
HAL Id: hal-03688526
https://hal.science/hal-03688526

Submitted on 4 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Poly-Temporal Programming Environment for Live
Shows and Interactive Installations

Martin Fouilleul, Jean-Louis Giavitto, Jean Bresson

To cite this version:
Martin Fouilleul, Jean-Louis Giavitto, Jean Bresson. A Poly-Temporal Programming Environment
for Live Shows and Interactive Installations. Sound and Music Computing Conference (SMC), Jun
2022, Saint Etienne, France. �hal-03688526�

https://hal.science/hal-03688526
https://hal.archives-ouvertes.fr

A POLY-TEMPORAL PROGRAMMING ENVIRONMENT FOR LIVE
SHOWS AND INTERACTIVE INSTALLATIONS

Martin Fouilleul
Sorbonne UniversitÂe - STMS Ircam
martin.fouilleul@ircam.fr

Jean-Louis Giavitto
CNRS - STMS Ircam

jean-louis.giavitto@ircam.fr

Jean Bresson
Ableton, Berlin - STMS Ircam
jean.bresson@ircam.fr

ABSTRACT

In this paper we present Quadrant, a prototype program-
ming environment for designing and performing temporal
scenarios. Such scenarios can be used to trigger cues and
control various parameters of live shows and interactive
installations, such as audio and video playback, lights, or
mechatronics.

Quadrant features a structure editor operating on a syn-
tax tree that intermingles textual tokens and graphical user
interface elements. This allows specifying scenarios al-
gorithmically using a domain specific language, while ex-
pressing continuous time transformations with graphical
curves.

Quadrant uses an imperative synchronous language to ex-
press concurrent poly-temporal scenarios. Scenarios are
compiled on-the-fly into a bytecode that is run by a virtual
machine. A temporal scheduler organizes the execution of
concurrent parts of that bytecode along multiple abstract
time axes, mapping abstract dates and delays of the pro-
gram onto real time using a differential equation solver.

The virtual machine feeds back execution information
to the structure editor, which reflects that information by
highlighting executed statements or displaying progress
wheels and status icons directly in the code. This allows
an operator to easily monitor and pace the progression of
the scenario.

1. INTRODUCTION

Timing and interactions are two critical aspects of almost
any live show. Likewise, a large number of art installations
are experienced within a specific temporality, and/or fea-
ture complex interactions. These two broad categories of
artworks also increasingly involve technological artifacts
and processes, as artists take advantage of them for cre-
ative purposes. Generative audio, shaders, video mapping,
LED arrays, various sensors and robotic devices, are a few
of the elements that can now participate in a rich network
of temporal interactions with the performers and the audi-
ence.

In this context, technical designers or tech-savvy artists
need tools to plan and control the temporal scenario of the
show or installation. Such tools face somewhat opposed

Copyright: © 2022 Martin Fouilleul et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

requirements: they must offer tight control over the sce-
nario’s timing, while remaining flexible and open enough
to allow creative outcomes. They must provide a useful
view of the show at multiple levels, e.g. from the broad
strokes of the plot down to the details of a fader’s automa-
tion. They must be ergonomic and easily controllable in
live, while allowing the design and automation of complex
processes. Tradeoffs are to be made, and can be made in a
variety of ways. Furthermore, there is no one true solution
that will work for all artists and every show. The design
space is thus quite large and calls for exploration.

A number of tools have been proposed that enable the
authoring and execution of temporal scenarios for various
types of media. Cuelist softwares such as QLab [1], Me-
dialon [2] or Smode [3] use nested lists of cues with ad-
hoc timing behaviours, and/or timelines reminiscent of au-
dio sequencers. Iannix [4] uses a spatial metaphor with
3D objects and trajectories to organize and schedule ac-
tions. Ossia Score [5] adopts a flow graph model which
provides some degree of abstraction and programmabil-
ity, while still conveying a spatial metaphor of time. For-
mula [6], Antescofo [7] or ChucK [8] tackle the problem
by defining domain specific programming languages with
temporal semantics. Gibber [9] relies on a general purpose
scripting language (Javascript) and notation conventions to
build live-coded multimedia performances.

