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EQUILIBRIUM PERTURBATIONS FOR STOCHASTIC
INTERACTING SYSTEMS

LU XU AND LINJIE ZHAO

ABSTRACT. We consider the equilibrium perturbations for two stochastic systems: the d-dimensional
generalized exclusion process and the one-dimensional chain of anharmonic oscillators. We add
a perturbation of order N~¢ to the equilibrium profile, and speed up the process by N!'*# for
parameters 0 < K < «. Under some additional constraints on x and «, we show the perturbed
quantities evolve according to the Burgers equation in the exclusion process, and to two decoupled

Burgers equations in the anharmonic chain, both in the smooth regime.

1. INTRODUCTION

One of the main aims in the theory of hydrodynamic limit is to derive partial differential equations
from microscopic systems. For asymmetric systems with one or several conservation laws, the conserved
quantity /quantities usually evolve macroscopically according to the hyperbolic system under the Euler
scaling (time accelerated by N and space divided by N), cf.[18, 16, 12] for example. To refine the
hydrodynamic limit, when the system has only one conservation law, in the seminal paper [5], Esposito,
Marra and Yau perturb the asymmetric simple exclusion processes around the equilibrium point with
order N1 at the initial time in dimensions d > 3, and show that the evolution of the perturbed
quantity, namely the equilibrium perturbation, is governed by the viscous Burgers equation under the
diffusive scaling (time accelerated by N? and space divided by N). This is closely related to the
understanding of Navier—Stokes corrections and is called the incompressible limit in the literature,
cf. [12, Section 7.7] for details. Later, such kind of result is extended by Seppéldinen [19] to dimension
d = 1. He considers the one-dimensional Hammersley’s model, adds a perturbation of order N~ to the
equilibrium, and shows that the perturbation macroscopically obeys the invisid Burgers equation in the
time scale N7t if 0 < o < 1/2. The proof uses combinatorial properties of the Hammersley’s model
and coupling techniques, and the result holds even beyond the appearance of shocks. Independently,
T6th and Valké [20] obtain the same result for a large class of one-dimensional interacting particle
systems, which is called deposition models in their paper, but only for 0 < a < 1/5. Téth and
Valké employ Yau's relative entropy method [25], thus the result holds only in the smooth regime
of the solutions. Very recently, Jara, Landim and Tsunoda [11] consider equilibrium perturbations in
weakly asymmetric exclusion processes and derive viscous Burgers equation under the diffusive scaling.
Equilibrium perturbations have also been considered for systems with two conservation laws. In [21],
Téth and Valké prove for a very rich class of systems that the small perturbations are universally
driven by a two-by-two system. In [22], Valké shows that small perturbations around a hyperbolic
equilibrium point evolve according to two decoupled Burgers equations. For system with three or more
conservation laws, the problem remains generally open.

Key words and phrases. Equilibrium perturbation; exclusion process; oscillator chain; hydrodynamic limit.
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2 LU XU AND LINJIE ZHAO

1.1. Nonlinear geometric optics for conservation laws. To illustrate the idea, for n > 1, we
start from an n-system of conservation laws

Of(t,v) + (m-Vy)J(£(t,v)) =0, f£(0,-)=f", (1.1)

where v € RY, finl ¢ CY(RYR™), m € RY, J : R® — R” is a smooth, nice function and

(m-Vy)J(f(v)) := <m188111 + ... +md£l> J(f(v)) € R™.

To avoid the discussion on boundary terms, we adopt the periodic condition f(¢,v + e;) = f(¢,v) for
each i = 1, ..., d. It is equivalent to say that the space variable v € T? := (R/Z).

The stationary solutions to (1.1) are given by constant functions. We are interested in the behavior
of the solution when the initial condition is slightly perturbed from the stationary. More precisely, fix
a vector w, € R™ and consider the perturbed system

Ofe(t,v) + (m - V,)J(F5(t,v)) =0, £9(0,") = w. +ew™,
where € > 0 and wi™ € C'(T%;R"). Suppose that f¢ decomposes as
£o(t,v) = wy + ew(t,v) + w(t,v), |w(t,v)] = o(e).

By expanding J at w,, we obtain the linearized equation of the first order component:
0 0 -
Ay migr =0, w(0,)=w", (1.2)

where A = DJ(w,) is the Jacobian matrix. Assume that (1.1) is strictly hyperbolic at w,: A has n
distinct, non-zero eigenvalues Aq, ..., A, with the corresponding left (right) eigenvectors denoted by
11, ceey ln (I’l, ceey I‘n>2

IQ(AJId - A) = ()\]Id - A)I‘j = 0, lgrk = 1{j=k}'

From (1.2), (d/dt)l;w = 0 along each characteristic lines (¢,v + A;jtm). Hence,
w(t,v) = Zl;-wini (¢;(t,v))r;, ¢j :=v— Ajtm.
j=1

To observe non-trivial evolution along these lines, we investigate at longer time e~ '¢. Assume that
the solution decomposes further to the second order as

n n
f°(t,x) =w.+e Z oi(et, ¢j)r; + & Z Gi(et, @)rj + o(e?),
j=1

j=1
where ¢ = (¢1,...,¢,) € R*", 0; = 0;(s,u) and 6; = 5;(s,u1,...,u,) are C* functions for j = 1,
..., n. Inserting the expansion into (1.1) and noting that Ar; = A;r;, we see that the terms of order ¢
cancel autonomously, while the higher order terms read

2y 0505t ¢)r; + 7Y (A — Ay )m -V, )65(et, @)r;
i=1 i

+82 Z ¥ (Ef,, @)(m : Vu)Uj/(Et, (bjl)H(I'j, I’j/) = 0(52).

7.3’
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Since Ijr; = 175—;3, the above holds true if and only if for each k =1, ..., n,

Osok (s, ug) + Z ((/\k —Aj)m - Vuj)&k(s, ULy e nylUp)
=1 (1.3)
+ 3 N H(rj,v)05(s,u;) (m - Vy)oj (s, u) = 0.
4.4’

We restrict our discussion to the non-resonant situation, in which the wave of each frequency Ay
performs self-consistent time evolution governed by the Burgers equation

dsoy + 1 H (rp, 1) (m - V) (27'07) =0, Vk=1,...,n. (1.4)
Comparing (1.3) and (1.4), &), then has to solve the equation
Z (()\j —Ap)m - Vuj)ék(s,ul, CeeyUp)

j=1
= Y LH(rjr)o(s,us)(m- Va)og (s up).
(4,3")#(kk)
By superposition, we only need to construct 7 as

.  H(rj,r;)0?(s,u;) .
Uk(s’u17"'7un) ::Z ZZA]_;\ ) ’ +Zak7j7j,(8’uj7uj')?
ik gk i

where the functions 6y, j» = 0% j 5/ (s, u, u') satisfies that

n

D (= A)m V) D> Gk (s,ug,uy)

j=1 i (1.5)
=Y LH(rj ry)oy(s,u)(m- Va)og (s, uj).
i

Hence, we formally obtain a sufficient condition for the non-resonant case:
(()\j —A)m -V + Ay — Ag)m - Vu/)ék,m/(s,u,u’) 6)
ZI;CH(I']‘,I'J‘/)U]‘(S,’U,)(TR'Vu)O'j/(S,u/), '

is solvable for all k, j, 7/ = 1, ..., n such that j # j. Notice that the formal calculation above
apparently relies on the smoothness of oy, so we need to assume that ¢ < Tyhock, Where Tghock 1S the
time when the shock first appears in the entropy solution to (1.4).

