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Abstract

We model a problem featured in the multiplayer ver-
sion of the online browser game Geoguessr (http://www.
geoguessr.com). Multiple players compete to find a
point in a map, knowing only how much closer or fur-
ther the opponent’s best guess is to the target. We de-
velop strategies and compare them using computer power.
We also explore several variations (turn-based versus one-
round, 1 dimension, multiple dimensions...).

Keywords: Euclidean geometry, Voronoi game, com-
puter science, game theory, recreational

1 Introduction

In the browser game Geoguessr [16] you find yourself lost
in a city somewhere around the globe (using Google Street
View [7]). Your goal is to find your location in a map as
accurately as possible. Recently, a multiplayer mode was
introduced, in which you race against other players to
make the closest guess in a limited time and with only
a few tries. You only know limited information about
your opponents’ guesses. It is often the case that one can
quickly identify the country the images are from (maybe
a flag or a sign gave it up), but guessing closer than the
other players is a difficult task.

We model and study three simplified versions of the
game. These are instances of the Voronoi game, a facility
locating problem introduced in [1]. In the Voronoi game,
players compete by placing facilities to serve a distribu-
tion of users. Their goal is to maximize the number of
users served by their facilities, where a user is served by
the closest facility available.

We will assume that the player has correctly identified
the country C, which we will see as a region of R2 in our
first model1. Hence the target (the user, in the Voronoi

1 This is a simplification, and one would have to take the
curvature of the Earth into consideration in the actual game,
specially in bigger countries such as Russia. A brief note about
this will be said in the end.

game) is a point x in C. After any guess (facility place-
ment, in the Voronoi game) is made by any player, the
game Geoguessr ranks every player by how close their best
guess is, and displays said ranking indicating how much
further is your best guess compared to the best guess of
the player immediately above you in the ranking, as well
as how much closer your best guess is compared to the
best guess of the player immediately below. As an ex-
ample, the available information to player A after three
guesses are made is displayed in Figure 1. Note that you
do not know any additional information — the other play-
ers’ guesses, which is your best guess so far, the distance
from your guesses to the target, etc.

A similar instance of the Voronoi game was studied in
[6]. They introduce the so called blind Voronoi game, in
which the location of the users is not know. The main
difference with our version is the available information
after the placement of a facility: every player in the blind
Voronoi game knows the location of all facilities placed
by any player, the facilities that currently serve each
user, and the distance from said facilities to said users.

We will restrict ourselves to games with two players
A and B. First, in section 2, we explore a one round
version of the game, in which player B makes all their
guesses before A starts guessing. We construct a winning
strategy for A in at most 5 guesses. In section 2.1, we
compare this strategy with mixed strategies that involve
randomization, and find that there are strategies that win
quicker, in average.

We then consider a turn-based version of the game in
section 3, in which two players take turns making one
guess per turn. No pure strategy was found, and hence
mixed strategies were compared.

In section 4 explore both versions of this game on
a line. The one round version turns out to be trivial
(player A can win in 2 guesses). A modification of the
turn-based game is more interesting. It can be identified
as the game “higher or lower” played in one of the several
rounds of the show The Price is Right [15]. There is
a strategy for both players in which the probability of

1

http://www.geoguessr.com
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a1

a2

a3

Ranking

Player B N 530 km
• Player A

Player D H 200 km
Player C

Fig. 1: Pictured, all the available information the player A disposes of after having made three guesses a1, a2 and a3. The
best guess made by player B is 530 km closer to the target x than the best guess made by A (which could be a1, a2 or a3).
Similarly, the best guess made by player A is 200 km closer to x than the best guess made by player D. Player C’s best guess
is worst than player D’s.

winning is close to 1
2 . Finally, we provide some comments

about higher dimensional analogues in section 5.

Notation. Let D(a, r) be the disc of center a and ra-
dius r, let ∂D(a, r) = C(a, r) be its circumference and let
D̊(a, r) = B(a, r) be its interior (a ball). The metric on C
is the usual Euclidean metric inherited from its ambient
space.

2 One round version of the game

Let C ⊆ R2 be a compact subspace (the country), and let
x ∈ C be the target. In this version of the game, we will be
playing as player A and competing against another player
B who has already made all their guesses. Let b ∈ C be
theis best guess. Our goal is to find a point of C which is
closer to x than b in the least amount of guesses possible.
The space of legal guesses will be S = R2. At any given
moment, we know two things:

(i) if any of our guesses a1, ..., an is closer to x than b,
and

(ii) how much closer to x (in distance units) is our best
guess compared to b, or how much closer is b com-
pared to our best guess.