In this work, we present a prototype environment called
Quadrant, that aims at bridging the gap between a pro-
gramming language approach and a more user interface
focused point of view 1 . Quadrant consists of three com-
ponents: a structure editor, a non-textual domain-specific
language with a bytecode compiler, and a virtual machine.
Bringing the full expressive power of a programming lan-
guage to technical users affords them both precise con-
trol and unbounded extensibility. In a standard textual ap-
proach, this may come at the cost of learnability, efficiency,
ergonomics and immediate feedback. However, the tight
integration of Quadrant’s components, and the structured
representation of temporal scenarios they share, enables
important user experience improvements.

2. QUADRANT STRUCTURE EDITOR

Quadrant features a structure editor named Qed to encode
temporal scenarios. Structure editors let users view and
edit structured data, using specific knowledge of the un-
derlying format. This is to contrast with text editors, which

1 A short video overview of Quadrant is available here: https://
youtu.be/_wGPEDwp1AA.

Proceedings of the 19th Sound and Music Computing Conference, June 5-12th, 2022, Saint-Étienne (France)

518

operate on mostly unstructured streams of bytes, even when
those streams are meant to encode some structure, such as
a program. Although structure editors mostly gained wide
adoption outside computer science academia 2 , there is a
long history of research into structural code editing. It
ranges from early syntax-directed editors, such as MEN-
TOR [10], the Cornell Program Synthesizer [11], or editor
generators explored by the Gandalf Project [12], to more
recent research rooted in type theory and functional pro-
gramming such as Hazel [13] or Tylr [14], non-textual lan-
guage generators like JetBrain’s MPS [15], or attempts at
designing general purpose structured formats such as Dion
[16] or Infra [17].

2.1 Structured Data

The goal of Qed is to provide more ergonomic input and
visualization models for temporal features of the language,
as well as useful feedback about the execution of the pro-
gram. However the editor should in some cases preserve
the feel of text editing. First, it is still an appropriate local
model for a lot of interactions (e.g. typing exact numeric
values, simple arithmetic expressions, and obviously, text
strings). More fundamentally, the editor should ease explo-
ration of the user’s problem space and incremental progress
towards a solution. This sometimes implies relaxing struc-
tural requirements and allowing the user to navigate through
error states. This departs from the insistence of most struc-
ture editors on making syntax or type errors impossible,
which in our opinion is the main contributor to their per-
ceived ªstiffnessº or lack of flexibility.

Qed is thus less structured than most structure editors,
and defers checking some of the structural constraint to
later stages of the compiler pipeline. The editor operates
on a tree structure composed of cells. Cells can be simple
tokens such as numbers or textual identifiers, or lists of
other cells.

2.2 Navigation and Edition

The editor maintains a cursor which corresponds to a posi-
tion inside the tree. The cursor can be described by a triple
(p, r, o), where p is the parent cell under which the cursor
lies, r is the children of pwhich is immediately on the right
of the cursor (which can be null if the cursor is at the end
of p’s children list), and o is a text offset into the textual
data of p, if any.

The cursor can be moved backwards or forwards in depth-
first traversal order using left and right arrow keys, It can
also be moved to the position that is visually upwards or
downwards, using up and down arrow keys. The editor
displays hints to help visualize the position in the tree: the
parent cell is rendered against a light gray background, and
the cells left and right to the cursor are indicated respec-
tively by blue and green underlines.

A secondary cursor called the point is used to select parts
of the tree. The point normally follows the movement of
the cursor, unless the shift key is pressed, in which case

2 Word processors, cell sheets or 3D modelling softwares are good ex-
amples of widely used structure editors. Meanwhile in 2022, computer
science papers, including this one, are still being written in LateX.

Figure 1. Quadrant Tempo Curve Editor

it stays in place. To infer a selection from the cursor and
point, we first determine their closest common ancestor P .
The selected range is then the minimal forest consisting of
consecutive children of P which contains the point and the
cursor. This allows growing and shrinking the selection
to the next meaningful syntactic boundary as the cursor
moves towards or away from the point.

Selections can be deleted, copied and pasted with stan-
dard shortcuts. In addition, when the cursor is not inside
a string literal cell, the editor recognizes some keystrokes
as special editing shortcuts to allow editing the structure of
the tree: for instance, pressing the left parenthesis (key
creates a simple list cell, while the shortcut Cmd+(en-
closes the cell directly right to the cursor into a new list
cell.