Observe that the non-resonant condition holds autonomously if n = 1. If n = 2, d = 1, without loss
of generality we can set m = 1 and solve (1.6) explicitly as

01,12 = c1o1(s,u)oa(s,u’), G121 = c182(s,u)duo1(s,u'),
G212 = C2X1(s,u)0y02(s,u'), G221 = ca02(s,u)or(s,u’),
where ¢; = —(A\; — \o) "M H(ry,12), ca = (A — A2) M5 H(ry,r2) and ¥q, Xy are primitives of oy,

09, respectively, i.e., 31 = fo o1du, Y9 = fo oadu. To make 3; well-defined on T, we shall assume in
addition that [, 0;(0,u)du = 0 for both j =1, 2, or equivalently

/Wini(u)du = / [01(0,u)ry + 02(0,u)rz]du = 0. (1.7)
T T

The non-resonant expansion is not in general valid for the system with n > 3. We refer the readers to
[13, 4] for rigorous justification and detailed discussion for the resonant case.
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1.2. Equilibrium perturbation. The goal of the present paper is to derive the non-resonant system
(1.4) of Burgers equations as a decent scaling limit for some stochastic interacting system. Formally
speaking, for a scaling parameter N € N, we study a particle system ((t) = {(.(t)}, where the
microscopic position x belongs to the periodic lattice ’]I“Iiv :=7Z%/(NZ%). Suppose that the system has
n conserved quantities g = (g1,...,9n) such that, under the Euler space-time rescaling (Nt,[Nv])
their empirical densities evolve with the macroscopic conservative system (hydrodynamic limit):

lim — > g(C(N)ds (dv) = £(t,v)dv, N — oo,

‘N—ﬁaJ]Vd
IGT%

where f is the solution to (1.1). To do the perturbation, fix a > 0, w, € R, wi*l € C!(T¢;R") and
start the dynamics from some initial distribution such that

% Z g(¢2(0))0 = (dv) = (w. + N=*w™(v))dv, N — ococ.
z€TY,

Let {or;k =1,...,n} be the smooth solutions to (1.4). In the non-resonant situation, the arguments
in the previous part suggests the formal asymptotic formula

1 n
~a Z g(C(Nt))dz (dv) ~ |w, + N~ Zaj(N*O‘t,v — Ajtm)r; | dv.
j=1

d
zeTy

Choosing £ < « and using the variables s = N™"¢, u = v — A;tm, one obtains that

1 K Lk
Nd—«a Z 1;6 [g(CI(NlJr 8)) - W*} 5%—N">\ksm(du) = Ul(c )(Svu)dua (18)
zeTY,
as N — oo for each k =1, ..., n, where
b ) f = )
Jéa’ﬁ)(s,u) _ 0’{6(.8 u) B if k=«
o (u) :==Lw™(u), if kK <a.

Remark 1.1 (Fluctuation). The convergence in (1.8) is available only if o < d/2. To see that, let us
assume that the equilibrium states of the dynamics are given by the family of canonical Gibbs measures
R Vw(dl,), where w is the corresponding equilibrium value of the conserved vector g. Starting the
dynamics from equilibrium initial state with w = w*. If g possesses finite variance, then the central
limit theorem for i.i.d. random variables yields that for each time s > 0,

1 *
Nz 2 Wlg(C(s) = wog (du)
EET%
converges weakly, as N — oo, to some Gaussian random field. The macroscopic time evolutions of
these fields are called the equilibrium fluctuations. For the equilibrium fluctuations for the models
studied in this paper, see e.g. [3, 7, 17].

In this paper, we rigorously prove (1.8) for two microscopic models: (i) the generalized exclusion in
any dimension, where the total number of particles is the only conservation law (n = 1) and (ii) the
nonlinear Hamiltonian dynamics in one dimension, disturbed by noises that preserve only the total
momentum and volume stretch (n = 2).

1.2.1. Generalized exclusion process. In Section 2 and 3, we study the d-dimensional generalized ex-
clusion process with at most K > 0 particles per site. By [18, 12], the density of the particles under
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the Euler scaling evolves according to the hyperbolic equation
dro+m-VJ(e) =0, 0(0,) =", (1.9)

where J(0) = o(K — p) is the macroscopic flux at density o, and m # 0 is the mean of the underlying
transition kernel. Fix g, € (0, K). We start the process from a perturbation of the constant profile

oW (u) == 0. + N™p" (u), (1.10)

where p'™ € C>°(T9). We speed up the process by N'** x < a, and choose the reference measure
associated to the smooth profile

0« + N p(N""%t,u — N"Atm),
where X := J'(0.) = K — 20, and p is the classical solution to the Burgers equation
dsp(s,u) —m -V (p*(s,u)) =0, p(0,u) = p™(u), (1.11)

up to the first shock appears. Then, in Theorem 2.1, we show that under some restrictions on x and
a, the relative entropy is of order o(N?~2%). In particular, we partially extend the results in [5, 20] to
0<a<l/3ifd=1,and to 0 < a <1ifd> 2. Asa result, in Theorem 2.3, we show the perturbed
quantity evolves according to (1.11).

The proof relies on the refined relative entropy method recently introduced by Jara and Menezes [10,
9], also used in many other contexts, e.g., [6, 8, 11]. Compared to the technique in [20], our proof does
not involve the spectral gap estimate or logarithmic Sobolev inequality for the underlying microscopic
dynamics, which is known as a hard problem for general interacting particle systems.

1.2.2. Anharmonic chain of oscillators. In Section 4 and 5, we study the one-dimensional chain of
(unpinned) anharmonic oscillators with conservative noise. The noise is modeled by Langevin ther-
mostats acting at each position and fixing the temperature to T = $~!. The only two conserved
quantities of the dynamics are the momentum p and the length v, hence it corresponds to the case
n = 2, d = 1. The hydrodynamic equation is given by the following p-system

atp = 3v7(t)a Ot = 51;137 (p7 ‘C)(O, ) = (p7 t)ini,

where T = 74 is the equilibrium tension. It is proved in [2] together with the energy conservation law
in the smooth regime and in [14] after the appearance of shocks.
Define J(p,t) := (—7(r), —p) and fix (p.,t.) € R? such that 7/(t) # 0. Denote by A = DJ(ps,t)

and note that Av_ = \/7/(v,)v_, Avy = —\/7/(v,)v for vy = (£/7/(vs),1)’. Similarly to the
exclusion process, we start the dynamics from a perturbed profile

(ps,t.) + N %Mo + N*aafiv+,
where o' € C1(T). We also speed up the time to be N'**t for some k < . Choose the reference
measure associated to the slowly varying parameters

(purte) + N7 0 (Nt v + jN"/7/(t.)t)v;,
j=+

where (0_,04) is the smooth solution to

@L@m+jﬂ§Lm@ﬂmm=q o (0,u) = o™ (u),
/(v

e N (1.12)
0504 (s,u) — ——=—=0, (0% (s,u)) =0, 04(0,u) =} (u).

/(¢
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We prove in Theorem 4.1 that in the smooth regime, the relative entropy grows with the order
o(N172%), As a consequence, we prove in Theorem 4.2 that the macroscopic perturbation is gov-
erned by the decoupled system (1.12).

The proof of the relative entropy estimate is based on the equivalence of ensembles for inhomo-
geneous Gibbs states and the uniform gradient estimate for the Poisson equation associated to the
generator of the stochastic dynamics, ¢f. [24, Section 8 & 9]. It is worth pointing out that, unlike the
exclusion, the equilibrium perturbation for Hamiltonian dynamics has not been investigated before,
mainly due to the technical difficulties in obtaining fine estimate for the relative entropy.

2. ASYMMETRIC GENERALIZED EXCLUSION PROCESS

In this and the next sections, we consider the asymmetric generalized exclusion process. Fix a
positive integer K > 0, which denotes the maximum number of particles at each site. The state
space of the generalized exclusion process is Q¢ = {0,1,..., K}Tlljv, For a configuration n € Q%, 7,
denotes the number of particles at site = € ’JI‘?V. Denote by {e;}1<i<q the canonical basis of Tﬁl\, and
let e, = —e;_q for i =d +1, ..., 2d. Given the jump rates {p; > 0;1 < i < 2d}, consider the generator
L which is given for any function f : Q4 — R by

Lyfn Z > coalm) [FOm=te) = fm)],

i=1 xGTd

where the jump rate is given by ¢; (1) 1= pine (K — Ngte,) and n™¥ is the configuration obtained from
n after a particle jumps from x to vy,

Ne — ]-7 zZ =7,
M*Y)=qny+1, z=y,

1., oOtherwise.

Assume that p; + pirq > 0 for each 1 < i < d. Denote m = (m;)1<;<qa € R? where m; = p; — pita-
Also assume that m is a nonzero vector, hence Ly is asymmetric.

