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Abstract

We consider a system of two nonlocal and nonlinear partial differential equations that
describe some aspects of yeast cell-cell communication. We study local and global existence
and uniqueness of solutions. We consider mild solutions and we perform bilinear and trilinear
fixed point arguments in suitable functional spaces.
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1 Introduction

Cell-cell communication is crucial for many biological phenomena such as cell migration, axon
guidance e.g. some cell-cell communication does not require direct cell-cell contact and is medi-
ated by a pheromone that diffuses into the intercellular space and binds to receptors on the cell
surface. In this work we study two models, initially introduced in [15, 16, 5, 7, 8], that describe
some aspects of single yeast cell polarization and cell-cell communication in the context of yeast
mating. The first model describes the polarization of a single cell subjected to a pheromone
concentration ∂tn(t, x) = D∂xxn(t, x) + ∂x

(
χ ∗ nH

(
Sn
))

(t, x),

n(0, x) = n0(x).

(1.1)

Here χ, S, n : [0,+∞[×R −→ R are real valued functions, H is the Hilbert transform defined

in the Fourier level by the formula Ĥ(f)(ξ) = −i ξ|ξ| f̂(ξ), D > 0 is the diffusion coefficient,
n0 : R −→ R and ∗ is the usual convolution product.

Briefly, the main assumptions leading to (1.1) are the following: the cell is represented by
the half-space H = R×]0,+∞[ and its membrane is the real line. We denote by n(t, x) the
concentration of proteins (or markers) involved in the polarization process (e.g. Cdc42 protein)
that are trapped at the boundary. The nonlocal nonlinearities in (1.1) describe positive feedback
loops involved in the dynamics of polarization markers: molecular markers not only diffuse in the
cytoplasm of the cell, but are also actively transported by molecular motors along the filaments
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of the cytoskeleton, whose dynamic organization is regulated by the markers themselves, by an
external signal noted S. Moreover in (1.1) the function χ accounts for the mobility (depending
on time and space) of the membrane markers to describe mobile surface polarity patch and for
the yeast cell cycle [14].

When χ and S are constant, it is known that (1.1) exhibits pattern formation (either a blow-
up or a convergence to a non-homogeneous steady state) under certain conditions, see [6, 4].
Our goal here is to extend the well-posedness study to the case where χ and S are functions of
space and time.

Next, following ideas given in [15, 7, 8], we study the well-posedness of the coupled system
that allows to describe some aspects of cell-cell communication:

∂tn1(t, x) = D1∂xxn1(t, x) + ∂x
(
χ1 ∗ n1H

(
S2n1

))
(t, x),

∂tn2(t, x) = D2∂xxn2(t, x) + ∂x
(
χ2 ∗ n2H

(
S1n2

))
(t, x),

n1(0, x) = n1,0(x) and n2(0, x) = n2,0(x),

(1.2)

where n1, n2, χ1, χ2 : [0,+∞[×R −→ R are real valued functions, Di > 0 are the diffusion
coefficients, the functions S1, S2 are given by the expression

S1(t, x) = K1 ∗ n1(t, x) and S2(t, x) = K2 ∗ n2(t, x), (1.3)

with K1,K2 belonging to L2(R) and depending on the distance h between the two cell mem-
branes see Figure 1.

In short, in (1.2) – (1.3) the two cell membranes are modeled as two parallel lines separated by
a distance h from each other (see Figure 1 below). On each cell membrane, proteins, with density
ni(t, x), can either diffuse freely or be actively transported to regions with high concentrations
of protein and external signal (Si) produced by the opposite cell type. Moreover, space and time
variable mobilities (χi) serve both as sites of pheromone secretion and pheromone perception.
We refer to Section 2 for a detailed presentation of the model with biological motivations.

Figure 1: Tangential model for the communication between two cells

Note that the total molecular contents, Mi :=

∫
R
ni(t, x) dx, are conserved for each cell in

(1.2) and also in (1.1).

The mathematical question which arises in this class of models is to determine which contri-
bution will dominate, either aggregation by directed chemoattraction or dispersion by stochastic
diffusion. Before stating our results, let us briefly comment the literature. When χ and S are
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constant, the problem (1.1) is similar to the Modified Keler-Segel (MKS) [6]. In such a case,
it was proved that above a critical value of χ or S some singularity occurs (so called blow-up).
This dichotomy between concentration of the solution vs. self-similar decay is analogous to the
classical Keller-Segel equation for chemotaxis [2]. The aforementioned works deal with only one
density (of proteins or attracting cells) and with constant coefficients χ and S.

In terms of modeling, the polarization of a cell occurs when a singularity appears in (1.1).
In this case, the membrane markers concentrate in one small region, which is the signature of
polarization. Similarly, a necessary condition for a dialogue between cells to take place (leading
to the mating between the two cells) is the appearance of a singularity in (1.2). In this work,
we perform a mathematical analysis of (1.1) and (1.2) which provides criteria to prevent cell
polarization and dialogue between cells. These criteria depend on the biological ingredients of
the model (χi, Si, Ki) and correspond to the biological observations. This mathematical analy-
sis is a first step towards a better understanding of the strategy that use yeast cells during pairing.

In the present work we first study local well-posedness for (1.1) for general functions χ ∈
L∞t (L1

x) and S ∈ L∞t (L∞x ). For simplicity, we assume that D = 1 in (1.1). To do so, we consider
mild solutions (via the Duhamel formula) in appropriate functional spaces, and although many
different functional spaces can be considered, for simplicity, we work in Lebesgue and Sobolev
spaces (see Section 3 below for precise definitions).

Theorem 1 (Local in time mild solutions for (1.1)). Assume n0 ∈ L2(R), χ ∈ L∞t (L1
x) and

S ∈ L∞t (L∞x ). Equation (1.1) admits a unique mild solution in L∞([0, T0], L2(R)), with T0 > 0,
of the form

n(t, x) = ht ∗ n0(x) +

∫ t

0
ht−s ∗

[
∂x

(
χ ∗ nH

(
Sn
))]

(s, x) ds, (1.4)

where ht is the one-dimensional heat kernel.

Next, we show that some local well-posedness results can be extended to the system (1.2)
– (1.3). For simplicity, again, we assume that Di = 1 in (1.2). To do so, define the vectorial
quantities

~θ0(x) =

[
n1,0(x)
n2,0(x)

]
and ~θ(t, x) =

[
n1(t, x)
n2(t, x)

]
, (1.5)

~S
[~θ]

(t, x) =

[
χ1 ∗ n1H(S2n1)

χ2 ∗ n2H(S1n2)

]
(t, x). (1.6)

The system (1.2) can be rewritten as
∂t~θ(t, x) = ∂xx~θ(t, x) + ∂x~S[~θ]

(t, x),

~θ(0, x) = ~θ0(x),

(1.7)

whose integral (vectorial) representation is (via Duhamel’s formula):

~θ(t, x) = ht ∗ ~θ0(x) +

∫ t

0
ht−s ∗ ∂x~S[~θ]

(s, x) ds. (1.8)

Theorem 2 (Local in time mild solutions for system (1.8)). Assume ~θ0 ∈ L2(R), χ1, χ2 ∈
L∞t (L1

x) and K1,K2 ∈ L2(R). There exists a time T0 > 0 such that equation (1.8) admits a mild
solution ~θ(t, x) in L∞([0, T0], L2(R)).
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Remark 1.1. In Theorem 1, the existence time T0 depends on the L2 norm of the initial data
and of the L∞ norm of S (see (4.32)). In Theorem 2, it depends on the L2 norms of the initial
data and the kernels K1,K2 that define the functions S1, S2 (see (4.35)).