Otherwise, entering text replaces the current textual se-
lection by the input characters, much as in a standard text
editor. Once the input characters have been inserted, the
cell’s text is tokenized, which may modify the current cell
or split it into several new cells.

2.3 Tempo Curve Editor

Since the editor is aware of language structure, it can rec-
ognize certain syntactical constructs, and attach custom
graphical user interface elements to them. This is the case
with the tempo curve editor (Figure 1), which allows spec-
ifying the tempo of a block of code with BÂezier curves,
whose control points can be adjusted with the mouse. This
offers both an easier input model and a better visualization
of continuous curves than a purely textual construct.

The user can zoom and scroll in an infinite grid with adap-
tive markings. Clicking on the curve splits the BÂezier curve
under the mouse. Alt-clicking on an endpoint deletes it and
merges the two pieces on each side. The user can drag con-
trol points with the mouse to shape the curve as needed. A
dark blue crosshair and textual coordinates help precisely
control the position of the mouse pointer. Clicking an end-
point and hitting Ctrl+C toggles the tempo continuity
constraint at this point. When the constraint is disabled,
the last and first points of two consecutive BÂezier curves
can be dragged up and down independently.

3. TEMPORAL MODEL

We briefly discuss the main aspects of Quadrant’s temporal
model here. For a more detailed explanation, we refer the

Proceedings of the 19th Sound and Music Computing Conference, June 5-12th, 2022, Saint-Étienne (France)

519

reader to a previous work [18] on poly-temporal schedul-
ing with parametric tempo curves.

3.1 Symbolic timeframes

A musical score ascribes temporality to musical events us-
ing symbolic dates and durations (e.g. beats and notes val-
ues). Symbolic time is mapped to performance time by
the interpreter, following tempo indications, cultural con-
ventions, and interpretative choices. In the realm of com-
puter music environments, several authors have proposed
extending this mapping recursively, creating a hierarchy of
symbolic timeframes, where a timeframe is related to its
parent by a time transformation [6, 19, 20]. Time trans-
formations can be represented and applied by a variety of
techniques: precomputed time maps [19, 21], tempo and
time shift maps [22], beta functions [23], piecewise tempo
curves built on tweening functions [24].

Mapping a date from one timeframe to another using a
tempo curve implies solving a differential equation [18].
Instead of relying on predefined functions with known in-
tegrals, Quadrant uses a numerical solver to integrate para-
metric tempo curves. In particular, we chose to construct
tempo functions from BÂezier curve pieces, which are more
versatile than standard tweeners and allow easy tweaking
of control points by a user through a graphical interface.

3.2 Scheduling

Quadrant’s poly-temporal model relies on concurrent tasks
(implemented as stackful coroutines, or fibers) managed by
a cooperative scheduler. Each task represents a sequence of
interleaved computations and delays happening in a given
timeframe.

Computations are predictably ordered and are considered
to happen instantaneously with respect to symbolic time.
This makes Quadrant’s model similar to that of synchronous
languages [25], with a few differences that we detail below.

Strictly speaking, most synchronous languages don’t have
an inbuilt notion of time, and can only react to signals. This
does not pose theoretical difficulties but does make some
scenarios cumbersome, since one must rely on introducing
and counting external ªclockº signals. This downside is
discussed in [26], which also proposes extending the host
context of Esterel to allow a program to schedule its own
wakeup time when returning from its step function. We
use a somewhat similar approach in Quadrant, where tasks
can pause for a requested amount of symbolic time.

We allow temporarily removing some task from the syn-
chronous scheduling mechanism to have them executed in
a background task pool. This permits graceful handling of
blocking or asynchronous operations, such as input/output,
without stalling the scheduler.

Finally, while most synchronous languages are concerned
with providing hard real-time guarantees, we are mostly
interested in providing a predictable yet flexible concur-
rency model, and only consider soft real-time goals on a
best-effort basis.

4. QSCORE LANGUAGE

Quadrant provides a custom language named QScore to
encode temporal scenarios. As discussed in section 2, it is
a non-textual language: although its source representation
is mostly displayed as text, it is in fact a tree of cells that
holds tokenized data or user interface widgets.