The generator Ly has a family of product invariant measures indexed by the particle density. For
0 € [0, K], let v, be the binomial measure B(K, oK~ '):

vi(k) = (i) (%)k (1— %)K_k, VEk=0,.. . K.

Denote by VN the product measure on 4, such that uév(nw) = V;(?’]w) for each # € T%. Tt is not hard
to check that the family {Vg ;0 < p < K} is invariant under L. Observe that the average number of
particles per site under uév is 0= E,; [72]-

Let uno be associated to the profile o' in (1.10) with some @ > 0. For 0 < k < «, denote by
{n =n(t);t > 0} the Markov process generated by N'**Ly starting from py . Define

on(t,u) := 0 + N™%p(N""“t,u — N"Xtm), (2.1)

where p(t,u) is the smooth solution to (1.11). Note that for N sufficiently large, o € (0, K). Denote
by pn, the distribution of 7(t) and by vy ; the slowly varying product measure

X
vn,t(dn) = ® Ven . (dnz),  ona = on (t, N)' (2.2)
mer
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Let fn(n) := vne(n) " *un.(n) be the Radon-Nikodym derivative. For a probability measure p on
Q4 and some p—density f, i.e. f>0 and fﬂ‘ziv fdp =1, define the relative entropy as

H(fin) = [ Flogfdu= 3= fn)los flnutr)

neQd

To shorten the notations, denote
Hy(t) := H(fngvne), VEel[0,T].

Tt is well known that the the entropy solution to the Burgers equation (1.11) may develop shocks in
a finite time interval even if the initial density is smooth, ¢f. [15] for example. Since our proof depends
on the relative entropy method, which requires the reference density profile to be smooth, throughout
i

the article, we assume the initial density profile p™™ is smooth, and when x = «, fix a time horizon

T > 0 such that the solution to the Burgers equation (1.11) is smooth during the time interval [0, T].

The followings are the main results of this part.

Theorem 2.1. Suppose that Hy(0) = o( N4=2%).
(i) Ifd=1, a € (0,1/2), then for any t € [0,T], Hx(t) = o(N172%) for k € (0,a] N (0,1 — 2a);
i) If d > 2, a > 0, then for any t € [0,T], Hx(t) = o(N?2%) for k € (0,a] N (0,1).

Remark 2.2. [t is believed that in dimension d = 1, the above result extends to k € (0, «] even beyond
the appearance of shocks, cf. [20].

As a direct consequence of the above theorem, we have the following law of large numbers for the
perturbed quantities.

Theorem 2.3. Suppose the assumptions in Theorem 2.1 hold and further that o < d/2. Then, for
any ¢ € O(T?) and any ¢ > 0,
> e} =0,

. 1 K (oY)
ngnoouw,t{ Nice 2 (m—g*)w(%—N /\tm) —/W Pl (t, u)p(u)du

with the function p'®*) defined as

- pM(u), kK <a,
Pl (t,u) =
p(t,u), k=a,

where p(t,u) is the entropy solution to (1.11).

Remark 2.4. If K =1, the above results could be interpreted in terms of second class particles. The
dynamic is defined as follows: there are two kinds of particles, called first and second class particles,
in the system. On top of the exclusion rule, the first class particles have priorities to jump over the
second class ones. Precisely speaking, if a first class particle jumps to a site occupied by a second
class one, then the jump is performed and the two particles exchange their positions; while if a second
class particle jumps to a site occupied by a first class one, then the jump is suppressed. At the initial
time, independently at each site x, put one first class particle with probability 0., and one second class
particle with probability N~%p™i(x/N). Then, at the macroscopic time t, the density profile of the
second class particles, along the characteristic line of the PDE (1.9), is described by the function p®".

Indeed, denote by ni(t) (resp. n2(t)) the number of the first (resp. the second) class particles at site
x at time t, then 1, (t) = nL(t) + n2(t). Since the process of the first class particle is in equilibrium,
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the distribution of n'(t) is given by 1/ " for any time t > 0. Therefore, for any ¢ € C(T%),

Var(Nc::- « Z (ﬂ;(t) - Q*)@(%)) — O(N2a7d),

d
z€T4

which converges to zero as N — oo since o < d/2. As a result, for any e > 0,

3 1 1 =Nt rm
Jin ]|z 2 k- e (=200 | > <} o,
Together with Corollary 2.3, we have

zeTY,
1 2 z—MN'TrEm LK
ngnooum{’]w > one(e=Rtmy — [ gt u)p(u) dul >

Td
d
€T

o} o

3. RELATIVE ENTROPY FOR THE GENERALIZED EXCLUSION

In this section, we prove Theorems 2.1 and 2.3. Recall the profile gy defined in (2.1). To make
notations simple, in the following calculations, we denote

X
Oz = QN,z(t) = ON (t, N) , VYxé€ T?V'

For a probability measure y on Q% and a p—density f, define the Dirichlet form

2d 2
V=D Y o) (V) = VW) ). (3.1)

=1 zeT4 neQd,

We claim that for any vy ;—density f, there exists dg = do(0+) such that

2d
N(fivne) = 502 Z Z Ne (K = Nave,) (\/f(n”"”“ V() ) N, (1)- (3.2)

=1 zeT¢ neQd

Indeed, the claim holds obviously if p; > 0 for all 1 <4 < 2d. Suppose that p; = 0 for some 1 <14 <d,
then p;14 # 0 due to our assumption. Recalling that e; 4 = —e;,

S oK ne—e) (VIGEE) ~ T owela)

= Z(nm +1)(K —ngp—e, +1) (\/f(n) — \/f(nx—ei,w))Q U (60",

n
for each x € T4,. Observe from the definition of vy ; in (2.2) that
vNe(n"0T) _ Oz No—e, (K — 1)
vN(n) Oz—e; (K = No—e, +1)(nz + 1)’
where
Oz
0, = .
K — Ox

Since |0z — 0+] < N7%|p||leo and 0. € (0, K), hence there exists some C = C(p.) > 0, such that
C~!' <0, < C for all x and sufficiently large N. Therefore,

Sk — nee) (VIGET) ~ /T) vweln)
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> O Y nec (K — o) (VIO ~ VTG e,

which is enough to conclude the claim.
Recall that fnx: = pn, t/VNt and let Y = (Vi,\i)_luNt be the derivative of vy, with respect to
the stationary measure 1/ . By Yau’s relative entropy inequality (see Lemma A.1),

d
%HN( ) < — N Dn(fnivne)

d
+ % [N1+“£7V,t1(n)dtlongv,t(n) pn,t (1),
neQg

where L ; is the adjoint of £Ln with respect to vn,;. The main idea is to write the right-hand side
of the above inequality as CHy (t) + o( N9~2%) for some finite constant C independent of N, and the
result then follows from Gronwall’s inequality.

Since ¢;;(n) is the jump rate from n € Q% to n®*+¢, Lemma A.1 yields that

r+e;,xr
* VNt - ) T4e;,x
ERIE 3 { Ly el )—cx,xn)}
1=1 4 ETd
Oz+e;
= Z Z {[{_4_;1733"1‘5'&([( — 1) = N (K — 77x+ei)}
i=1 @ET” Qm«kel Ox

= Z Z pigx(Kf Qz-i-ei) {nm+ei(K _nm) . nz(K—noH»ei) }

i=1 IET‘Ii\, Qa:+ei (K - Qa:) Oz (K - Qw-ﬁ-ei)

For any configuration n € Q4, and any site € T%, denote

Nz — Oz
Wy = we(n) = ————. 3.3
(n> Qm(K - Qm) ( )
It could be checked directly that for x # y,
T K- K — T
e (K —=my) 0y (K —ns) _ K [ws — w0y + (05 — 0y)watwy] (3.4)

0 (K —0y)  0y(K —02)
Recall that e;4q = —e; for 1 <4 < d, and (3.4) permits us to write L} ,1(n) as

d
M) =33 bv(wa+e){(wrre = wr) + (@rres = 0o)watiare 1

where for 1 <i <d,

bN(mva +e;) = K[ngm(K - Qerei) — PitdOute; (K — Qz)] .
Now we calculate % log N +(n). Since vy + and I/é\i are both product measures,

0, 1406,
loghne(n) = > [le log <Q*) — Klog (1 i gﬂ '

z€TY,

The time derivative then reads

d 010 040z
%10g¢Nt() Z{ﬂm ;z _Kl—f—ﬁz}

d
zeTy
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_ 8tQ:E 6tQ;c _
B Z K{% QI(K_ Qz) - K — Qz} B Z waath~

IET% mET‘fV
To sum up, we have shown that
d
%HN(t) < —N""Dy(fneivne) + R + Enyes (3.5)
where
d
Rye = D> ) alwewaye ina(n), (3.6)
neQd, i=1 zeTd,
ar, = N"by(z,2+ €;)(0ote; — 0a), (3.7)
and

d
Eni= ) {Z > Ny (2,3 + €5)(Wae, —we) — D szatgm}HN,t(n).

neQq, =1zeTq, zeTY,

3.1. Proofs of Theorems 2.1 and Corollary 2.3. In this subsection, we prove Theorems 2.1 and
2.3. We first deal with the error term En ;.