Equivalently, let S = {a1, ..., ak} be a set of guesses, and
let

f(S) = min
i
{d(ai, x)} − d(b, x). (1)

Then the available information at any given moment is
f(S). By convention, let f({}) =∞.

We will say that the game is in a winning state for A
if f(S) ≤ 0. Our goal is to design a strategy to find a set
S such that f(S) ≤ 0, and such that #S is as small as
possible.

Problem 1. Let C, S and f be given. A target x was
selected from C, and a guess b ∈ C was made by an ad-
versary. After each of our guesses ak, we can retrieve

the value of f({a1, ..., ak}). The goal is to make a guess
an such that f({a1, ..., an}) ≤ 0. Design an algorithm
that returns a set S of guesses {a1, ..., an} ⊆ S such that
f(S) ≤ 0 and minimizes n.

We will now provide a constructive proof of the follow-
ing theorem.

Theorem 2.1. Let C ⊆ R2 be a compact set, let S = R2

and let f be defined as in (1). There is a solution to
Problem 1 with n ≤ 5.

Proof. The key fact is that, if ai is your best guess so
far, then C(ai, f({a1, ..., ai})) is tangent to C(x, d(b, x)),
by definition of f . We will exploit this to develop our
strategy. Also, note that after k guesses, our best guess
is indexed by the smallest i such that f({a1, ..., ai}) =
f({a1, ..., ak}).

Let a1 be given. We will later discuss the optimal place-
ment of a1. If f({a1}) ≤ 0, we are finished. If not, then
choose a2, a3 and a4 equally distributed in C(a1, f({a1})).
Similarly, if f({a1, ..., ai}) ≤ 0 for any i = 2, 3, 4, we are
finished. We will hereafter always suppose this is never
the case.
Claim 1. At least one of a2, a3, a4 is closer to x than a1.

Let Vi(R2, {a1, ..., ak}) be the Voronoi cell of R2 with
respect to {a1, ..., ak} that contains ai. In other words, let
Vi(R2, {a1, ..., ak}) = {p ∈ R2 : d(ai, p) ≤ d(aj , p) ∀j 6=
i}.

Proof of claim. The Voronoi cell V1(R2, {a1, a2, a3, a4})
is contained in D(a1, f({a1})) 63 x. Since⋃4

i=1 Vi(R2, {a1, a2, a3, a4}) = R2 3 x, the claim
falls. �

Let ai0 be the best guess so far; i0 ∈ {2, 3, 4}. At this
point, a possible next step would be to choose a5, a6 and
a7 evenly distributed in C(ai0 , f({a1, ..., ai0}). Then, by
Claim 1, one of these would be closer to x than both a1
and ai0 .
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Instead, we skip one of these guesses by letting
{a5, a6} = C(a1, f({a1})) ∩ C(ai0 , f({a1, ..., ai0})). The
conclusion still holds:

Claim 2. At least one of a5, a6 is closer to x than ai0 .

Proof of claim. We know 0 ≤ f({a1, ..., ai0}) ≤ f({a1}).
If any of the extremes is attained, the lemma holds (see
Figure 2a and 2c). A continuity argument proves the
claim. �

Let ai1 be the best guess so far, i1 ∈ {5, 6}.
We have successfully found three balls that are
tangent to B(x, d(b, x)) and that do not intersect
it, namely, B(a1, f({a1})), B(ai0 , f({a1, ..., ai0})) and
B(ai1 , f({a1, ..., ai1})).
Claim 3 (Problem of Apollonius). There is a unique ball
B(x, r) which is tangent to three given balls B(c,R),
B(c′, R′), B(c′′, R′′) and that do not intersect them. One
can furthermore construct it (in particular finding x).

Proof of claim. The Problem of Apollonius has been
widely studied and many proofs have been known for cen-
turies. See [3, 9] for short historical surveys. We will con-
sider it proved. With an algebraic approach, x and r are
the solution to the following system.

d(x, c) = R + r

d(x, c′) = R′ + r

d(x, c′′) = R′′ + r

; r ≥ 0. (2)

The readers wanting to implement the algorithm hereby
presented may choose their preferred methods for solving
systems of nonlinear equations. �

We can thus choose a7 = x as our final guess —
f({a1, ..., a7}) ≤ 0 gives a winning state for A.