Since the tree structure is rendered explicit by the editor,
in the form of indentations and parenthesis and through the
use of s-expressions, the appearance of the source is quite
reminiscent of the Lisp programming language. This is
however the end of the similarity, since QScore has very
different characteristics than typical Lisp dialects. Indeed,
QScore is an imperative, statically typed language with
(mostly) unmanaged memory. It has built-in cooperative
concurrency and temporal primitives based on tasks. It is
compiled to a bytecode run by a virtual machine. Since the
language is statically typed, values are unboxed and mem-
ory layouts are known ahead of time, which means that the
virtual machine can be fairly lightweight.

4.1 QScore Basic Constructs

We give here a brief overview of the language. Some more
advanced features are shown in a short video here: https:
//youtu.be/AmO9hczGkYU.

4.1.1 Variables and Expressions

The following form declares a variable name with type
typeSpec is the current scope, and initializes it with the
expression initExpr:

(var name typeSpec initExpr)

A variable can be assigned a new value of its type using
the set form:

(set name val)

Common operators can be used in prefix notation to com-
pute numeric or boolean expressions, such as

(and foo (< bar (* 3.2 baz)))

4.1.2 Named Types

A named type can be defined by associating a name to a
type specification, using the form:

(type typeName typeSpec)

where typeName is an identifier and typeSpec is a
type specification. QScore predefines a number of prim-
itive named types for signed and unsigned sized integers,
floating point numbers, booleans and a void type.

4.1.3 Arrays and Slices

An array is fixed-size container of contiguous elements of
the same type. An array type is specified using this form:

(array count typeSpec)

A slice is a reference to a contiguous range of elements
of an array. Its number of elements need not be known at
compile time. Its type is specified using this form:

(slice typeSpec)

Proceedings of the 19th Sound and Music Computing Conference, June 5-12th, 2022, Saint-Étienne (France)

520

4.1.4 Structures

A structure is a collection of named fields, each with their
own type. A struct type is specified using the form

(struct name1 typeSpec1
name2 typeSpec2
...)

4.1.5 Pointers

A pointer is an address of a value of a given type. A pointer
type is specified using the form:

(ptr typeSpec)

The ref form takes the address of an addressable operand.
The unref form allows accessing the underlying value:

(ref addressableOperand)
(unref pointer)

4.1.6 Control Flow

QScore has the usual basic control flow constructs like
conditionals and loops, and lexical scoping:

(if condition
branchIfTrue
branchIfFalse)

(for initStatement
conditionExpression
iterationExpression

body)

(while condition
body)

(do
body)

4.1.7 Procedures

Procedures can be defined using the def form:

(def procName (param1 typeSpec1
param2 typeSpec2
...
-> returnTypeSpec)

body)

A procedure returns values using the return form:

(return val)

Procedure calls use prefix notation:

(procName arg1 arg2 ...)

4.2 Temporal Features

4.2.1 Pause

A task can request to be paused for a given duration and
yield to the scheduler using the pause instruction:

(pause duration)

where duration is a numeric value specifying the dura-
tion of the pause in the timeframe of the current task.

4.2.2 Standby

The (standby) instruction suspends the execution of the
current task until it is resumed by a trigger action sent from
the editor.

4.2.3 Flow and Futures

The flow form launches a new task to execute its body,
and yields to the scheduler.

(flow
body)

A flow block can refer to variables from its outer scopes.
In this case, it captures those variables, and the activation
frames in which these variables live are kept valid at least
until the block ends or returns.

The @(tempo_editor) attribute can be used right af-
ter the flow keyword to attach a tempo curve editor to the
block (see subsection 2.3). The tempo curve is then used
to map the timeframe of the task running the flow body
to and from its parent task’s timeframe.

A flow block may contain return statements, which
must all be of the same type. Otherwise it is considered to
return void after the last statement. In the calling task, the
flow form evaluates to a future, which is a typed handle to
the new task concurrently executing the flow body. The
type specification of a future is

(future typeSpec)

where typeSpec is the specification of the type returned
by the flow block.

The wait form suspends the current task until a given
flow block returns. The task is then resumed and the
wait form evaluates to the value returned by that block.

(wait someFuture)

The timeout form suspends the current task until a
given flow block returns, or a given local timeout expires,
whichever is the earliest. It evaluates to a boolean value
which indicates if the flow block has returned.