To obtain global solutions we still look for mild solutions via a Banach-Picard fixed point
algorithm. However, the space L∞t (L2

x) no longer seems to be suitable for this new purpose.
Instead, we consider the functional space E = L∞t (L2

x) ∩L2
t (Ḣ

1
x) which captures different infor-

mation using homogeneous Sobolev spaces (see Section 3 below for a precise definition of this
space).

Theorem 3 (Global Existence for the bilinear equation (1.1)). Assume n0 ∈ L2(R), χ ∈
L2([0,+∞[, L2(R)) and S ∈ L∞([0,+∞[, L∞(R)). There exists a small positive constant C such
that if

‖n0‖L2‖χ‖L2
t (L2

x)‖S‖L∞t (L∞x ) ≤ C, (1.9)

then system (1.1) admits a unique global mild solution in L∞([0,+∞], L2(R))∩L2([0,+∞], Ḣ1(R))
of the form

n(t, x) = ht ∗ n0(x) +

∫ t

0
ht−s ∗

[
∂x

(
χ ∗ nH

(
Sn
))]

(s, x) ds. (1.10)

Theorem 4 (Global existence for the trilinear system (1.2)). Assume ~θ0 ∈ L2(R), χ1, χ2 ∈
L2([0,+∞[, L2(R)) and K1,K2 ∈ L2(R). There exists a small positive constant C such that if

‖~θ0‖2L2(‖χ1‖L2
t (L2

x)‖K1‖L2 + ‖χ2‖L2
t (L2

x)‖K2‖L2) < C, (1.11)

then (1.2) has a unique global mild solution in the space L∞([0,+∞], L2(R))∩L2([0,+∞], Ḣ1(R)).

Let us make a few comments. In Theorems 1 and 2, we use a fixed point argument and if
we consider very large initial data, then the existence time will be very small. In Theorems 3
and 4, although based on the same general arguments, no relation between the size of the initial
data and the existence time is necessary. Thus, under these conditions global solutions can be
considered, but only for small initial data. To the best of our knowledge, the existence of global
in time mild solutions with large initial data is out of reach for the moment.

Apart from the two cases mentioned here, we leave the existence of mild solutions, and in
particular blow-up criteria, for problems (1.1) and (1.2) – (1.3) as open problems and we refer
to [8] for preliminary answers for classical solutions.

The present paper is organized as following. In Section 2, we recall the biological justifications
of (1.1) and (1.2) – (1.3). In Section 3 we give some notations and results that will be used in
the proofs. In Section 4 we prove Theorems 1 and 2. In Section 5 we prove Theorems 3 and 4.

2 Model construction

In this section we recall the biological justification of equation (1.1) in the context of yeast cell
polarization. Next, we detail the construction of the coupled model (1.2) – (1.3).

2.1 A validated model for the polarization of yeast cells

Cell polarization is the process by which a cell transitions from a spherically symmetric shape
to a state with a preferred axis [1, 17, 16, 19, 20]. The molecular pathways involved in cell
polarization have been studied experimentally in some detail over the past decade, see [14]
for a recent review in the context of yeast cell mating. The results suggest that the small
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GTPase Cdc42 and its scaffold, the Bem1 protein, are involved during the polarization process.
Moreover, it is known [22, 16], that the dynamics of Cdc42 depend on the dynamics of the
cytoskeleton filaments. The cellular cytoskeleton is a network of long semi-flexible filaments
made of protein subunits [18]. These filaments (mainly actin or microtubules) act as roads
along which motor proteins are able to perform biased ballistic movement and transport various
molecules, in a process that consumes the chemical energy of adenosine triphosphate (ATP).

In [22], it has been proposed that yeast polarization relies on a positive feedback loop in the
dynamics of polarity markers, which is mediated by the actin cytoskeleton. It has been shown
that polarity markers (Cdc42 proteins) activate actin filament polymerization when adsorbed
on the cell membrane, so that active transport along filaments pointing to Cdc42 -enriched
regions is promoted in the cell cytoplasm. The positive feedback loop then results from the fact
that the Cdc42 markers themselves are actively transported into the cytoplasm, and are thus
preferentially directed to the high concentration regions.

According to the previous considerations, in [15, 5, 16, 7], a model based on partial differential
equation was used and studied to describe yeast polarization. Suppose the cell is represented
by the half-space H = R×]0,+∞[ with x = (x, y) as spatial variable. Denote by ν(t,x) the
concentration in the cytoplasm of proteins (or markers) involved in cell polarization, by n(t, x)
the concentration of proteins trapped at the boundary and by c(t,x) the density of actin filaments
in the cytoplasm of the cell. The model first introduced in [5] and validated in [16] is:

∂tν(t,x) = D∆ν(t,x)− χ∇ · (ν(t,x)∇c(t,x)) , t > 0 , x ∈ H , (2.12)

completed by the flux boundary condition:

D∂yν(t, x, 0)− χν(t, x, 0)∂yc(t, x, 0) = −∂tn(t, x) , x ∈ R , (2.13)

where χ > 0.
Furthermore, the dynamic exchange of markers at the boundary occurs with an attachment

rate kon and a detachment rate koff, hence the time evolution of n(t, x) is

∂tn(t, x) = kon ν(t, x, 0)− koff µ(t, x) . (2.14)

In this model, the advection, that is χ∇c, describes the active transport of proteins along actin
filaments. The nucleation of new filaments is assumed to occur at the cell boundary, under the
combined action of molecules trapped on the boundary and external pheromone molecules with
density S. After a dimensional analysis, the model that describes the density of actin filaments
is {

−∆c(t,x) = 0, x ∈ H ,

∂zc(t, x, 0) = S(t, x)µ(t, x), x ∈ R .
(2.15)

2.2 Heuristic justification of the use of the Hilbert transform in (1.1)

The Hilbert transform of a function f ∈ Lp(R), 1 ≤ p < +∞ is defined as the Cauchy principle
value integral [21]

H(f)(x) =
1

π
p.v.

∫
R

f(y)

x− y
dy . (2.16)

Obviously, the integral (2.16) exists for almost all x. We define the function P by

P (x) =
1

π

1

x2 + 1
∀x ∈ R ,

and the Poisson kernel by

Pε(x) =
1

ε
P
(x
ε

)
, (2.17)
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with ε > 0. Since ‖P‖L1(R) = ‖Pε‖L1(R) = π, the family (Pε)ε is an approximation of the unity.
The conjugate Qy is defined by

∀(x, y) ∈ R× R+ , Qy(x) =
1

y
Q

(
x

y

)
, (2.18)

with

Q(x) =
1

π

x

x2 + 1
∀x ∈ R .

As usual, S(R) is the Schwartz space function, defined as the space of all functions f ∈ C∞(R)
such that

∀(α, β) ∈ N2 , sup
x∈R
|xαf (β)(x)| < +∞ ,

and S ′(R) denotes its dual space.