Lemma 3.1. There exists a constant C' independent of N such that

(C/‘N,t S HN(t) + CNd+2F"72a72.

Proof. For a sequence {a,;x € T4} and 1 < i < d, let V;a, := ayye, — @z and Viag = Gz, — Q.
Using the summation by parts formula,

d
Eny = Z () Z Wy lNHmZV’[ (bn(z,z+€)) — Katgac] .
nens, zeT% i=1
By the definition of by and Taylor’s expansion,
Vi (bn (2,7 + €5)) = N2 Km0, p* (N”‘at, % - Nwm)
— N7 KAm;0,,p (N’“”"*O‘t, % - N“)\tm) +eni(z),
where ey ;(z) = O(N~27%). Meanwhile, by the definition of gy in (2.1),
r0x = [NF7220, — N*"*A(m - V.,,)]p (N”_at, % _ Nwm) .

Since p solves the Burgers equation (1.11), we can rewrite the Ey,; as
d
Ene =N 37NN weeni(@) pne(n).
neQd, i=1 zeTd,

It is easy to see |Ey | < CNI=1HR=2 To get a better bound, by entropy inequality,

Ent < Hn(t) +log { Z exp {N1+N zd: Z wzeNﬂ-(w)} I/N,t(n)]

neQd i=1 zeTd,

d
= Hn(t) + Z log [ Z exp { N1*e, Z eni(z)} VN}t(n)} . (3.8)

zeTY, nend,
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Note that w, is bounded and has zero mean with respect to the measure vy ;. Using the basic inequality
e® <1+a+(1/2)a%e, log(1+a)<a,

we have
Eny < Hy(t) + O(NI=2T2r=20) (3.9)

This concludes the proof of the lemma. O
The following result bounds the term Ry, whose proof is postponed to Subsection 3.2.

Proposition 3.2. For{ > 1, let

‘ d=1,
gi(l) = qlogl, d=2, (3.10)
1 d>3.

3

Then, there exists a constant C' independent of N such that

Nd
Ry < N D (fnesvng) + C [NF7% + N572071dg,(0)] {HN(t) + Ed}
+ C[Hn(t) + NU2emta=2pdg,(0)].

Now, we are ready to prove Theorem 2.1.

Proof of Theorem 2.1. In Proposition 3.2, take

Z\](l—}-?oz—/-c)/?7 d= 1,
(= ¢N) = { NO+22-/2) JIoe N, d=2,
N(1+2a—m)/d, d> 3.

Therefore, in dimension d = 1, if Kk < 1 — 2a and k < «, then

%HN(t) < C(l _i_Nn—a)HN(t) +C(N(1—2a+r€)/2 _~_Nn—2o¢ +N2n—2a—1) < CHN(t) _|_0(N1—2a).

In dimension d = 2, if Kk < 1 and k < «, then
%HN(LL) <O+ N* ) Hy(t) + C<N1‘2°‘+“ log N + N?Ha) < CHy(t) + o(N2729).
In dimensions d > 3, if Kk < 1 and k < «, then
D H(1) < O N™)Hig(t) + O(N4201 4 N2202) < Oy (1) 4 o(N*-2%)
We conclude the proof by using Gronwall’s inequality. O

The proof of Theorem 2.3 is a direct application of the entropy inequality, cf.[12, Corollary 6.1.3]
for example. We sketch it below for completeness.

Proof of Theorem 2.3. It suffices to prove

1 o
hm Z ‘W Z (”71 - EVN,t[UI])@(W)‘MN,t(n) =0.

N—00
neQd zeTY,

By the entropy inequality, for any v > 0, the integral above is bounded by

Hn(t) 1 Y Nt
v+ oy tor | 3 en{ [V 5 o B e (<257 oo
neQd zeTY,
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By Theorem 2.1, the first term above converges to zero as N — co. Since
elll < e +e7¢ log(a+b) <log2+ max{loga,logh}

for any ¢ and any positive reals a, b, and since a < d/2, we could remove the absolute value inside the
exponential in the second term above, and rewrite it as

iz 2 1ox| X e AV~ B D () b

zeTd nend,
Using the basic inequality e® < 1+ a + (1/2)ael®l and log(1 + a) < a, there exists a finite constant C
independent of N such that the above formula is bounded by
C
,YNd72a

Since « could be taken arbitrarily small, the proof is completed. O

x N x (yN=%)2 = C.

3.2. Proof of Proposition 3.2. It remains to prove Proposition 3.2. The first step is to properly
decompose the term Ry ; defined in Eq. (3.6). For £ > 1, let py(-) be the uniform measure on A =
{0,1,...,0 =1} d.e. po(z) = 04 if 2 € A¢ and = 0 otherwise. Let q; = pg * py be the convolution of
pe with itself,

Q=)= > pe(ype(z —y), z€TE.

yeTE
For x € T4 and £ > 1, the spatial average of w, in the box A9, | is defined as

Wﬁ = Z Wa+2qe(2).

ZET%
Define
d
¢ ¢
RN,t = Z Z Z af\,fatwﬁwm—&-eiy’Nyt(n)' (311)
neQd, i=1 zeTd,

Using the definition of flows introduced in Subsection A.2 and summation by parts formula,

d
RNJ — R?\/,t = Z Z Z aﬁfwwmwxﬁ-erl—z(éO(z) - q((z)):uNﬂf(n)

nEQ‘}V =1 $,ZET]dV

d
=Y > Y alwswnrea(d(z,€5) — ez — €5, ;) na(n)

neQy, 1=l z,2€T

d
= Z Z Z aﬁlmwx(wx+ei+z*ch+e7:+ej+2)¢€(zaej)ﬂN,t(n)~

nEQ‘]iV i,j=1 m,zGT‘Ii\,

Make the change of variables x — x — z — ¢;, and put

d
h;,x = Z Z a'g\,fxfzfeiwwfzfeiqbf(’z?ej)’ (312)

i=1 zeTd,
then we have

d
RN,t - R?V,t = Z Z Z h_g,l(wx, - ww+ej) ,LLN,t(T’)'

neQd, =1 zeTq,
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To further decompose the term on the right-hand side of the last line, we introduce the following
integration by parts formula.