(timeout someFuture maxDuration)

wait and timeout forms can use the @(recursive)
attribute to recursively wait for a flow block and all the
flow blocks it launched to have returned.

Tasks are reference-counted to keep the associated data
(in particular, the returned value) alive for subsequent waits
and timeouts. It is the responsibility of the programmer to
manifest their intent in this regard by using the fdup and
fdrop forms, which respectively duplicate a future and
increment the reference count of the underlying task, or
drop a future, which decrements this reference count.

(fdup someFuture)
(fdrop someFuture)

4.3 Compiler pipeline

The cell tree is processed by several pipelined stages before
it can be executed by the virtual machine (Figure 2).

It is first traversed by a parser to produce an abstract syn-
tax tree. A checker then traverses the syntax tree to create
a typed syntax tree and symbol tables. The parser and the
checker also produce an error log, with each error attached
to the range of cells from which it originates. This error

Proceedings of the 19th Sound and Music Computing Conference, June 5-12th, 2022, Saint-Étienne (France)

521

Figure 2. Quadrant Pipeline

log is used by the editor to draw error underlines and dis-
play a pop-up panel with error messages when the cursor
is on a faulty cell.

When the program is valid, a generator uses the checker
output to generate a serialized representation which can be
loaded and executed by the virtual machine. This repre-
sentation contains directives to setup the address space of
the program, initialize static data, and load foreign libraries
and symbols, as well as the bytecode corresponding to each
procedure of the program.

The compiler pipeline generates several debug tables:

• An AST map, which maps cells to AST nodes. This
is used by the editor to query syntactic properties
of cells, in order to perform auto-layout and syntax
highlighting.

• A code map, which contains mappings between cells
and bytecode offsets and vice-versa. This table is
used by the editor to translate source locations to and
from bytecode locations when communicating with
the virtual machine.

• A block map, which maps bytecode offsets to basic
execution blocks. Basic execution blocks are used
by the editor to highlight portions of the source when
they are executed by the virtual machine.

5. QUADRANT VIRTUAL MACHINE

The virtual machine of Quadrant is a fairly simple stack
machine whose design draws some inspiration from the
Quake III Arena VM by Id Software 3 .

5.1 Instructions Encoding

Code is segregated from program data. Instructions con-
sists of a one byte opcode, followed by zero to three imme-
diate operands. The size of each operand is encoded in the
opcode and can be 1 to 8 bytes. Along with standard oper-
ations such as loads and stores, arithmetics, comparisons,
logic, conversions, and jumps, the instruction set includes
specialized opcodes to manage tasks and control time flow.

5.2 Address Space Layout

Tasks share the same linear address space, which is re-
served through the operating system’s virtual memory API

3 https://github.com/id-Software/
Quake-III-Arena/blob/master/code/qcommon/vm_
interpreted.c

at load-time and committed as needed on a page-by-page
basis. Data loads and stores are confined to this fixed, con-
tiguous region of memory, which is divided in several sec-
tions:

• rodata: this section is initialized at VM load-time
with the static program data generated by the com-
piler pipeline, such as string literals and tempo curve
descriptors.

• bss: this section is initialized to zero at VM load-
time, and holds the program’s global variables.

• stack pool: this uninitialized section is used to
allocate fixed-size stacks for the tasks, using a pool
allocator.

• heap: this uninitialized section is used to allocate
objects of different sizes and lifetimes using a gen-
eral purpose allocator.

5.3 Task Structure

The VM keeps track of tasks with a list of vm_task struc-
tures allocated from a dedicated pool. A generational index
maps future values to vm_task structures. A vm_task

structure holds the task’s scheduling data and registers. It
also has a slot to hold the return value of the task. If the
task returns a structure, this slot holds a pointer to the re-
turn value, which is allocated on the heap.

In addition to the task structure, the VM also allocates
a fixed size block from the stack pool for each task.
This block is further split into two stacks: an operand stack,
and a control stack.

For each task the VM maintains two reference counts: the
number of future objects used to reference that task, as
counted by fdup and fdrop forms, and the number of ac-
tive captures of that task’s control stack. When the number
of captures drops to zero, the task’s stacks can be recycled
by the stack pool. When the active future count drops
to zero, the memory allocated to hold the return value (if
any) can be released to the heap. When both counts drop
to zero, the VM can recycle the task structure.