Theorem 5 (Stein [21], Chapter III). The convergence holds

Qy → H in S ′ as y → 0 .

The link between the Hilbert transform and the conjugate of the Poisson kernel explains
why, in (2.15) the passage from the normal derivative of c at z = 0 to its tangential derivative
at z = 0, involves the Hilbert transform.

Lemma 2.1. The solution of (2.15) is

c(t, x, z) = − 1

π

∫
x′∈R

log
(√

(x− x′)2 + z2
)
S(t, x′)n(t, x′) dx′ , (2.19)

and it holds that

∂xc(t, x, 0) = −H(Sn)(t, x) .

Proof. We first verify that such a function c is solution to (2.15). We compute

∂xc(t, x, z) = − 1

π

∫
x′∈R

x− x′

(x− x′)2 + z2
S(t, x′)n(t, x′) dx′

= − (Qz ∗ Sn(t, ·)) (x) ,

where Qz is defined by (2.18), and

∂xxc(t, x, z) = − 1

π

∫
x′∈R

−(x− x′)2 + z2

((x− x′)2 + z2)2S(t, x′)n(t, x′) dx′ .

Furthermore, recalling the definition of the Poisson kernel (2.17) we have

∂zc(t, x, z) = − 1

π

∫
x′∈R

z

(x− x′)2 + z2
S(t, x′)n(t, x′) dx′

= − (Pz ∗ Sn(t, ·)) (x) ,

and

∂zzc(t, x, z) = − 1

π

∫
x′∈R

(x− x′)2 − z2

((x− x′)2 + z2)2S(t, x′)n(t, x′) dx′ ,

hence

∆c(t, x, z) = 0 .
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Since the Poisson kernel is an approximation of the unity, we deduce

lim
z→0

∂zc(t, x, z) = ∂zc(t, x, 0) = lim
z→0

(−Pz ∗ Sn(t, ·)) (x) = −S(t, x)n(t, x) .

Using Theorem 5, it follows that

lim
z→0

∂xc(t, x, z) = ∂xc(t, x, 0) = lim
z→0

(−Qz ∗ Sn(t, ·)) (x) = −H(Sn)(t, x) .

Lemma 2.1 is thus proven.

In the supercritical case, i.e., numerical simulations [5, 3], suggest that the solution ν(t,x) of
(2.12) – (2.15) concentrates on the boundary {y = 0}. Assuming that ν(t, x, y) = n(t, x)δ(y = 0),
we can formally write the dynamics of n(t, x) as follows:

∂tn(t, x) = ∂xxn(t, x) + χ∂x (nH(Sn)) (t, x) t > 0 , x ∈ R . (2.20)

In this work we modify (2.20) into (1.1) in order to add a nonlocal effect.

2.3 Link between (1.1) and the MKS system

In the case where χ > 0 is a constant, there is a link between (2.20) and the so-called modified
Keller-Segel system [4] (MKS):

∂tn(t, x) = ∂xxn(t, x)− χ∂x (n(t, x)∂xc(t, x)) t > 0 , x ∈ R ,
c(t, x) = K ∗ n(t, x) t > 0 , x ∈ R ,
n(t = 0, x) = n0(x) x ∈ R ,

(2.21)

where ∗ is the usual convolution product and

K(z) = − 1

π
log |z| .

Lemma 2.2. If c = K ∗ n, then one has ∂xc = −H(n).

Proof. For all ε > 0, introduce cε by

∀x ∈ R , cε(x) =

∫
|x−y|>ε

K(y)c(x− y) dy .

We see that lim
ε→0

cε(x) = c(x). Moreover we can compute its spatial derivative

∀x ∈ R , ∂xcε(x) =

∫
|x−y|>ε

c(x− y)

y
dy ,

from which we deduce

∀x ∈ R , lim
ε→0

∂xcε(x) = − 1

π

(
p.v.

1

x
∗ c
)

(x) = −H(c)(x) = ∂xc(x) .

Using Lemma 2.2, we see that (2.21) rewrites as (1.1).
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2.4 Boundary model (1.2) – (1.3) for cell-cell communication

In nature, the budding yeast, Saccharomyces cerevisiae, exists in either the diploid or haploid
state with two possible types (a or α). Cells of both types secrete a certain pheromone (Sa or
Sα), see Figure 2, and carry a pheromone receptor to detect the pheromone produced by cells
of the opposite type, [10]. Following [15, 7], we study a model where the release of extracellular
pheromone (Sa or Sα) depends on the concentration of Cdc42 protein at the membrane. Fur-
thermore, in accordance with the biological literature, [12, 1, 19, 20, 14], we assume that the
pheromone contributes to the nucleation of new filaments at the membrane of the opposite type
cell, see Figure 2 below.

Figure 2: Model for yeast cell communication. On the left, yeast cells of both types secrete some pheromone
(a or α) and bear a pheromone receptor to detect the pheromone produced by the cells of the opposite type.
On the middle and on the right a two-dimensional model of protein dynamics inside each cell. The middle panel
shows a cell, the right a more detailed view. Actin is polymerized into short filaments, that interact with each
other and these are bundled together to form actin cables (which form the cytoskeleton) that cross the cell. The
nucleation of filaments is proportional to both the local density of Cdc42 (the proteins that are transported by
the cell cytoskeleton in each cell) and to the concentration of pheromone.

This additional level of pairwise cell communication leads to the following rectification of
the model (1.1): for the #i cell, we consider the advection field to be χiH(Sjνi) where Sj is
the concentration of pheromone produced by the cell of the opposite type j. Furthermore, to
describe the biological observations, we assume that Sj is produced by νj , which means that the
pheromone produced by the j-type cell is influenced by the activation level of the opposite cell.
Finally, we incorporate a damping factor depending on the intercellular distance. The model
consists of the following equations:

∂tνi(t, x) = ∂xxνi(t, x) + ∂x

(
νi(t, x)H (Sj(t, x, h)νi(t, x))

)
, (2.22)

for (t, x) ∈ R+ × R, i, j ∈ {1, 2} and j 6= i, with Sj satisfying the elliptic equation{
−∆Sj + λSj = 0 , on Ψ ,

∇Sj · ej = −νj , on Γj ,
(2.23)

where e1 = −e2 denotes the unit outward normal vector to Γj . The solution of (2.23) can be
explicitly computed: for all t > 0 and x ∈ R, one has

Sj(t, x, h) =
1

π

∫
R
F (
√

(x− x′)2 + h2) νj(t, x
′) dx′ , (2.24)

where F is the Bessel potential

F (r) =
1

4π

∫ +∞

0

e−λz−
r2

4z

z
dz . (2.25)
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3 Notations

We gather here some notation and some material that will be used in the sequel.

• If f : [0,+∞[×R −→ R is a real valued measurable function, for 1 ≤ p, q ≤ +∞ we
will denote by Lpt (L

q
x) the Lp(in time)-Lq(in space) Lebesgue space which is given by the

condition

‖f‖Lp
t (Lq

x) =

(∫ +∞

0
‖f(t, ·)‖pLq dt

) 1
p

< +∞,

with the usual modifications when p = +∞ or q = +∞.