Lemma 3.3 (Integration by parts formula). Let h: Q4 — R be such that h does not depend on the
values of 0, or 0, for some x, z € T%. Then, for any vy ,—density f,

> h)[ws —we] Fnen) = == Y ()t () (£ (™) = F(n)) vaa(n)
K
neQd, ney,
) Z h(n)f(n)wzwwVN,t(n)a
neN,
where (i )
N Nz — Nz
sx,z(n) - Q‘L(K _ Qz)‘

Proof. For K = 1, the result is proved in [10, Lemma E.1], and we extend it to general K. Since h
does not depend on the values of 7, and 7., using the change of variables 1 — n*%, we may rewrite
the second term on the right-hand side of the above equation as

SN 2,2y . 2,
LS n (2 oy ) o ).

nead, vn,(1)

Direct calculations show that

SQZ(UZ’I)VN,T‘/(TIZ’I) — nZ(K - T]%) =3 (77)
vN () 0:(K —0.) 77
We conclude the proof by Eq. (3.4). O

Since ¢y is supported in Age—p the value of h?m does not depend on those of 7, and 7,4, for
1 <j <d. Recall un+(n) = fne(m)vn(n). By Lemma 3.3, we have

Rt — Nt K Z Z Z hz@ Jxv+e]7w th( wtes I) - fN,t(U)) VN,t(U)

J=1 z€T¢ neQ,

- Z Z - Qa:—&-e] Z h] 2WrWr+te; IN, tVNt(n) (3.13)

J=1 z€eTq, neQd,

By Cauchy-Schwarz inequality, for any « > 0, the first term on the right hand side of the last equation
is bounded by

gi Z Z SiVJrej,x [\/fN,t(n:rJrej,r) _ \/fN,t(n>}2VN,t(77)

J=1 z€TY, neQ,

2K2 Z Z Z w+ej [\/th eresT +\/th ] vne(n). (3.14)
j=1 Ier Eﬂd
Since g, € (0, K), for N large enough, there exists a constant C' = C(g«, K) > 0 such that S’g]g\{z <C
for any x,2 € T%. Then, by (3.2), the first term in (3.14) is bounded by C1yDn(fn,¢;vn.¢) for some
C1 = C1(04, K, dp). Since for any n € Q4 and any x, 2z € T
vN.t (%) _ (K —n2) 0-(K — o)
vne(n) (K +1=m)n:+1)) 0 (K — 0:)

<C:= C(g*7K)a
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by Cauchy-Schwarz inequality and exchange of variables 1 + n®%%¢  the second term in (3.14) is
bounded from above by

*Z Z Z VIt (m)vne(n).

J 1zeTd, neQg
Take v = N1%/Cq, together with (3.13), then we have shown that

R < N'Dn(fnesvne) + Rivye + N?+“Z > () v vna(n)

J=1 z€T¢ neQ,

d
+Z Z (Qw+ej — 0z) Z hﬁ,zwxww-i-ejfN,t(n)VN,t(n) (3.15)
J=1zeTq,

neQy

for some C = C(p., K, dp).

Next, we shall deal with the last three terms on the right-hand side of the above decomposition
(3.15) respectively. We first deal with the term Rfv’t defined in (3.11). Observe that

Z Z ozz mcugngwe Z Z a; wxwz+ei+zPZ(y)P€(2_y)

=1 zeT¢, =1 z,y,2€T4,
d
= § E ( E alz yWa— ypé )( E wl-&-el-l-zpf )
=1 xe’]I“fV ye’]I‘d ze'ﬂ‘d

In the last identity, we reindex = by x — y and z by z + y. By entropy inequality, for any v > 0,

1
Rivi < © (HN<t>

v [ T e (130 X (3 ety i) (3 sorecsane)) Jowetn)])- 310

neQd, =1 zeTg, yeTY, z€TY,

Note that for £ large enough, the two random variables

( Z aw _yWar—yPe(y )( Z Warpe;+2Pe(2 ))

yeTY z€T%,
( E a; x”—ywx”—ypf ) ( E Wx!'4e; +Zpl ))
yeTe, z€T%,

are independent with respect to vy if ||#/ — 2”||oc > 3¢. Denote
x=2z (mod /)

if x; = z; + lk; for some k; € Z and for all 1 < ¢ < d. Note that for any = € 11’5{,, there exists a
point z € A, ; such that x = z (mod 3¢), and for fixed z, if 2/,2” = z (mod 3¢) and 2’ # 2", then
[|#" — 2""||cc > 3¢. By Holder’s inequality and independence, the second term in (3.16) is bounded by

WZ 2

d
1= 1z€A3£ N
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log[ Z exp {7d(3€)d Z ( Z aw yWa—yPe(y )( Z Wate;4+2Pe(2 )}VNt( )}

neQd, z:z=z (mod 3¢) yeT% z€TY,
< TG0 >y
i=1 zETd
log[ Z exp {Wd (30) ( Z ary_yWo—yPe(y )( Z Wate;+2Pe(2 )}VN,t(ﬁ)]- (3.17)
neQy yeTd 2€TY,

We claim that the for each x € T4, the random variable
N
Z ai,x—ywx—ypé(y)
yeTe,

is sub-Gaussian of order CoN2%~29¢=4 with respect to the measure vy, for some constant Cy =
C2(0x, K, 0y, p). Indeed, first note that by the definition of ame in (3.7), there exists a constant
C = C(p«, K) such that

|| < CllOw;plloc N

Since w, < C(o4, K) for N large enough, and has mean zero with respect to vn 4, by Lemma A.5, the

random variable af\,;wm is sub-Gaussian of order CN?*~22 for some constant C' = C(g., K, 8y, p) with
respect to v . Therefore, for any 6 € R,

log{ Z exp{ Z a“r yWr—yPe(y )}VNt( )}

nend, yeTE,
= Z log[ Z exp {Gaf\fwfyw$7ype(y)}VN,t(ﬁ)}

yeTY, neNY,

02

S 9 Z 02N2K_2apﬁ(y)2 HQNQH 204(—

yeTY,

DN | =

Similarly, one could prove that ZZGT% Wote,+2Pe(2) is sub-Gaussian of order Cof~¢. By Corollary
A4, taking v = (4C2d3?) "I N*~" we bound the term in (3.17) by N%log3/(3¢)?. Therefore, there
exists a constant C independent of N such that

Riye < o (v + 7). (3.18)

The third term in (3.15) is treated in the same way as above. Using Lemma A.2, there exists a
constant C' = C(py, K) such that the random variable hﬁ,x defined in (3.12) is sub-Gaussian of order

ON>20 % 7 u(z,e5)? < CaN*2gy(0)
z€T%,

with respect to the measure vy, for some constant C3 = C3(p«, K,Cpy). Also note that the two
random variables h?y and h?m,/ are independent under the measure vy if |2/ — 2”||cc > 3¢. By
entropy inequality and Holder’s inequality, for any v > 0,

N1+n Z Z Z th (m vn,t(n)

neQd =1 zeTd
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< Wllﬁ(HN(t) +log | - exp {vi > (hf,x)Q}vN,t(n)D

neqsd, i=1 et
1 1 &
< SN (HN(t) + FIETL Z Z log [ Z exp {vd(?)ﬁ)d(hf@f}ujv,t(n)}). (3.19)
J=1z€eT, neNY,

Take v = [4ng3dN2”_2"£dgd(€)] _1, then by Lemma A.3, there exists a finite constant C' independent
of N such that the third term in (3.15) is bounded by

(3.20)

Now we deal with the last term in (3.15). First note that
|Qm+6j —0:] < N_l_a”auijoo'
By entropy inequality and Holder’s inequality, for any v > 0, we may bound the last term in (3.15) by

d
’yN;HO‘ <HN(t) + log [ Z exp {’yz Z N (e, — Qx)h§7$w$wx+€j }VN,t(n)}>

nead, i=1zeT,

1
< W <HN(t)

+ @ Xd: Z log [ Z exp {7d(3£)dN1+a(Q$+ej - gx)h?zwxwarej}yN,t(n)}>. (3.21)

J=1zeT¢ neQy,

Since |wewzye;| < C = C(0«, K), and we have already shown that h?z is sub-Gaussian of order
C3N2:=22g,(0), then, for any 6 € R,

log{ Z eXp{ehi’mWa:wafkej}VN,t(/rl)jl < log[ Z eXP{CWhi,z”VN,t(n)}

neQd, neQg
g1og[ 3 (exp{C’@hifc}+exp{709h§7x}>l/1v,t(n)} < log2 + CO2N*~20g,(0)  (3.22)
neQd

for some constant C = C(g., K, C3). Therefore, there exists some constant C' independent of N, such
that the term on the right hand side of (3.21) is bounded by

c N e N
W [HN(t) + éT X gzdgd(g)’};Nzﬁ 2 + éT:| .
Take v = N~1=%, then the last line is bounded by

d
C’(HN(t) + tlgy(O)NI+2r—ta=2 4 JZ—d) (3.23)

We conclude the proof of Proposition 3.2 by using (3.15), (3.18), (3.20) and (3.23).