5.4 Registers and Stacks

Each task has the following set of registers:

• ip (instruction pointer): this register points to the
next instruction to execute.

• osp (operand stack pointer): this register points to
the top of the operand stack.

Proceedings of the 19th Sound and Music Computing Conference, June 5-12th, 2022, Saint-Étienne (France)

522

Figure 3. Control Stack Layout (here current procedure bar has been called by foo)

• csp (control stack pointer): this register points to
the top of the control stack.

• bp (frame base pointer): this register points to the
base of the current activation frame.

• sr (status register): this register holds status flags
used by comparison and conditional jumps.

The operand stack consists of 8-byte aligned operands.
Instructions that push or pop values of smaller size respec-
tively zero-extend or mask those values.

The control stack consists of activation frames that con-
tain the local variables of the task’s active procedures (Fig-
ure 3). After the local variables, two 8-byte slots are re-
served to store the bp and ip registers when calling a pro-
cedure. The marshalling zone after these slots corresponds
to the location of the local variables in the next activation
frame, and is used for passing arguments to procedures and
new tasks.

5.5 Calling conventions

5.5.1 Regular Procedure Calls

When calling a procedure, the generator outputs opcodes
to evaluate arguments on the operand stack, and then move
them to the marshalling zone. If the procedure returns a
structure, a return pointer is generated and passed as a hid-
den first argument. It then outputs a call opcode. This
instruction copies the current frame base pointer and the
instruction pointer to their respective slots at the end of the
frame, then jumps to the address of the procedure. The
procedure’s code starts with a enter opcode that adjusts
the bp and csp registers to the new activation frame.

5.5.2 Task Calls

A new task is created either for a flow block or for a regu-
lar procedure whose frame is captured by flow blocks. If
necessary, the generator inserts an opcode to allocate mem-
ory for the return value prior to the call. The arguments are
evaluated and collected to the marshalling zone the same
way as a normal call. The task opcode then creates a
child task and copies the arguments from the marshalling
zone to the control stack of the new task. It then creates a
future value for the new task and puts it on the caller’s
operand stack. The caller then yields to the scheduler to
pass execution to the new task.

5.5.3 Returns

Upon return, the csp register is reset to the bp register. If
the csp register then points to the base of the control stack,
the VM pops the return value from the operand stack, stores
it in the task’s structure return field, and terminates the
task. Otherwise, the previous bp and ip registers are popped
from the control stack, which will return to the caller with
the return value still on top of the operand stack.

5.5.4 Foreign Calls

The generator associates an index to each foreign proce-
dure, and generates a listing of foreign dependencies and
symbols, including type information describing each pro-
cedure’s interface. At load time, the VM loads foreign li-
braries and symbols, and prepares the data structures used
by the underlying FFI library (libffi 4) into an array.

A foreign call start by the same argument evaluation se-
quence as regular calls. The ffi_call opcode then pop-
ulates an argument buffer with pointers to the arguments
inside the marshalling zone, obtains the FFI data using the
procedure index, and uses the FFI API to make the call.

6. EXECUTION MONITORING AND PACING

The execution of a Quadrant program can be monitored
and paced from within the editor (Figure 4):

• The editor highlights blocks of code in green as they
are being executed.

• The editor shows a progress wheel when a task is
paused. The proportion of the green arc shows the
proportion of time elapsed with respect to the pause
duration.

• The editor displays a spinning wheel composed of
two green arcs when a task is waiting on a future.

• The editor shows a standby icon composed of two
wavering green rectangles when a task is on standby.

• The editor can send triggers to resume a task sus-
pended by a standby instruction

This is achieved by running the virtual machine and the
editor in separate threads and have them communicate via
message passing using a pair of wait-free ring buffers.

4 https://github.com/libffi/libffi

Proceedings of the 19th Sound and Music Computing Conference, June 5-12th, 2022, Saint-Étienne (France)

523

Figure 4. Quadrant Execution Monitoring

6.1 Execution Blocks

An execution blocks is a contiguous, uninterrupted block
of bytecode (i.e. containing no jumps and yields) that maps
to a contiguous range of cells. The generator produces a ta-
ble pairing the start offsets of execution blocks to the range
of cells they originate from.