• For t > 0, the heat kernel is given by the function ht(x) = 1√
4πt
e−
|x|2
4t for which we have

the estimates

‖∂kxht‖Lp ≤ Ct−
k+(1−1/p)

2 , (3.26)

with k ∈ N and 1 ≤ p ≤ +∞.

• The homogeneous Sobolev spaces Ḣ1(R) is given as the set of tempered distributions
(modulo polynomials) such that

‖f‖Ḣ1(R) = ‖∂xf‖L2 '
(∫

R
|ξ|2|f̂(ξ)|2 dξ

) 1
2

< +∞.

• The homogeneous Sobolev space Ḣ−1(R) can be defined by duality with respect to the
space Ḣ1(R), but it can also be characterized by the following condition in the Fourier
variable

‖f‖Ḣ−1(R) '
(∫

R
|ξ|−2|f̂(ξ)|2 dξ

) 1
2

< +∞.

4 Local Solutions

We study here local in time solutions for the equations (1.1) and (1.2) and for this we will consider
mild solutions (via the Duhamel formula) in suitable functional spaces. Although many different
functional spaces can be considered, for the sake of simplicity we will work in the space L∞t (L2

x).

4.1 Proof of Theorem 1.

Here we study the existence of local Solutions for the bilinear system (1.1). Let us recall that
the Banach-Picard fixed point theorem allows us to obtain a solution to equations of the form

n = e0 +B(n, n), (4.27)

where e0 is an initial data and B(·, ·) is a bilinear application. Indeed, if we fix a Banach space
(E, ‖ · ‖E) and if we have the estimates

‖e0‖E ≤ δ, ‖B(n, n)‖E ≤ CB‖n‖E‖n‖E , (4.28)

then we only need to verify the condition

δ <
1

4CB
, (4.29)
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to obtain a unique solution of the equation (4.27). See [11, Theorem 5.1] for a proof of this
bilinear version of the Banach-Picard fixed point theorem.

In the particular case of equation (1.4) above -which is already in the form of equation (4.27)-
we will consider the Banach space E = L∞([0, T ], L2(R)) endowed with the norm

‖f‖L∞t (L2
x) = sup

0<t<T
‖f(t, ·)‖L2 ,

thus we first need to prove that we have the estimates (4.28) and then, if we have the condition
(4.29), we will obtain a solution of equation (1.4).

Let us start with the initial data. If we denote by e0 the quantity ht ∗ n0(x), then by the
Young inequalities for convolution we can write

‖ht ∗ n0‖L2 ≤ ‖ht‖L1‖n0‖L2 = ‖n0‖L2 ,

since ‖ht‖L1 = 1 and from this uniform in time estimate we obtain

‖ht ∗ n0‖L∞t (L2
x) = sup

0<t<T
‖ht ∗ n0‖L2 ≤ ‖n0‖L2 < +∞. (4.30)

For the second term of equation (1.4), let us write

B(n, n) =

∫ t

0
ht−s ∗

[
∂x

(
χ ∗ nH

(
Sn
))]

(s, x) ds,

it is easy to see that the quantity B(·, ·) is bilinear and we have

‖B(n, ν)‖L∞t (L2
x) = sup

0<t<T

∥∥∥∥∫ t

0
ht−s ∗

[
∂x

(
χ ∗ nH

(
Sν
))]

(s, ·) ds

∥∥∥∥
L2

,

and by the Young inequalities for convolution we can write

‖B(n, ν)‖L∞t (L2
x) ≤ sup

0<t<T

∫ t

0

∥∥∥∥∂xht−s ∗ (χ ∗ nH(Sν))(s, ·)
∥∥∥∥
L2

ds

≤ sup
0<t<T

∫ t

0
‖∂xht−s‖L2‖χ ∗ nH

(
Sν
)
(s, ·)‖L1 ds,

since by (3.26) we have ‖∂xht−s‖L2 ≤ C(t− s)−
3
4 , by the Hölder and Young inequalities we can

write

‖B(n, ν)‖L∞t (L2
x) ≤ C sup

0<t<T

∫ t

0
(t− s)−

3
4 ‖χ(s, ·)‖L1‖n(s, ·)‖L2‖H

(
Sν
)
(s, ·)‖L2 ds

≤ C sup
0<t<T

∫ t

0
(t− s)−

3
4 ‖χ(s, ·)‖L1‖n(s, ·)‖L2‖(Sν)(s, ·)‖L2 ds,

where in the last estimate we used the fact that the Hilbert transform H is a bounded operator
in the Lebesgue space L2(R). Next we write

‖B(n, ν)‖L∞t (L2
x)

≤ C‖χ‖L∞t (L1
x)‖n‖L∞t (L2

x)‖S‖L∞t (L∞x )‖ν‖L∞t (L2
x) sup

0<t<T

∫ t

0
(t− s)−

3
4 ds

≤ CT
1
4 ‖χ‖L∞t (L1

x)‖S‖L∞t (L∞x )‖n‖L∞t (L2
x)‖ν‖L∞t (L2

x). (4.31)
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Now, with the estimates (4.30) and (4.31) if the following condition is satisfied

‖n0‖L2 <
1

4CT
1
4 ‖χ‖L∞t (L1

x)‖S‖L∞t (L∞x )

,

we obtain a unique solution of the equation (1.10). Thus, as long as we have

T <
1(

C‖n0‖L2‖χ‖L∞t (L1
x)‖S‖L∞t (L∞x )

)4 , (4.32)

we have the existence and the uniqueness of the solution of this problem.

4.2 Proof of Theorem 2

Here, we study the existence of local solutions for the trilinear system (4.34). For the sake of
completeness we state and proof a variant of the Banach-Picard fixed point theorem which will
give us a suitable framework in order to study a trilinear problem.

Theorem 6 (Trilinear Banach-Picard fixed point). Let (E, ‖·‖E) be a Banach space et consider
B : E × E × E −→ E a bounded trilinear application:

‖B(e, f, g)‖E ≤ CB‖e‖E‖f‖E‖g‖E . (4.33)

If e0 ∈ E is such that ‖e0‖E ≤ δ and if 0 < δ2 < 1
12CB

, then the equation

e = e0 +B(e, e, e), (4.34)

admits a unique solution e ∈ E such that ‖e‖E ≤ 2δ.

Proof. From the initial data e0 we write

en+1 = e0 +B(en, en, en),

and let us prove that ‖en+1‖E ≤ 2δ. This is true for e0 and assume that ‖en‖E ≤ 2δ, thus by
the boundedness of B(·, ·, ·) given in (4.33) we have

‖en+1‖E ≤ ‖e0‖E + ‖B(en, en, en)‖E ≤ ‖e0‖E + CB‖en‖3E ≤ δ + 8CBδ
3,

but since we have 8CBδ
2 < 12CBδ

2 < 1, we can write

‖en+1‖E ≤ δ + 8CBδ
3 = δ + (8CBδ

2)δ ≤ 2δ,

and we have proven that for all n ≥ 1, the element en belongs to B(0, 2δ).