4. 1-D CHAIN OF ANHARMONIC OSCILLATORS

In this and the next sections, we consider a chain of N coupled oscillators in one-dimensional lattice
space. All particles have identical mass 1. The momentum and position of the particle z =1, ..., N
are denoted by p, € R and ¢, € R, respectively. The interaction between two particles x — 1 and z
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is determined by an anharmonic spring with the potential energy V (g, — ¢z—1), where V' is some nice
function. The total energy is given by the Hamiltonian

2
Hn(m) =D %4“/(%—%—1)7 Vn e Qn.

z€T N

The corresponding Hamiltonian dynamics then reads
Dz = —0g,HN, Go =0psHn, VzeTy.
Assume that V € C?(R;R) and some constant ¢ > 0, such that
cr<V"'(r)<e, VrekR

Define 7, := ¢, — q,—1 to be the inter-particle distance and require the periodic boundary condition:
(pn+1,7N+1) = (p1,71). The configuration space is then Qy = (R?)T~ | with its elements denoted by
n=A{ne = (Pa,72);x € T}

Observe that the total momentum, the total volume and the Hamiltonian are conserved. Under a
generic assumption of local equilibrium, Euler equations can be formally obtained as the evolution of
these quantities. However, to prove it for the purely deterministic system turns out to be a difficult
task. Proper stochastic noise helps us solve this problem. Suppose that at each bond (z,z + 1), the
deterministic system is contact with a thermal bath at fixed temperature. More precisely, fix some
inverse temperature 5 > 0 and define

0 0

- 8Tx+1 8rm’

yx : y; = ﬁ(vl(rw-&-l) - V/(Tm)) - yx

For some deterministic parameter vy > 0 that regulates the strength of the heat bath, consider the
operator Ly given by

1 *
Ly = Ay + SN, Sxi=—5 > ViV, (4.1)
z€T N
where Ay is the Liouville operator given by
0 , , 0
AN = Z (px, _pa;—l)arz + (V (Tz+1) -V (rl))aipm

x€TN
The Markov process generated by Ly is equivalently expressed by the following system of stochastic
differential equations: for each x € Ty,

dpz(t) = (V' (ro41) — V'(ra))dt,

d?"x(t) = (p$+1 *pm)dt -+ B’YTN(V/(rm+1) —+ V/('f'xfl) — 2V/(7'I))dt

+ AN (dBf ' —dBY),
where {B*;x > 1} is an infinite system of independent, standard Brownian motions. Notice that the

total momentum ) p, and the total length ) r, are the only conserved quantities of the microscopic
dynamics. The conservation law of energy is no longer preserved by Sy .

4.1. Stationary states. The stationary states of Ly are given by the family of canonical Gibbs
measures indexed by the global momentum p € R and tension 7 € R:

I/g.r(dpd’/‘) = ® \/Zexp {—W} dp, ® 7 (dry),

z€T N
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where the probability measure 7, is defined as

WT(dT) = 6_5(V(T)_TT)d’I", Z(’T) = / e_B(V(T)—TT)dT.
R

Z(7)
Observe that the dependence on ( is omitted, since it is fixed hereafter. It is easy to see that Ay,
Sy are respectively anti-symmetric and symmetric with respect to the Gibbs states. Moreover, for all
smooth functions f, g on Qy,

/QNf(sNg /QN S (0.f) (Veg)d

z€TN
Define the Gibbs potential G = G(7) for 7 € R and the free energy F = F(r) for r € R by the

following Legendre transform

1
G(1) = =log Z(1), F(r):=sup{rr—G(r)}.
6 TER
The average length 7 = 7(7) and equilibrium tension 7 = 7(r) are then given by the convex conjugate
variables

(1) = E. [r] =G (1), 7(r):=F'(r).

4.2. Equilibrium perturbation. As illustrated in Section 1, we fix (p.,t.) € R? and consider the

distribution gy o associated to the profile (piii, viti

pRy [P+ - ini [ EVT ()
<ti§i> = <t> +N a;o—j vj, Vg = < . ,

where a > 0 and o' € C°°(T). In addition, we require that (cf. (1.7))

/Ta,(u)du = /TUJr(u)du =0.

For 0 < k < a, denote by {n(t);t > 0} the Markov process generated by N'**Ly and the initial
distribution px 9. As usual, we use the notation py, for the distribution of n(¢) on Q.
For (t,u) € [0,T] x T, define (p,t) = (p,t)(¢,u) by

pN’ p* — K—Q . K
= + N E ;i (N + JN"\/T/(vs)t) v,
( > (m) J( t,u+7g (v )t) F

TN et

) given by

where o_, oy solve the decoupled system of Burgers equations (1.12). Denote by vy, the slowly
varying product measure

UN,t d?? ® V N N dnx (pi\i’Ti\/) = (pN?T(tN)) (t’ %) :

xer

Let fn ¢ be the Radon-Nikodym derivative dpn . /dvn,. and recall the relative entropy

Hn(t) = H(fn;vng) o= fn,elog fvedvn . (4.2)
QN

Recall that our argument relies on the smoothness of o, hence we require that ¢ € [0, 7] for (i) any
T < Tihock, the first time when shock appears in the entropy solution to (1.12) if k = « and (ii) any
T > 0 if kK < a. The first result is stated below, cf. the case d =1 in Theorem 2.1.

Theorem 4.1. Suppose that Hy(0) = o(N'72%) and o € (0,1/2). If k € (0,a] N (0, (1 — 2c)/3) and
Nortda—l « vy < N17F ) then Hy(t) = o(N*729) for any t € [0,T).
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Theorem 4.1 is proved in Section 5. With Theorem 4.1 and exactly the same argument used in the
proof of Theorem 2.3, we obtain the equilibrium perturbation.

Theorem 4.2. Under the assumption of Theorem 4.1,
. 1 Tz =T Pz — P« x K )
ngnoow’t{’Nla 2 ( 2 2 T/(t*)> 4 (N NV (et
z€T N
> e} =0,
. 1 Te — s Dz — Px (1 v )
]\;gnocMN’t{’Nla Z ( 2 +2m>¢ N+N T(t*)t

z€T N
>a€}—07

—/ olor) (t, u)p(u)du
Tn

—/ o_(i_a’m) (t,u)p(u)du
Tn

for any t € [0,T], p € C(T) and € > 0, where

ak or(t,u), if0<a<i, k=a,
oi”(ze,u)::{*( o 5

ol (u), if0<a<%,0</<;<min{a, 1_320‘}.

5. RELATIVE ENTROPY FOR THE OSCILLATOR CHAIN

We have seen in (1.6) that, for a system of 2 conservation laws, the non-resonant system of pertur-
bations (1.12) requires proper second order correction terms. Hence, we choose the modified profile
(pn, T ) (¢, u) given by

(*’N) + NN G (N u — N7 (v )t u+ N7 (vt v;,
TN :

j==
where for (t,u_,uy) € [0,T] x R,

7" (¢,)

) Ji (t> U‘Jr)

L [Ouo— (t,u—)S4 (tug) + o— (tus)oy (tug)],
)
)

&+(t7u,,u+) = Jz(tvu*)

(x.)

T ) [o-(t,u_)oy (t,uy) + S (t,u_) oy (tuy)].

Here ¥4 = fo o+ (t,u)du are the primitive functions of o.

Let 7y, be the product measure on 2y associated to the profile (p,t)(¢,-). Recall that py, is the
distribution of the dynamics 7n(t). Denote by fN,t Radon-Nikodym derivative of p; with respect to
vn, and by Hpy (t) the corresponding relative entropy. Also recall the relative entropy Hy (t) in (4.2).
The following lemma is straightforward.

Lemma 5.1. For any t >0, Hyx(t) = o(N'72%) if and only if I?N(t) = o(N172).

Proof. Assume first that Hy(t) = o(N'~2%). By the definition of relative entropy,

~ dv
()~ Fix(0)= [ awadiss oo =10 (524,
Qn VNt
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Direct calculations show that gn (1) is equal to

B3 [N =) pw = BY) + (7Y = Y (s — )]
z€T N
SN N2
5y [ +G(%5>—G(T;V)—%iv<%§—ff>]

z€T N

for each 7 = (ps, 72)zeTy € n. The second line is bounded from above by O(N!~4%). Meanwhile,

by the entropy inequality, the integral of the first line is bounded from above by

ﬁg>4’pg> T "P§> ~
1 d .

x€TN

Observe that the last term is bounded by O(N'~%®) and hence Hy(t) < 2Hy(t) + CN 4> =

o(N'=2%). The inverse assertion follows similarly.