When executing a jump or a yielding instruction, the VM
sends a trace message to the editor, containing the target
offset of the jump. The editor then uses the blocks table to
map it to a range of executed cells, and displays a flashing
green background behind those cells.

Execution may fall back from one execution block to an-
other without a jump or yielding instruction. This is e.g.
the case when joining from the false branch of an if

form to the next execution block. It can also happen when
the generator reorders instructions compared to how they
appear in the source. In these cases, the generator inserts
a trace opcode at the beginning of the second execution
block, which explicitly instructs the VM to emit a trace
message.

6.2 Progress Reports

The scheduler runs a special fiber at a fixed frequency to
monitor the progress of the scenario. For each task, the
monitoring fiber collects the status of the task, the time re-
maining, and a call stack consisting of the bytecode offset
of all call-sites for that task up to the current ip. It then
sends a progress message to the editor containing that
information. The editor then uses the code map to display
progress wheels, spinning wheels or standby icons next to
all call sites of a suspended task.

6.3 Standby Triggers

When the cursor is on a standby form, and the user hits
the Ctrl+Space shortcut, the editor uses the code map to
send a trigger message with the bytecode offset corre-
sponding to that form to the VM. The VM then resumes ev-
ery task that is on standby at that particular location. This
provides a way to manually pace the progress of the sce-
nario from within the editor.

7. CONCLUSION

In this paper, we pointed out the increasing complexity
of human and technological temporal interactions in live

shows and art installations. After mentionning a several
show control softwares and their paradigms, we introduced
Quadrant, a new programming environment for designing
and performing poly-temporal scenarios (section 1).

We discussed the motivations behind Quadrant’s editor
Qed, and presented its main features (section 2). We then
explained the poly-temporal model of Quadrant (section 3),
and gave an overview of QScore, its non-textual language
with built-in temporal constructs (section 4). We also pre-
sented the architecture of Quadrant’s virtual machine (sec-
tion 5). We finally described how the Quadrant’s editor and
virtual machine cooperate to enable live monitoring and
control of a temporal scenarios’ performance (section 6).

7.1 Future Work

Quadrant is obviously still in its infancy. Its ability to inter-
act, both with external devices and with a human operator,
is thus quite limited. An immediate avenue for improve-
ment is to extend interactivity on these two fronts.

The first one should be quite easily addressed by consti-
tuting a standard library of connectivity protocols, which
would include e.g. UDP, TCP and WebSocket, as well as
messaging protocols such as OSC, MIDI, or DMX. The
foreign system of QScore should prove useful in this en-
deavour, as a way of leveraging existing code.

The user interactivity aspect is a little more challenging.
Our plan is to implement breakpoints and stepping fea-
tures similar to those of debuggers, and to build interactive
workflows on top of it. That would include specialized
tasks that act like random access cue lists or timelines, and
mechanisms to control their execution from the editor. We
would also like to consider live-coding. This could be im-
plemented by appending basic execution blocks to the end
of the code section, and patching old blocks with jumps to
reroute control flow through these blocks at run-time.

Finally, an important problem to tackle is the automatic
synchronization of QScore tasks to external processes, such
as sequencers, score followers, or other Quadrant instances.
Using the connectivity protocols evoked above, Quadrant
could receive beat messages and generate tempo curves on
the fly to catch up with these synchronization sources. This
would in turn potentially open the way for performances
using distributed and collaborative scores.

Acknowledgments

We would like to thank Allen Webster and Ryan Fleury of
Dion Systems for sharing their perspective on structured
editing and data formats, and being inspiring interlocutors.

References

[1] QLab. [Online]. Available:
https://qlab.app/.

[2] Medialon - Powerful Show Control Solutions.
[Online]. Available:
https://medialon.com/.

Proceedings of the 19th Sound and Music Computing Conference, June 5-12th, 2022, Saint-Étienne (France)

524

[3] Real-time compositing, media server and XR -
SMODE. [Online]. Available:
https://smode.fr/.

[4] T. Coduys and G. Ferry, ªIannix.
Aesthetical/symbolic visualisations for hypermedia
composition,º in Sound and Music Computing
Conference (SMC), 2004.