We will prove now that we can obtain a solution e when n → +∞ and we study en+1 − en
and using the trilinearity of the application B(·, ·, ·) we have:

‖en+1 − en‖E = ‖(e0 +B(en, en, en))− (e0 +B(en−1, en−1, en−1))‖E
= ‖B(en, en, en)−B(en−1, en−1, en−1)‖E
= ‖B(en − en−1, en, en) +B(en−1, en − en−1, en−1)

+B(en−1, en, en − en−1)‖E
≤ ‖B(en − en−1, en, en)‖E + ‖B(en−1, en − en−1, en−1)‖E

+‖B(en−1, en, en − en−1)‖E ,

11



using now the boundedness of the application B(·, ·, ·, ) we can write

‖en+1 − en‖E ≤ CB‖en − en−1‖E‖en‖E‖en‖E + CB‖en−1‖E‖en − en−1‖E‖en−1‖E
+Cn‖en−1‖E‖en‖E‖en − en−1‖E ,

and since we have ‖en−1‖E ≤ 2δ and ‖en‖E ≤ 2δ, we obtain

‖en+1 − en‖E ≤ 12CBδ
2‖en − en−1‖E ,

thus, by iteration we have

‖en+1 − en‖E ≤
(
12CBδ

2
)n ‖e1 − e0‖E ,

but since 12CBδ
2 < 1, we have

lim
n→+∞

‖en+1 − en‖E = 0,

and thus the sequence (en)n∈N converges to a point e in E which satisfies the equation (4.34).
Unicity is granted as we are working in a Banach space.

In order to apply the previous theorem to the system (1.2) we use the vectorial quantities

~θ0(x), ~θ(t, x) and ~S
[~θ]

(t, x) defined by (1.5) and (1.6). Recall that if ~a(t, x) =

[
a1(t, x)
a2(t, x)

]
is a

vector, then we will say that ~a ∈ L∞t (L2
x) if

‖~a‖L∞t (L2
x) =

∥∥(|a1|+ |a2|)
∥∥
L∞t (L2

x)
< +∞.

Note in particular that we always have the estimate ‖aj‖L∞t (L2
x) ≤ ‖~a‖L∞t (L2

x) for all j = 1, 2.

In order to apply Theorem 6 to the previous problem, we will consider its integral represen-
tation (Duhamel’s formula) given by (1.8):

~θ(t, x) = ht ∗ ~θ0(x) +

∫ t

0
ht−s ∗ ∂x~S[~θ]

(s, x) ds.

At this point, we remark that due to the definition of the terms S1 and S2 given in (1.3) we
actually have

~S
[~θ]

=

[
χ1 ∗ n1H(S2n1)

χ2 ∗ n2H(S1n2)

]
=

[
χ1 ∗ n1H

(
(K2 ∗ n2)n1

)
χ2 ∗ n2H

(
(K1 ∗ n1)n2

)] ,
which is of the form: [

χ1 ∗ e1H
(
(K2 ∗ f2)g1

)
χ2 ∗ e2H

(
(K1 ∗ f1)g2

)] = B
(
~e, ~f,~g),

where the quantity B(·, ·, ·) is trilinear and thus the whole integral in (1.8) is itself a trilinear
application, thus this equation is of the form (4.34) and we are in the setting of the Theorem 6.

Proof of Theorem 2. Following Theorem 6, we will first prove the estimates

• for the initial data:
‖ht ∗ ~θ0‖L∞t (L2

x) ≤ ‖~θ0‖L2 ,

• for the trilinear term:∥∥∥∥∫ t

0
ht−s ∗ ∂x~S[~θ]

(s, ·) ds

∥∥∥∥
L∞t (L2

x)

≤ CB‖~θ‖3L∞t (L2
x),

where CB way depend on the kernels K1,K2 and on the time variable.
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Indeed, for the initial data we readily have

‖ht ∗ ~θ0‖L∞t (L2
x) ≤ ‖ht‖L1‖~θ0‖L2 = ‖~θ0‖L2 .

For the trilinear term we write

∥∥∥∥∫ t

0
ht−s ∗ ∂x~S[~θ]

(s, ·) ds

∥∥∥∥
L∞t (L2

x)

= sup
0<t<T

∥∥∥∥∫ t

0
∂xht−s ∗ ~S[~θ]

(s, ·) ds

∥∥∥∥
L2

≤ sup
0<t<T

∫ t

0
‖∂xht−s‖L2‖~S[~θ]

(s, ·)‖L1 ds,

and since ‖∂xht−s‖L2 ≤ C(t− s)−
3
4 by (3.26), we have

∥∥∥∥∫ t

0
ht−s ∗ ∂x~S[~θ]

(s, ·) ds

∥∥∥∥
L∞t (L2

x)

≤ C sup
0<t<T

∫ t

0
(t− s)−

3
4

(
‖χ1 ∗ n1H

(
(K2 ∗ n2)n1

)
(s, ·)‖L1

+‖χ2 ∗ n2H
(
(K1 ∗ n1)n2

)
(s, ·)‖L1

)
ds.

Next, by the Hölder and the Young inequalities it comes:

∥∥∥∥∫ t

0
ht−s ∗ ∂x~S[~θ]

(s, ·) ds

∥∥∥∥
L∞t (L2

x)

≤ C sup
0<t<T

∫ t

0
(t− s)−

3
4

(
‖χ1(s, ·)‖L1‖n1(s, ·)‖L2‖H

(
(K2 ∗ n2)n1

)
(s, ·)‖L2

+‖χ2(s, ·)‖L1‖n2(s, ·)‖L2‖H
(
(K1 ∗ n1)n2

)
(s, ·)‖L2

)
ds,

we use now the boundedness of the Hilbert transform H in the Lebesgue spaces L2 to write

∥∥∥∥∫ t

0
ht−s ∗ ∂x~S[~θ]

(s, ·) ds

∥∥∥∥
L∞t (L2

x)

≤ C sup
0<t<T

∫ t

0
(t− s)−

3
4

(
‖χ1(s, ·)‖L1‖n1(s, ·)‖L2‖(K2 ∗ n2)n1(s, ·)‖L2

+‖χ2(s, ·)‖L1‖n2(s, ·)‖L2‖(K1 ∗ n1)n2(s, ·)‖L2

)
ds

≤ C sup
0<t<T

∫ t

0
(t− s)−

3
4

(
‖χ1(s, ·)‖L1‖n1(s, ·)‖L2‖K2 ∗ n2(s, ·)‖L∞‖n1(s, ·)‖L2

+‖χ2(s, ·)‖L1‖n2(s, ·)‖L2‖K1 ∗ n1(s, ·)‖L∞‖n2(s, ·)‖L2

)
ds.
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Applying the Young inequalities in the convolutions above we obtain∥∥∥∥∫ t

0
ht−s ∗ ∂x~S[~θ]

(s, ·) ds

∥∥∥∥
L∞t (L2

x)

≤ C sup
0<t<T

∫ t

0
(t− s)−

3
4

(
‖χ1(s, ·)‖L1‖n1(s, ·)‖L2‖K2‖L2‖n2(s, ·)‖L2‖n1(s, ·)‖L2

+‖χ2(s, ·)‖L1‖n2(s, ·)‖L2‖K1‖L2‖n1(s, ·)‖L2‖n2(s, ·)‖L2

)
ds

≤ C

(
‖χ1‖L∞t (L1

x)‖n1‖2L∞t (L2
x)‖n2‖L∞t (L2

x)‖K2‖L2

+‖χ2‖L∞t (L1
x)‖n2‖2L∞t (L2

x)‖n1‖L∞t (L2
x)‖K1‖L2

)
× sup

0<t<T

∫ t

0
(t− s)−

3
4 ds.