So far, we have constructed a solution to Problem 1
with n ≤ 7, for any starting guess a1. We will now discuss
the placement of a1.

Since C is a compact subspace of R2, we can bound it
by a large enough regular hexagon. Let a1 be one of its
vertices. When choosing a2, a3 and a4, let a2 fall in the
radius of the hexagon that goes through a1. Then, the
Voronoi cell V2(R2, {a1, ..., a4}) will contain the target x,
since V1(R2, {a1, ..., a4})∪V2(R2, {a1, ..., a4}) will contain
the whole hexagon. See Figure 3.

Using this method we can therefore skip guesses a3 and
a4, bringing the maximum amount of guesses necessary
down to 5, as desired. �

ra1 a1 a2
a3

a4

Fig. 3: On the left, a hexagon bounding the country C. The
first guess a1 is a vertex of the hexagon. Dashed, the radius r
of the hexagon through a1. On the right, the first four guesses
have been made, with a2 in C(a1, f({a1})) ∩ r. Dashed, the
boundaries of the Voronoi cells Vi(R2, {a1, ..., a4}).

See Figure 4 for an illustration of the strategy, which
will be hereafter referred to as the Apollonius strategy.

a1

a2

a3 a4

a5 = x

b

Fig. 4: The Apollonius strategy.

Note that there are several choices to be made in an
implementation of this strategy. Most notably, if guess
a3 is already better than a1 and a2, one can skip guess
a4. Therefore, if this choice is made at random, the
strategy will end in n = 4 steps half the times. We say
that the expected performance of this strategy is ≤ 4.5.

We now turn to the question of finding a strategy with
a lower expected performance. For this matter, we will
compare several strategies with the help of a computer.

A first naive strategy is to select a point a1 ∈ C at
random. If f({a1}) ≤ 0 we have finished. If not, choose
a2 ∈ C at random and repeat. We will call this the Ran-
dom strategy. It will serve as the base strategy to which
compare the rest. Note that this is not the worst strategy,
as one can purposely craft worse strategies (e.g., guessing
the same point in each turn, or guessing outside C).

A second strategy will hinge on a fact discussed
earlier; x does not belong to B(ak, f({a1, ..., ak})) for
any k. Our strategy will thus draw an+1 at random
from C −

⋃n
k=1 B

(
ak, f({a1, ..., ak})

)
. We will call this

strategy RandCircles.

A second obvious optimization is to keep track of the
best guess thus far (just as we did in the proof of The-
orem 2.1) and guessing at random from the Voronoi cell
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a1

ai0

xa5a6

(a) f({a1, ..., ai0}) = f({a1})

a1

ai0
a6 a5

x

(b) 0 < f({a1, ..., ai0}) < f({a1})

a1

ai0 = a5 = a6
x

(c) 0 = f({a1, ..., ai0})

Fig. 2: Geometric configuration of Claim 2 for different values of f({a1, ..., ai0}). In each subfigure, three circles are drawn:
C(a1, f({a1})), C(ai0 , f({a1, ..., ai0)) and C(x, d(b, x)).

of the best guess, Vi0(C, S). We call this strategy Rand-
Voronoi.

Simply merging the previous two strategies, we get
RandVorCir. Now the guesses are choosen at random
from Vi0(C, S)− ∪ai∈SB(ai, f({a1, ..., ai})).

Up to this point, every strategy (apart from the Apol-
lonius strategy) involves choosing points at random from
some region R in which we have determined that x lies.
The next one will be an attempt at avoiding this. In
this new strategy, we will guess the point ai which is, in
average, the closest to any given point of R. That is,

ai = arg min
∫∫
R
d(ai, z)dz. (3)

If we take the minimum over the points in R2, the result-
ing point is the geometric median of R. If we take the
minimum over R itself, it is the medoid2 of R. They co-
incide if R is convex, but we can’t make this assumption
in general.

These two points need not be uniquely determined by
the previous formula. For instance, suppose that our
country is a perfect annulus. Then there is an infinite
number of medoids. To solve this, choose one of those
medoids at random. Another problem is that, in general,
the median does not need to be inside C. This causes
serious problems, and examples of this do not need to be
bizarre at all. For instance, let C be any compact country.
Suppose that, after choosing our first point a1, which will
be the median of C, the value of f({a1}) is positive and
the disc D

(
a1, f({a1})

)
is completely contained in C. The

median of the new regionR = C−B
(
a1, f({a1})

)
will still

be a1, hence the algorithm will stabilize in a point which
is not a valid solution.