[5] J.-M. Celerier, P. Baltazar, C. Bossut, N. Vuaille,
J.-M. Couturier, and M. Desainte-Catherine,
ªOSSIA: Towards a unified interface for scoring
time and interaction,º in TENOR 2015 - First
International Conference on Technologies for
Music Notation and Representation, 2015.

[6] D. P. Anderson and R. Kuivila, ªA system for
computer music performance,º ACM Transactions
on Computer Systems, vol. 8, no. 1, 1990.

[7] J. Echeveste, J.-L. Giavitto, and A. Cont, ªA
Dynamic Timed-Language for Computer-Human
Musical Interaction,º INRIA, Tech. Rep., 2013.

[8] G. Wang, P. R. Cook, and S. Salazar, ªChucK: A
Strongly Timed Computer Music Language,º
Computer Music Journal, vol. 39, no. 4, 2015.

[9] C. Roberts, M. Wright, J. Kuchera-Morin, and
T. HÈollerer, ªGibber: Abstractions for Creative
Multimedia Programming,º in Proceedings of the
22nd ACM International Conference on
Multimedia, 2014.

[10] V. Donzeau-Gouge, G. Huet, G. Kahn, and
B. Lang, ªProgramming Environments Based on
Structured Editors: The MENTOR Experience,º
Tech. Rep., 1980.

[11] T. Teitelbaum and T. Reps, ªThe Cornell program
synthesizer: A syntax-directed programming
environment,º Communications of the ACM,
vol. 24, no. 9, 1981.

[12] A. N. Habermann and D. Notkin, ªGandalf:
Software development environments,º IEEE
Transactions on Software Engineering, vol. SE-12,
no. 12, 1986.

[13] C. Omar, I. Voysey, M. Hilton, J. Aldrich, and
M. A. Hammer, ªHazelnut: A Bidirectionally
Typed Structure Editor Calculus,º ACM SIGPLAN
Notices, vol. 52, no. 1, 2017.

[14] D. Moon, Tylr, hazelgrove, 2022. [Online].
Available:
https://github.com/hazelgrove/tylr.

[15] MPS: The Domain-Specific Language Creator by
JetBrains. [Online]. Available:
https://www.jetbrains.com/mps/.

[16] Dion Systems. [Online]. Available:
https://dion.systems/.

[17] C. Hall, T. Standley, and T. Hollerer, ªInfra:
Structure All the Way Down,º Proceedings of the
2017 ACM SIGPLAN International Symposium on
New Ideas, New Paradigms, and Reflections on
Programming and Software, 2017.

[18] M. Fouilleul, J. Bresson, and J.-L. Giavitto, ªA
Polytemporal Model for Musical Scheduling,º in
15th International Symposium on Computer Music
Multidisciplinary Research, 2021.

[19] D. Jaffe, ªEnsemble timing in computer music,º
Computer Music Journal, vol. 9, no. 4, 1985.

[20] J.-L. Giavitto, J.-M. Echeveste, A. Cont, and
P. Cuvillier, ªTime, timelines and temporal scopes
in the antescofo DSL v1.0,º in International
Computer Music Conference (ICMC), ICMA,
2017.

[21] J. Rogers, J. Rockstroh, and P. N. Batstone,
ªMusic-Time and Clock-Time Similarities under
Tempo Changes,º in International Computer Music
Conference, 1980.

[22] H. Honing, ªFrom Time to Time: The
Representation of Timing and Tempo,º Computer
Music Journal, vol. 25, no. 3, 2001.

[23] J. MacCallum and A. Schmeder, ªTimewarp: A
graphical tool for the control of polyphonic
smoothly varying tempos,º International Computer
Music Conference, ICMC 2010, 2010.

[24] Curve - AntescofoDoc. [Online]. Available:
https://antescofo-doc.ircam.fr/

Reference/compound_curve/.

[25] N. Halbwachs, Synchronous Programming of
Reactive Systems. Kluwer Academic Publishers,
1993.

[26] R. von Hanxleden, T. Bourke, and A. Girault,
ªReal-time ticks for synchronous programming,º in
2017 Forum on Specification and Design
Languages (FDL), 2017.

Proceedings of the 19th Sound and Music Computing Conference, June 5-12th, 2022, Saint-Étienne (France)

525