Moreover, since ‖n1‖L∞t (L2
x) ≤ ‖~θ‖L∞t (L2

x) and ‖n2‖L∞t (L2
x) ≤ ‖~θ‖L∞t (L2

x), we finally have∥∥∥∥∫ t

0
ht−s ∗ ∂x~S[~θ]

(s, ·) ds

∥∥∥∥
L∞t (L2

x)

≤ CT
1
4

(
‖χ1‖L∞t (L1

x)‖K1‖L2 + ‖χ2‖L∞t (L1
x)‖K2‖L2

)
‖~θ‖3L∞t (L2

x),

where, as announced CB = CT
1
4 (‖χ1‖L∞t (L1

x)‖K1‖L2 + ‖χ2‖L∞t (L1
x)‖K2‖L2).

Thus, to conclude, we only need to impose the condition

‖~θ0‖2L2 <
1

12CT
1
4 (‖χ1‖L∞t (L1

x)‖K1‖L2 + ‖χ2‖L∞t (L1
x)‖K2‖L2)

,

which can be rewritten as

T <
1(

C‖~θ0‖2L2

(
‖χ1‖L∞t (L1

x)‖K1‖L2 + ‖χ2‖L∞t (L1
x)‖K2‖L2

))4 , (4.35)

and this achieves the proof.

Remark 4.1. It is worth noting here that the conditions (4.32) and (4.35) allow us to consider
large initial data (n0 or ~θ0), large functions χi and large kernels (Si or Ki) in the L2-sense.
The price to pay is a corresponding potentially very small time of existence.

Remark 4.2. Other (and much more general) functional spaces can be considered here such
as Morrey spaces or Besov/Triebel-Lizorkin spaces and we do not claim any optimality of our
results.

The method displayed to prove Theorems 1 and 2 can not treat the case of simultaneous large
data and large times of existence, and without an a priori information on the L∞t (L2

x) norm it
seems hard to extend in time these local solutions. However, if we change the framework and
we assume some smallness condition on the data, then it is possible to obtain global results as
it is explained in the next section.
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5 Global Solutions

We study now global in time solutions for the previous equations (1.1) and (1.2). To do so, we
will consider a slightly different approach. Indeed, although we are still looking for mild solutions
via a Banach-Picard fixed point algorithm, the space L∞t (L2

x) does not seem well suited for this
purpose. Instead, we will consider a smaller functional space E = L∞t (L2

x) ∩ L2
t (Ḣ

1
x) which

captures more regularity information. This space L∞t (L2
x) ∩ L2

t (Ḣ
1
x) can be endowed with the

norm

‖f‖E = ‖ · ‖L∞t (L2
x) + ‖ · ‖L2

t (Ḣ1
x) = sup

t>0
‖f(t, ·)‖L2 +

(∫ +∞

0
‖f(t, ·)‖2

Ḣ1 dt

) 1
2

. (5.36)

In the next section, we first gather some classical inequalities on the norms ‖ · ‖E , ‖ · ‖L∞t (L2
x)

and ‖ · ‖L2
t (Ḣ1

x).

5.1 Useful estimates

Lemma 5.1. If f ∈ L2(R) then ht ∗ f ∈ L2([0,+∞[, Ḣ1(R)) and we have

‖ht ∗ f‖L2
t (Ḣ1

x) ≤ C‖f‖L2 .

Proof. By the Plancherel formula and the Fubini theorem, we have

‖ht ∗ f‖2L2
t (Ḣ1

x)
'
∫ +∞

0

∫
R
|ξ|2e−2t|ξ|2 |f̂(ξ)|2 dξ dt =

∫
R

∫ +∞

0
|ξ|2e−2t|ξ|2 |f̂(ξ)|2 dt dξ.

Set τ = 2t|ξ|2, then

‖ht ∗ f‖2L2
t (Ḣ1

x)
' 1

2

∫
R

∫ +∞

0
e−τ |f̂(ξ)|2 dτ dξ =

1

2
‖f̂‖2L2 ,

from which the result follows.

Define

F (t, x) =

∫ t

0
ht−s ∗ f(s, x) ds.

Lemma 5.2. If f ∈ L2([0,+∞[, L2(R3)), then we have

‖∂xxF (·, ·)‖L2
t (L2

x) ≤ C‖f‖L2
t (L2

x).

This estimate is known as the maximal regularity of the heat kernel.

Proof. A general proof can be found in [11], but we give here the details for the sake of com-
pletness. Since we have

∂xxF (t, x) =

∫ t

0
∂xx[ht−s] ∗ f(s, x) ds,

taking the Fourier transform in the space variable, with a change of variables in the time variable,
it comes

Fx [∂xxF ] (t, ξ) =

∫ t

0
−|ξ|2e−(t−s)|ξ|2Fx [f ] (s, ξ) d

=

∫ t

0
−|ξ|2e−η|ξ|2Fx [f ] (t− η, ξ) dη.
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Setting f(t, x) = 0 if t < 0, we obtain

Fx [∂xxF ] (t, ξ) =

∫ +∞

0
−|ξ|2e−η|ξ|2Fx [f ] (t− η, ξ) dη,

taking now the Fourier transform in the time variable and by the Fubini theorem, we have

Ft,x [∂xxF ] (τ, ξ) =

∫ +∞

−∞

(∫ +∞

0
−|ξ|2e−η|ξ|2Fx [f ] (t− η, ξ) dη

)
e−itτ dt

=

∫ +∞

0
−|ξ|2e−η|ξ|2

(∫ +∞

−∞
Fx [f ] (t− η, ξ)e−itτ dt

)
dη

=

∫ +∞

0
−|ξ|2e−η|ξ|2

(
e−iητFt,x [f ] (τ, ξ)

)
dη

=
−|ξ|2

|ξ|2 + iτ
Ft,x [f ] (τ, ξ).

We remark now that the symbol −|ξ|2
|ξ|2+iτ

is bounded, and thus we can write

‖∂xxF‖L2
t (L2

x) ' ‖Ft,x [∂xxF ]‖L2
t (L2

x) =

∥∥∥∥ −|ξ|2|ξ|2 + iτ
Ft,x [f ]

∥∥∥∥
L2
t (L2

x)

≤ C‖f‖L2
t (L2

x),

which achieves the proof of the lemma.

Our last result concerns the norm ‖ · ‖E defined in (5.36).

Proposition 5.1. If f ∈ L2
(
[0,+∞[, Ḣ−1(R)

)
then we have the following estimate for the norm

‖ · ‖E given by (5.36): ∥∥∥∥∫ t

0
ht−s ∗ f(s, ·) ds

∥∥∥∥
E

≤ C‖f‖L2
t (Ḣ−1

x ).

Proof. By definition of the norm ‖ · ‖E we have∥∥∥∥∫ t

0
ht−s ∗ f(s, ·) ds

∥∥∥∥
E

=

∥∥∥∥∫ t

0
ht−s ∗ f(s, ·) ds

∥∥∥∥
L∞t (L2

x)︸ ︷︷ ︸
(a)

+

∥∥∥∥∫ t

0
ht−s ∗ f(s, ·) ds

∥∥∥∥
L2
t (Ḣ1

x)︸ ︷︷ ︸
(b)

. (5.37)

We start by the term (a) and we write∥∥∥∥∫ t

0
ht−s ∗ f(s, ·) ds

∥∥∥∥
L∞t (L2

x)

= sup
0≤t≤T

∥∥∥∥∫ t

0
ht−s ∗ f(s, ·) ds

∥∥∥∥
L2

.