Consequently, we discard the median as a valid
strategy. By changing the way we pick ai in the

2 There are multiple algorithms to approximate the median
and medoid of a discrete cluster of points [11, 12]. The prob-
lem of finding these points is often called the Fermat-Weber
problem [4]. We are interested on a continuous version of this
problem, but a discrete implementation over a random sample
of our region will suffice.

RandVorCir from “random” to “medoid” we define the
MedoidVorCir strategy.

A final strategy we will discuss is MedVorCirApoll:
start with the MedoidVorCir strategy until the best
guess is updated three times. Then, the Problem of Apol-
lonius can be exploited just as in the Apollonius strategy
to find the target in the next guess.

2.1 Comparison of strategies

In the previous section, we discussed seven different
strategies to solve Problem 1. We will now compute
N = 1000 iterations of each strategy and compare the
average value of #S = n.

In our implementation, C will be a square. Its
dimensions should not be relevant, as the problem is
the same in any scale. We implemented two versions
of the Apollonius strategy: a first naive version
will choose a1 at random and is guaranteed to end
in 7 steps, whilst the second one will choose a1 as
discussed in the end of the proof of Theorem 2.1. We
have recorded the results from our comparison in Table 1.

Strategy Average n Largest n

Random 7.58 3526
RandCircles 3.02 336
RandVoronoi 2.69 23
RandVorCir 2.26 13
MedVorCir 1.87 10
MedVorCirApoll 1.80 8
Apollonius7 3.81 7
Apollonius5 3.63 5

Tab. 1: Comparison of strategies. Iterations: N = 1000.
Country shape: square.

The strategies which involve randomness do not per-
form well when d(x, b) is really small. Most notably, there
is one outlier in the data of Random: one instance of the
algorithm returned n = 3526. Without this outlier, the
average drops down to 4.00 — which is still the worst
performing strategy.
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Another key point is that many of the iterations re-
turned n = 1. This is due to choosing x and b at random
— if also chosen at random, a1 is expected to be a winning
guess half of the times. This explains why the Apollo-
nius strategies have such high averages; they are superior
to RandCircles when d(x, b) is small, but the rigidness
of their definition plays against them when d(x, b) is big.

The strategies Apollonius5 and Apollonius7 are
guaranteed to end very quickly, and we are guaranteed
to find x to any desired accuracy. However, they do
not perform well in comparison to MedVorCir, as this
last strategy uses all the information available in each
turn to estimate x. The strategy resulting from merging
these two, MedVorCirApoll, is the best strategy over-
all among the ones discussed. Again, because it uses all
available information in every turn and, if possible, it ap-
plies the solution to the Problem of Apollonius to skip
unnecessary turns.

3 Turn-based version of the game

In this section, each player will only be able to make one
guess per turn. We will therefore drop the assumption
that player B has already made all their guesses.

The players will take turns guessing points SA =
{a1, a2, ...} and SB = {b1, b2, ...}. In this version, the
function f will be replaced by

g(SA, SB) = min
i
{d(ai, x)} −min

j
{d(bj , x)}. (4)

The space of possible guesses is again S = R2. The win-
ning condition must be changed, as to make it possible to
end the game in a finite number of turns. In similar pa-
pers, like [6], the game ends after a fixed amount of turns.
For us, however, the game will only end when one of the
players makes a guess inside a disc D(x, ε) for a certain
tolerance ε. This player would then win the game.

Problem 2. Let C, S, g and ε be given. A target x was
selected from C. Two players A and B take turns guessing
points a1, a2, ... ∈ S and b1, b2, ... ∈ S respectively, which
we record in the sets SA, SB. Neither of the players know
what is the other’s set of guesses. After each guess, the
function g(SA, SB) can be retrieved by both players. The
goal of each player is to make a guess in D(x, ε), where ε
is fixed. Design a strategy for both players.

We will be designing strategies for both players and
then comparing them by letting two computers play
against each other. As before, a strategy that will serve
as a base point for comparison will be the Random
strategy (which is defined as expected).

More sofisticated strategies involve analyzing the avail-
able information in any given state of the game. Suppose

we are playing as player A, without loss of generality.
After turn 1, each guess made by any of the players will
update the value of g(SA, SB). Suppose player A is about
to guess.