Let 1+ be the density function of 7y ; with respect to some fixed reference measure v,
loss of generality, we can choose (p,7) = (0,0). Define the Dirichlet form (¢f. (3.1))

N(fN,t;VN,t) ZZ/Q Z (yz\/f7¢>2dVN,t~

z€T N
Standard manipulation gives
d ~

_ ~ d .
%HN( ) = / e (NHHL'N log fne — T log ¢N,t> dvp .
Qn

Recalling the definition of Ly in (4.1), we have
fNJLhV]Ogjkﬂt::[hvaj _'3%[ j{: f&i(}%fﬂﬁ)2

z€T N

2

= Lnfni— 27N Z (ym\/ fN,t) .
z€T N

Integrate it with respect to n; and notice that

o . di . )
AN fndUN = —/ INtANYN Mt — —/ IntANlog YN dUn 4,
QN Qn (N On
~ 5 ~ dv
/QN SNfnidon: = — = Z ymfN,t VNt T/JJJ\:’,:

wETN
_ 1 ~
< Dn(fnei0ng) + Z/ Int Z (Ve 10g¢N,t)2dl7N,t,
QN z€T N

where the last estimate follows from Cauchy—Schwarz inequality. Hence,

d ~ : x y
%HN( ) < —ANN""D(fns;0n0) + IntINdUN
QN
NN 2 2.
L — o I Z (Ve log¢n 1) din z,

z€eT N

where Jy ¢ := (—=N'"T" Ay — d/dt)log .

O

. Without
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. . — ~ N
With the choice (p,7) = (0,0), log¥n+ = log(din /1) Teads

g =8 Y [ Bl 280, — (7)) + G0 )|

z€T N

Elementary computation then shows that

S eloguw)’ =5 S (7, -7,

z€Tn zcTN
=N ~N SN
-T Pz — P
—Anlogn: = z+1 “ - AR
T;:N pY b ) \V(e) - 77
d p Pz _'ﬁN
-4 - @ ). @ .
&8 vNe= 0 2 ( ) (T’(Eﬁ}’)(rw — &)
z€T N
Therefore, we finally obtain the following inequality, ¢f. (3.5):
d ~ s
%HN( ) < —INN""D(fniOn) + B(Rne + Ent), (5.2)
where
Ryt = fn Z dis V'(r Y= 7N — ) (rp — B M]di,
E o, ot at P p p t;

€T N

WNTEB vy N [ P BY .
Ent = —(V . o dvpn ¢
N,t - / thTeTN [ 4 ( Tw) +€:1: V/('I"x)—%N VNt

Here we use the abbreviation Vf, = f.11 — fz, V*fo = fo—1 — fo and define

N — Nltr V%:Icv p;c
v ) (5 )

5.1. Proofs of Theorem 4.1 and 4.2. Theorem 4.1 follows from the inequality (5.2), Propositions
5.2 and 5.4 below.

Proposition 5.2. There ezists a constant C' independent of N, such that
5N,t < ﬁN(t) _i_C(,yNNn—Qoz _’_N—1+2n—2a +N1+2fi—60¢).

Proof. Recall that the profile (py,ty) is explicitly given by

P (s “J j(57U—7U+)
() o= (7))« [+ 2],
where oy = o4(s,u), 64+ = &(s,u1,us) are smooth functions given respectively by (1.12) and (5.1),
s=NF"% v_ = (— ( «), 1), vy = (/7' (rs), 1) and
u_ =u— N7 (v )t, up =u+ N7/ (vt

For the first term in Eyy, since V7Y < N~!sup, |9,7(¥(t,z))| < ON~1—,

]V1+n 2 _ ~ 9 _
%/ fN,t Z (VT:]EV) dVN,t S C,YNNH 2(1.
QN

z€T N

We focus on the second term in £y . By Taylor’s expansion,

vy 10 (7(En) x P
(Vﬁi\’_) ~Nou ( iy ) (1) +O ).
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Expanding the function (p,t) — (7(v),p) at (p«,t«) up to the second order,

N 1 142
VPI_I = Nlta N1+2a

Oullo_(s,u_) + o4 (s,us))?
4 Qullo—( 2]\)ﬂﬂ;( +))°]

where A = [(1’ "'/(‘*)} and b = (7"(t.),0)". Meanwhile,

d(ﬁi\[):z:[ﬁajsuj ]\/ t*aojsujl

N7n+20¢ Kk+a

b+O(N—2—a +N—1—3a)7

V) Z =0y + 0u,)5 (s, u, uy)vj + O(N3%).
j==

—k+2a
Noticing that Avy = +£4/7/(ts)vs for j = =+,
1
& = it [ 0o s~ 2P0 (0o

+ [ = 0504 (s, uq) + 20/ ()00, 64 (5, u—, up) oy (5.3)

Oullo—(s,u_) + oy(s,uq))?]
2

We show that the terms in the first bracket vanishes. From (5.1),

+ b} + O(N- e g NRe),

O (5 14) = = 0, [ () + 20 (5. ) (5,0,
Ouy 04 (S u_,uy) = _;—;/’((tti)) Oulo? (t,uy) +20_(s,u_)oi(s,uy)].

Therefore, with the identity 7" (v,)(v_ —vy) = —24/7/(v.)b,

— 24/ 7 (t4) Oup 00— (S, u—y U )U— 4 24/ 7" (v4) Oy 01 (S, u—, Uy )V
_ T
44/7'(ty)

The bracket in (5.3) is then equal to

T//(t*)
4/7'(vy)

w03 (s,up)vs — 0% (s,u)vy] — Oy fo—(s,u")oy (s, uy)]b.

—0s0_(s,u_)v_ — [ vy — ;b} 0o (s,u_)

— 0504 (s,us)vy + 4\/% 3 1 Duo(s,uq).
Observe from (1.12) that it is identically zero, hence
ey SCO(NTHHrme g Nrode),
The conclusion then follows from the relative entropy inequality. O

Corollary 5.3 (Harmonic chain). When the oscillators perform harmonic interaction, i.e., V(1) o< 2,

R, s identically zero. Hence, Theorems 4.1 and 4.2 hold autonomously.
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Proposition 5.4. There ezists a constant C' independent of N, such that

N1+n - B ~ _1
Ryt < WTDN (fneong) +C (HN(t) + VNSNgﬂfga) .

Proof. We follow the proof of [24, Lemma 3.1]. To shorten the notation, let
all =0,y (t7 %) o e =V () —T(E) = 7)) (re — E).
Observe that

)| < N7 jN"0,05]v;| + O(N"72*) < CN"~°,
j=+
|ay — a]yv| < Clo — y| N~

Fix a mesoscopic scale £ = ¢/(N) < N and define

-1
= %Z@cﬂp ¢y = E erﬂ/] :
y=0

First, one can replace ¢, by its block average. The error is bounded by

¢€

aN _ oN
RN,t_/ fN,t Z Qg ¢[ dVNt—/ th Z ¢zZAdDN,t
QN z€T N z€TN y=0
< HN(t)-i-Cg? 714’2/1720(.

Next, let wi = wﬁ(rw, ..., Tz4e—1) solve the Poisson equation

-2

* L _ /L
Z yt,w+yyiv+ywx - ¢x -
y=0

where for each z, J;, is the adjoint operator of ), with respect to vy :
Vie =BV (res1) = V'(ra) =721 + 70| = Va.