By the L2 − L2 duality we obtain∥∥∥∥∫ t

0
ht−s ∗ f(s, ·) ds

∥∥∥∥
L2

= sup
‖φ‖L2≤1

∣∣∣∣∫
R

(∫ t

0
ht−s ∗ f(s, x) ds

)
φ(x) dx

∣∣∣∣
= sup

‖φ‖L2≤1

∣∣∣∣∫
R

∫ t

0

∫
R
ht−s(x− y)f(s, y)φ(x) dy dsdx

∣∣∣∣
= sup

‖φ‖L2≤1

∣∣∣∣∫ t

0

∫
R
ht−s ∗ φ(y)f(s, y) dy ds

∣∣∣∣ .
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Now, using the Ḣ1 − Ḣ−1 duality we can write∥∥∥∥∫ t

0
ht−s ∗ f(s, ·) ds

∥∥∥∥
L2

≤ sup
‖φ‖L2≤1

(∫ t

0
‖ht−s ∗ φ‖Ḣ1‖f(s, ·)‖Ḣ−1 ds

)
≤ ‖f‖L2

t (Ḣ−1
x ) sup
‖φ‖L2≤1

‖ht−s ∗ φ‖L2
t (Ḣ1

x),

where we used the Cauchy-Schwarz inequality in the time variable. Now using Lemma 5.1, we
have ‖ht−s ∗ φ‖L2

t (Ḣ1
x) ≤ ‖φ‖L2 , hence, we obtain∥∥∥∥∫ t

0
ht−s ∗ f(s, ·)ds

∥∥∥∥
L2

≤ C‖f‖L2
t (Ḣ−1

x ) sup
‖φ‖L2≤1

‖φ‖L2 ≤ C‖f‖L2
t (Ḣ−1

x ),

and from this uniform estimate in the time variable it follows∥∥∥∥∫ t

0
ht−s ∗ f(s, ·) ds

∥∥∥∥
L∞t (L2

x)

≤ C‖f‖L2
t (Ḣ−1

x ). (5.38)

We study now (b) and we write:∥∥∥∥∫ t

0
ht−s ∗ f(s, ·) ds

∥∥∥∥
L2
t (Ḣ1

x)

=

∥∥∥∥∫ t

0
ht−s ∗ (−∆x)

1
2 f(s, ·) ds

∥∥∥∥
L2
t (L2

x)

=

∥∥∥∥∫ t

0
ht−s ∗ ∂xx

[
(−∆x)−

1
2 f(s, ·)

]
ds

∥∥∥∥
L2
t (L2

x)

=

∥∥∥∥∂xx ∫ t

0
ht−s ∗

[
(−∆x)−

1
2 f(s, ·)

]
ds

∥∥∥∥
L2
t (L2

x)

,

where (−∆x)
1
2 is the one dimensional operator of symbol |ξ|. We apply now the maximal

regularity of the heat kernel given in Lemma 5.2 to obtain∥∥∥∥∂xx ∫ t

0
ht−s ∗

[
(−∆x)−

1
2 f(s, ·)

]
ds

∥∥∥∥
L2
t (L2

x)

≤ C
∥∥∥(−∆x)−

1
2 f
∥∥∥
L2
t (L2

x)
,

and we thus have ∥∥∥∥∫ t

0
ht−s ∗ f(s, ·) ds

∥∥∥∥
L2
t (Ḣ1

x)

≤ C‖f‖L2
t (Ḣ−1

x ). (5.39)

With estimates (5.38) – (5.39) and coming back to (5.37) we finally obtain:∥∥∥∥∫ t

0
ht−s ∗ f(s, ·) ds

∥∥∥∥
E

≤ C‖f‖L2
t (Ḣ−1

x ),

which ends the proof of the proposition.

5.2 Proof of Theorem 3.

With the results established in the previous sections, we can study the global existence for
the bilinear system (1.1). Considering the formulation (1.10) above, we will apply the same
arguments as in Theorem 1 (i.e. a fixed point argument) but using the functional space
E = L∞([0,+∞], L2(R)) ∩ L2([0,+∞], Ḣ1(R)) endowed with the norm ‖ · ‖E given in (5.36).
Thus, we have to prove the estimates (4.28) and (4.29) to obtain a solution. If the constants
involved in these estimates do not depend on the time variable, we will obtain global solutions
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in time.

Setting e0 = ht ∗ n0(x) and B(n, n) =

∫ t

0
ht−s ∗

[
∂x

(
χ ∗ nH

(
Sn
))]

(s, x) ds, we need to

prove:
‖e0‖E ≤ δ and ‖B(n, n)‖E ≤ CB‖n‖E‖n‖E . (5.40)

Moreover, if we have the condition

δ <
1

4CB
, (5.41)

then we obtain a unique solution of the problem (1.10) in the functional space E.

Let us start with the first estimate of (5.40). First, if n0 ∈ L2(R), we get

‖ht ∗ n0‖L2 ≤ ‖ht‖L1‖n0‖L2 = ‖n0‖L2 .

Moreover, by Lemma 5.1 we have ‖ht ∗ n0‖L2
t (Ḣ1

x) ≤ C‖n0‖L2 and we can thus write

‖ht ∗ n0‖E ≤ C1‖n0‖L2 . (5.42)

We study now the second estimate of (5.40) which is given by the quantity

‖B(n, n)‖E =

∥∥∥∥∫ t

0
ht−s ∗ ∂x

(
χ ∗ nH(Sn)

)
(s, x) ds

∥∥∥∥
E

.

Applying Proposition 5.1 we have∥∥∥∥∫ t

0
ht−s ∗ ∂x

(
χ ∗ nH(Sn)

)
(s, x) ds

∥∥∥∥
E

≤ C
∥∥∂x(χ ∗ nH(Sn)

)∥∥
L2
t (Ḣ−1

x )

= C‖χ ∗ nH(Sn)‖L2
t (L2

x).

Let us study the last quantity above in the space variable. We first see that

‖χ ∗ nH(Sn)(t, ·)‖L2 ≤ ‖χ(t, ·)‖L2‖n(t, ·)H(Sn)(t, ·)‖L1 ≤ ‖χ(t, ·)‖L2‖n(t, ·)‖L2‖H(Sn)(t, ·)‖L2 ,

hence, by the boundedness of the Hilbert transform in Lebesgue spaces together with the hy-
pothesis S(t, ·) ∈ L∞(R), we have

‖χ ∗ nH(Sn)(t, ·)‖L2 ≤ C‖χ(t, ·)‖L2‖n(t, ·)‖L2‖S(t, ·)‖L∞‖n(t, ·)‖L2 .

Taking the L2-norm in the time variable it yields

‖χ ∗ nH(Sn)‖L2
t (L2

x) ≤ C2‖χ‖L2
t (L2

x)‖S‖L∞t (L∞x )‖n‖L∞t (L2
x)‖n‖L∞t (L2

x).