1. If A is winning, that is, g(SA, SB) ≤ 0, then the
new guess ak is either in D(x, ε), ending the game,
or not. In the latter case, if g(SA ∪ {ak}, SB) is less
than g(SA, SB), then ak is currently our best guess.
Otherwise, the information we get from ak is that x
is not in its Voronoi region Vk(C, SA ∪ {ak}).

2. If B is winning, g(SA, SB) > 0, and ak is not in
D(x, ε), then the information we get from our new
guess ak is similar to the information we got in the
one player version of the game. Namely, we can
check if our new guess is our best guest so far (hence
x is in Vk(C, SA)). Moreover, if after guessing ak
the player B is still winning, we can be sure that
x is not in the disc D

(
ak, g(SA ∪ {ak}, SB)

)
. And

if our new guess ak is closer to x than any guess
bj , that is, g(SA ∪ {ak}, SB) ≤ 0, we don’t get any
additional information (but we give information to
our adversary).

Suppose now B is about to guess.

1. If B is winning, i.e. g(SA, SB) > 0, then B will also
be winning after their guess bk. But if g(SA, SB ∪
{bk}) is greater than g(SA, SB), then we know that
their newest guess is better than any other one of
their guesses.

We can thus update the information we had. For
instance, we knew that x was not in D

(
ai, g(SA, SB)

)
for any i, and now we can make this disc larger, as
x is not in D

(
ai, g(SA, SB ∪ {bk})

)
either.

2. If A is winning, g(SA, SB) ≤ 0, and if bk does not
change this fact, then we didn’t get any information.

If, however, B is winning after guessing bk, then we
know that x is not in D

(
ai, g(SA, SB∪{bk})

)
for any

i. We can update our information.

Comparing this analysis to the one player version, one
can define the strategies RandVoronoi, RandCircles,
RandVorCir and MedVorCir as expected. The strate-
gies which used the Problem of Apollonius will not be as
useful, given that our adversary’s best guess is continu-
ously changing. A possible optimization involving said
problem would be quite an intricate one — whenever the
losing player reduces its distance to the winning player
three times whilst not ending the game, and while the
winning player does not make a better guess than its best
one, then the losing player can find x.

We coded all the strategies and made them play against
each other. The results are recorded in Table 2. The tol-
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B.Rand
om

B.Rand
Circ

les

B.Rand
Voro

noi

B.Rand
VorC

ir

B.M
edV

orC
ir

A.Random −0.02 −0.40 −0.84 −0.84 −0.92
A.RandCircles 0.42 0.12 −0.56 −0.64 −0.78
A.RandVoronoi 0.74 0.68 −0.02 −0.12 −0.34
A.RandVorCir 0.84 0.74 0.06 0.00 −0.30
A.MedVorCir 0.86 0.84 0.30 0.20 0.02

Tab. 2: The expected outcome of a game as described in Problem 2 between Player A’s strategy (rows) and Player B’s strategy
(columns), where 1 is a victory for A and −1 a loss.

erance ε was adjusted so that the probability of winning
at random in any given turn is 1 in 100.

Not surprisingly, MedVorCir is the best performing
strategy. However, note that in this version, Rand-
Voronoi is already a competitive strategy, winning al-
most as much as MedVorCir against weaker strategies
and close to tying against stronger ones. This is was to
be expected — when studying strategies to a given game,
one tends to focus on the better ones and under represents
the worst ones3.

Another thing to realize is that a bad player gives less
information to the opponent. This is not well captured
in the table, but it did have an impact on the aver-
age number of guesses per player (e.g., a typical match
between A.MedVorCir and B.Random was much
longer than a typical match between A.MedVorCir and
B.RandVorCir). The variability in game duration con-
tributes to the asymmetry of the table.

4 One dimensional versions

In one dimension, a simple translation of Problem 1 as it
is stated becomes trivial.

Theorem 4.1. Let C ⊆ R be a compact set, let S = R
and let f be defined as in (1). There is a solution to
Problem 1 with n = 2.