Then, for each x € Ty,

-2
fN tQy (¢€ Qgi)dﬂN,t = / Z szrny t yx+ywﬁ)dﬂN,t~
QN =

Summing up for x € T and applying Cauchy—Schwarz inequality,

; 0N g ANNIHE Yoty fni)? -
/QN SN Z ai\](‘ﬁi*d)ﬁ:)dVN,t < W_U/QN Z Z 4;]\” dUn ¢

z€TNn z€T N y=0

B¢ —1) /
NNl-&-n Qn

z€TN

23

{—2
N)2 Z fNN,t (yat+yw£)2dﬂ]\]7t.
y=0

The first term in the righthand side gives BflyNNH’”"DN(fN,t; Un,t). To estimate the second term,

note that since V” is bounded, we can apply the gradient estimate for Poisson equation (see [24,

Proposition 9.1], also ¢f. [23, Theorem 1.1]) to obtain a constant C' independent of z or ¢, such that

£—2

-2
Z Vory¥h) <o sup Z (Varyldh — %DQ
y=0

(7’17---77'1«#@71) y=0
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Since Q_Sﬁ is a function of 7, + ... + ry4e—1, yz+y¢‘>_{; = 0. Also,

~lQ

1
’y$+y¢ﬁ| = Z|V/(Tw+y+l) - VI(T:Hy) - T/("Jxv+y+1) + T’(tiVer)’ <

Direct computation then shows that
£-2

/ Z (a')? ZfN,t(szry'lpfj)QdDN)t <C Z (aN)203 < ¢/ BN 20
QN €T N y=0 2T w
Therefore, we obtain the estimate
3 T ~ N1+H ~ B €4NH72Q
/ Frea 3 a (6 = 04)don e < D (fas ) + Op . (5.5)
o TN

z€T N

For the space variance of ¢%, relative entropy inequality reads

~ 1 a—r iy
[HN(t) + Z Z log/ 66N aféqﬁi dl)N7t‘| y
T QN

for any § > 0. Observe that the extra factor £ in the last term above is because that g?)ﬁ is independent
of (55 for any |z — y| > ¢, see, e.g., [9, Lemma F.12] and [24, Lemma D.3]. Recall that N®~"a¥
is bounded. To treat the exponential moment in above, we apply the equivalence of inhomogeneous
ensembles [24, Proposition 8.3] to obtain that for £ = o(N3) and & sufficiently small but fixed,

log/ exp {§(N*"al (gt }din, < C.
QN

R—«

- Y N
fN,t Z ai\’(bi dVN,t <

QN €T N

Since N"~* < O(1),

Fvae Y allglhdin, < C(Hy(t)+ ¢ NV, (5.6)

QN z€T N

Finally, the proof is concluded by choosing ¢(N) = %%,N =% and adding up the estimates (5.4),
(5.5) and (5.6). O

Proof of Theorem 4.1. By (5.2), Proposition 5.2 and 5.4,
d
dt

Since k < a < 1/2, N~1H2r=2a 4 N1+2e=6a — o(N1=20) g0 that

~ ~ _1
HN(t) < C(HN(t) _|_,YNN/<;7204 +N71+2n72a +N1+2n76a _|_,YN5 N%Jrnf%a).

d ~ ~ 1
T HN() <CHN() +C [WNN“” + (7N NTIBRAe s 0(1)} N1—2e

The estimate then follows from the choice of vy and Gronwall’s inequality. O

Theorem 4.2 follows from the exactly same argument as we used in the proof of Theorem 2.3, hence
we omit the proof here.

APPENDIX A. GENERAL TOOLS

In this appendix, we state some model independent tools that is used through the paper.

A.1. Relative entropy inequality. In this subsection, we introduce a version of Yau’s relative en-
tropy inequality. Let {X;};>0 be a continuous-time Markov chain on a finite state space S, whose
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infinitesimal generator is defined as
Lf(x) = r(=y)[fly) - f(@)], z€S.
yeS

Above, r(z,y) > 0 is the rate at which the chain jumps from z to y, and f : S — R is any function.
Define the carré du champ operator associated to L as

If(@) =Y r@y)[f) - f@)]", zes.
yeSs
Denote by p, the distribution of the process at time ¢ with initial measure po. Let {v;}1>0 and v be a
family of measures in S such that v, is differentiable in time ¢, and 1 (x) > 0, v(z) > 0 for any x € S
and any ¢ > 0. Denote by f; (respectively ;) the Radon-Nikodym derivative of u; (respectively ;)
with respect to v; (respectively v),

filz) = ”t(x), () = n@ e

ve(x)

Define the relative entropy H(t) as

H(t) = H(pe|v) = /ft log frduvy,
with the convention 0log0 = 0.

Lemma A.1 (Yau’s relative entropy inequality). For any t > 0,

H'(t) < _/F\/ﬁd’/t + / (Lfl - %Ingt)d,ut,

where 1 is the constant function identical to one, and L} is the adjoint of L with respect to L*(vy),
which acting on any function g : S — R is given by
* v\y)r\y, o
Lig) = 3 { "D ) ra g}, aes
vi(x)
yeS
We refer the readers to [10, Lemma A.1] for proof of the above lemma. Compared to the classical

Yau’s relative entropy inequality (cf.[12, Lemma 6.1.4]), an extra term [ T'v/fidv, is subtracted in the

above version.

A.2. Flow lemma. In this subsection, we state a flow lemma introduced by Jara and Menezes [10, 9].
For two measures p and q on Z¢, we say a function ¢ : Z¢ x {ei}1<i<a = R is a flow connecting p to q

if for any z € Z4,
d

p(:) —a(z) = D (0(z.e0) — 0(z —ciner)).
i=1
The support of the flow ¢ is defined as the set of points {z, z + e;} such that ¢(z, z + e;) # 0. Using
the summation by parts formula, for any function f : Z? — R and any flow ¢ connects p to q,

d
YRR —a@) =) Y dze)(f(2) = flz+er)).

z€Z4 =1 zezZd
For ¢ > 1, let p,(-) be the uniform measure on A¢ = {0,1,...,0—1}% i.e. po(x) = £~ ?if 2 € A¢ and
= 0 otherwise. Let q, = py * p; be the convolution of p, with itself,

ae(y) = Z pe(2)pe(y — 2), y € TR,

z€TY,
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In the sequel, we shall use q, to define the spatial average of a random variable over a large box instead
of the usual py. Note that the support of q, is contained in A4, ;. Let §o(-) be the Dirac measure
concentrated at the origin. For ¢ > 1, denote

‘ d=1,
ga(l) = S logl, d=2, (A1)
1, 4> 3.

The following lemma states that we could construct a flow, which connects dg to qg, such that the
cost is at most of order g4(¢). We refer the readers to [9, 10] for its proof.

Lemma A.2 (Flow lemma). There exists a finite constant Cy such that for any £ > 1, there ezists a
flow ¢y conmecting &y to q with support in A3, | such that

d d
SN dulze)? < Cogalt), YD [du(ze)| < Col.
i=1 zezd i=1 2€74

A.3. Concentration inequalities. In this subsection, we focus on properties of sub-Gaussian random
variables. We say a real-valued random variable X is sub-Gaussian of order o2 if

log E[efX] < 30292, Vo € R.

The following lemma controls the expectation of the exponential of X2, and an elementary proof
could be found in [10, Proposition F.7]. Below we shall present a different proof.

Lemma A.3. If the random variable X is sub-Gaussian of order o2, then for any v < (40%)71,
E[eX"] < 3.

The constant 3 above is not optimal and we only need it to be a constant. By Cauchy-Schwarz
inequality, it is easy to have the following result.

Corollary A.4. Let X; be sub-Gaussian of order o? for i =1,2. Then, for any v < (40102)7 !,
Ele7X1%2] < 3.

Proof of Lemma A.3. Let N be a standard normal distribution independent of X, and denote by (-)
the expectation with respect to A/. Then, for any 6 € R,

log(eV) = %92.

Therefore,
E[eX"] = E[(eVPXNY] = (E[eVTXN)).

Since X is sub-Gaussian of order o2, the last formula is bounded by

2 2 1 1.2 2,2 1
VTN = / — e TV gy — —
{ ) R V2T V1 —2v0c?
If v < (402)71, it is easy to see the last formula is bounded by 3. This concludes the proof. 0

The following lemma states that centered bounded random variables are sub-Gaussian.

Lemma A.5 (Hoeffding’s Lemma, [1, Lemma 2.2.2]). If the random wvariable X € [a,b] for some
a < b, the X — E[X] is sub-Gaussian of order (b — a)?.
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