Consequently, reconstructing the norm ‖ · ‖E given in (5.36), we get the estimate∥∥∥∥∫ t

0
ht−s ∗ ∂x

(
χ ∗ nH(Sn)

)
(s, x)) ds

∥∥∥∥
E

≤ CB‖n‖E‖n‖E , (5.43)

where CB = C2‖χ‖L2
t (L2

x)‖S‖L∞t (L∞x ). Now, from (5.42) and (5.43) if we have

C1‖n0‖L2 <
1

4C2‖χ‖L2
t (L2

x)‖S‖L∞t (L∞x )
,

then the condition (5.41) is fulfilled (by choosing carefully the constant C given in (1.9)) and
we can apply a fixed point argument to obtain a unique global solution since the time variable
does not intervene in the estimates.
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5.3 Proof of Theorem 4.

Here, we study global Solutions for the trilinear system (1.2). Following the idea given in formula
(1.8) above, we introduce the term

~S∗
[~θ]

(t, x) =

[
χ1 ∗ n1H(S2n1)

χ2 ∗ n2H(S1n2)

]
(t, x),

and with the variable ~θ defined in (1.5) the system (1.2) can be rewritten as

~θ(t, x) = ht ∗ ~θ0(x) +

∫ t

0
ht−s ∗ ∂x~S∗[~θ](s, x)) ds (5.44)

We are going to apply Theorem 6 in the functional space E = L∞([0,+∞], L2(R)) ∩
L2([0,+∞], Ḣ1(R)) and for this we need to establish the required inequalities.

For the initial data satisfying the estimate (5.42) we have

‖ht ∗ ~θ0‖L∞t (L2
x) ≤ ‖~θ0‖L2 and ‖ht ∗ ~θ0‖L2

t (Ḣ1
x) ≤ C‖~θ0‖L2 ,

hence
‖ht ∗ ~θ0‖E ≤ C1‖~θ0‖L2 . (5.45)

For the trilinear term we need to prove the following estimate∥∥∥∥∫ t

0
ht−s ∗ ∂x ~S∗

[
~

]
θ(s, ·)) ds

∥∥∥∥
E

≤ CB‖~θ‖3E , (5.46)

where CB may depend on the kernels K1,K2. By Proposition 5.1 we know that∥∥∥∥∫ t

0
ht−s ∗ ∂x ~S∗

[
~

]
θ(s, ·)) ds

∥∥∥∥
E

≤ ‖∂x ~S∗
[
~

]
θ‖L2

t (Ḣ−1
x ) ≤ ‖ ~S

∗
[
~

]
θ‖L2

t (L2
x).

Moreover, by definition, we have

‖ ~S∗
[
~

]
θ‖L2

t (L2
x) ≤ ‖χ1 ∗ n1H(S2n1)‖L2

t (L2
x) + ‖χ2 ∗ n2H(S1n2)‖L2

t (L2
x). (5.47)

For 1 ≤ i, j, k ≤ 2, let us now study the term ‖χi ∗niH(Sjnk)(t, ·)‖L2 . By the Young and Hölder
inequalities and by the boundedness of the Hilbert transform in Lebesgue spaces, we obtain

‖χi ∗ niH(Sjnk)(t, ·)‖L2 ≤ ‖χi(t, ·)‖L2‖ni(t, ·)‖L2‖H(Sjnk)(t, ·)‖L2

≤ C‖χi(t, ·)‖L2‖ni(t, ·)‖L2‖Sj(t, ·)nk(t, ·)‖L2

≤ C‖χi(t, ·)‖L2‖ni(t, ·)‖L2‖(Kj ∗ nj)(t, ·)nk(t, ·)‖L2 ,

where in the last line we used the fact that Sj(t, ·) = Kj ∗ nj(t, ·). Hence, we have

‖χi ∗ ni(t, ·)H(Sjnk)(t, ·)‖L2 ≤ C‖χi(t, ·)‖L2‖ni(t, ·)‖L2‖Kj ∗ nj(t, ·)‖L∞‖nk(t, ·)‖L2

≤ C‖χi(t, ·)‖L2‖ni(t, ·)‖L2‖Kj‖L2‖nj(t, ·)‖L2‖nk(t, ·)‖L2 ,

where we used the Young inequalities in the convolution above. Taking this inequality to the
power 2 and integrating in the time variable it comes:(∫ +∞

0
‖χi ∗ niH(Sjnk)(t, ·)‖2L2 dt

) 1
2

≤ C‖Kj‖L2‖ni‖L∞t (L2
x)‖nj‖L∞t (L2

x)‖nk‖L∞t (L2
x)

(∫ +∞

0
‖χi(t, ·)‖2L2 dt

) 1
2

,
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and

‖χi ∗ niH(Sjnk)‖L2
t (L2

x) ≤ C‖χi‖L2
t (L2

x)‖Kj‖L2‖ni‖L∞t (L2
x)‖nj‖L∞t (L2

x)‖nk‖L∞t (L2
x)

≤ C‖χi‖L2
t (L2

x)‖Kj‖L2‖θ‖E‖θ‖E‖θ‖E ,

where we used the definition of the quantity θ and of the norm ‖ · ‖E given in (5.36).

Thus, coming back to (5.47) we obtain

‖ ~S∗
[
~

]
θ‖L2

t (L2
x) ≤ C(‖χ1‖L2

t (L2
x)‖K1‖L2 + ‖χ2‖L2

t (L2
x)‖K2‖L2)‖θ‖E‖θ‖E‖θ‖E ,

which leads us to the wished inequality (5.46).

To conclude, with (5.45) and (5.46) at our disposal, following Theorem 6, if we have the
condition

‖~θ0‖2L2 <
1

12C(‖χ1‖L2
t (L2

x)‖K1‖L2 + ‖χ2‖L2
t (L2

x)‖K2‖L2)
,

we obtain a unique global solution for the problem (5.44).

6 Conclusion

The present paper considers two models to describe yeast cell polarization. In the first model
a single cell in a pheromone field is considered. In the second model a system of two coupled
equations is considered to describe the cell-cell communication for yeast cells of opposite types.
The models include the pheromone concentration (pheromone secretion and pheromone percep-
tion) and also a non-constant and nonlocal mobility coefficient, namely the χ function, which
describes the mobility of membrane polarity patch and the cell cycle [13, 14]. We provided
conditions under which global existence and uniqueness of solutions occur for these two models.
Physiologically, yeast cells mate when encountering a partner at close enough range in rich en-
vironments. Here, it was shown that even at close enough range and rich enough environment
(large values of ‖Ki‖L2) cells may not mate when the mobility is low or when one of the cells is
leaving the cycle window during which it can mate. Indeed, in such a case global existence might
hold true for the solution of the models studied here and then there will be neither polarization
nor dialogue. This is in good agreement with biological observations showing that polarization
of mating partners towards each other requires the spatial decoding of pheromone gradients,
relies on mobile polarity patches and is only possible during a certain period of the cell cycle
[13].

We believe this work is the first step towards modelling and understanding the key parameters
invoved during the polarization of mating partners towards each other. This represents an
important challenge. Future works would be to extend the results of this paper to find conditions
for which blow-up of the solution occurs and then to the case of two-dimensional geometry with
free boundary.
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