingual deep neural network with shared hidden layers. In 2013 IEEE
International Conference on Acoustics, Speech and Signal Processing, pages 7304–7308.
IEEE, 2013.
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