Proof. Choose a1 = min C. Then, one can choose a2 to
be a1 + f({a1}) = x. �

A more interesting turn-based version of the problem
can be proposed by changing the definition of f , so that
less information is provided to our players. For example,
order SA ∪ SB by the turn order, {a1, b1, a2, b2, ...}, and
let be g defined as

g(SA, SB) = ĝ({a1, b1, ..., c}) =


+1 if c > x,

0 if c = x,

−1 if c < x,

(5)

3 For the interested reader, there is a not-too-serious article
discussing how this problem affects Elo rating (particularly in
chess) and proposes a way to overcome it [10].

and consider Problem 2 with C ⊆ Z. We can think of ±1
as meaning “higher” or “lower”. An instance of this game is
featured as one of the many rounds in the television show
The Price is Right4 [15]: two players compete against
each other to guess x to a given accuracy (ε < $1), with
the only information being if your opponent just guessed
too high or too low. In this instance of the game, the
set of legal guesses S is dynamically changed to be the
smallest interval in which players know the target is. The
winning condition is equivalent to g(SA, SB) = 0.

Theorem 4.2. Let C ⊆ Z be a discrete interval, let g be
defined as in (5), let ε < 1. Consider Problem 2, in which
S is given as a function of the guesses: after each turn,
update S to be max

c∈{−∞}∪SA∪SB
c<x

{c}, min
c∈{+∞}∪SA∪SB

c>x

{c}

 ∩ C.
Then,

• there is a strategy for player A in which the proba-
bility of winning is greater than 1

2 −
1

2|C| .

• there is a strategy for player B in which the proba-
bility of winning is greater than 1

2 −
3

2|C| .

Proof. We prove the first result, the other one is shown
analogously. We assume A plays in the odd turns and B
in the even turns.

The probability of winning for A, P[A wins], is equal
to the following sum

b |C|−1
2 c∑

i=0

P[A wins in the (2i + 1)st turn].

Note that this sum is finite, since only finitely many dif-
ferent guesses can be made in a compact discrete interval.

4 Some other games featured in this show have already been
subject to game theoretic analysis. See [2].
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Let S0,S1,S2, ... be the different sets of legal guesses as
they update, starting with S0 = C. Then,

P[A wins in the (2i + 1)st turn]

= P[a1 6= x] · P[b1 6= x] · · ·P[bi 6= x] · P[ai+1 = x]

=
|S0| − 1

|S0|
· |S1| − 1

|S1|
· · · |S2i−1| − 1

|S2i−1|
· 1

|S2i|
.

The strategy for player A is choosing ak to be the mini-
mum of the current legal set S at any turn. This ensures
|S2k| − 1 = |S2k+1|. We also know |S2k−1| − 1 ≥ |S2k|.
Hence,

P[A wins in the (2i + 1)st turn]

≥ |S1|
|S0|
· |S2|
|S1|
· |S3|
|S2|
· · · |S2i|
|S2i−1|

· 1

|S2i|
=

1

|S0|
=

1

|C|
.

And therefore,

P[A wins] ≥
b |C|−12 c+ 1

|C|
≥ |C| − 1

2|C|
≥ 1

2
− 1

2|C|
,

as desired. �

5 Further comments and higher
dimensional variations

Just as we mentioned in the introduction, for the original
problem, supposing that the country is a subspace of R2

is a simplification that can introduce a substantial error
for large enough countries. We can fix this by considering
the Problem of Apollonius for spherical regions in S2
(see [5]). Following the proof of Theorem 2.1, we see
that Claims 1 and 3 therefore hold on a sphere, whilst
Claim 2 is not necessarily true. The discussion about
the optimal placement of a1 is also untrue. Recall
however that Claim 2 is not crucial to the strategy,
but an optimization on n. There is a strategy with n ≤ 8.

Other generalizations of the Problem of Apollonius in-
volve higher dimensional tangent spheres in Rm. In gen-
eral, in good enough conditions5, there is a unique (m−1)-
sphere tangent and external to (m + 1) given (m − 1)-
spheres. One can get these m + 1 spheres by choosing
m+ 1 points whose convex hull span a regular m-simplex
in each step. This way, we are guaranteed to find x in
(m + 1) ·m + 2 turns.

This bound is not sharp for m = 2, since we could
make some optimizations that brought down the number
of needed guesses from 8 to 5.

We propose the following question: what is the
minimum number of turns that will work in R3? (at

5 The problem has been solved in general [8, 14], but all
solutions need not exist [13].

most, 4 · 3 + 2 = 14.) And in Rn?

However, this was not the best strategy in R2. We
can define an analogous strategy to MedVorCirApoll
in n dimensions. The question now is, is this better than
Apollonius in all dimensions?
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