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Problem statement: hidden constraints

Context: Expensive simulator outputs evaluation
➜ simulations crash: hidden constraints
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Problem statement: hidden constraints

f : a computer code with inputs x ∈ Ω ⊂ Rm with simulation failures on Ω.

Objective: determination of the feasible set:

Γ∗ = {x ∈ Ω : f (x) ̸= NAN} = {x ∈ Ω : 1f (x )̸=NAN = 1}
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Gaussian process based classification

Learning hidden constraint is a binary classification problem:

We have binary observations: (X ,Y) = (xj , yj)j=1,...,n, with yj = 1f (xj ) ̸=NAN .
Objective: predict the probability of belonging to the failure/non-failure class

➜ The formulation of the classification model is based on a Gaussian Process (GP)
surrogate
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Function approximation by Gaussian process model

Approximation of a function g by a GP Z (x) conditioned on observations of g [Forrester
et al., 2008, Rasmussen and Williams, 2006]
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Function approximation by Gaussian process model

Approximation of a function g by a Gaussian process conditioned on observations of g
defined by:

Z (x) ∼ GP(mn(·), kn(·, ·))
mn(·), kn(·, ·) conditioned mean and kernel of Z (x)
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Gaussian process classifier (GPC) formulation

A GPC is based on a latent GP Z conditioned on observations X ,Y (as
Zn = (Z (x1), ...,Z (xn)) is not available).
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Gaussian process classifier (GPC) formulation

The GPC model allows to predict the probability of non failure of a simulation:

pn(x) = P[Yn(x) = 1] = P[Y (x) = 1|X ,Y]

This probability pn(x) is modeled on the basis of [Bachoc et al., 2020] by using the sign
of the latent process Z :

pn(x) = P[1Z(x)>0 = 1|x ,X ,Y] =

∫
Rn

ϕZn
Y (zn)Φ̄(

−mn(x , zn)√
kn(x)

) dzn

with ϕZn
Y (zn) the conditioned p.d.f of Zn truncated to respect sign(Zn) = Y, and:

Φ̄(
a

b
) =

{
1 − Φ( ab ) si b ̸= 0
1−a>0 si b = 0

where Φ is the c.d.f. of the normal standard distribution.
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Gaussian process classifier (GPC) formulation

Practical building of the GPC model pn(x) for any x :

Optimization of the hyperparameters of the latent GP to maximize the likelihood:
P[sign(Zn) = Y]

Generation of realizations z
(i)
n of Zn|sign(Zn) = Y

➜ Approximation of pn(x):

p̂n(x) =
1
N

N∑
i=1

Φ̄

(
−mn(x , z

(i)
n )√

kn(x)

)
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Example of a GPC for hidden constraint learning
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Example of a GPC for hidden constraint learning

Characterisation of the feasible set:

Qα = {x ∈ Ω : pn(x) ≥ α}, α ∈ (0, 1]
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GPC based active learning

Principle: adaptively enrich the GPC using a learning criterion in order to obtain an
accurate approximation of the set Γ∗ contour
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GPC based active learning

Principle: adaptively enrich the GPC using a learning criterion in order to obtain an
accurate approximation of the set Γ∗ contour

Idea: draw a methodology from existing criteria in Gaussian Process Regression active
learning for feasible set estimation: stepwise uncertainty reduction strategy using the
notion of random set [Bect et al., 2012, Molchanov, 2005]
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Stepwise Uncertainty Reduction strategies

Let Un be a measure of uncertainty about the excursion set knowing observations at
points X

Stepwise Uncertainty Reduction (SUR) strategies aim to minimize at each step:

Jn(xn+1) = En[Un+1(xn+1,Z (xn+1))] := EZ(xn+1)[Un+1(xn+1)|X ,Z (X )]
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Stepwise Uncertainty Reduction strategy

The Stepwise Uncertainty Reduction strategy based on the uncertainty defined by the
vorob’ev deviation Varn(Γ) [Chevalier, 2013, El Amri et al., 2021, Vorobyev and
Lukyanova, 2013] is based on the following learning criterion:

Jn(xn+1) = En[Varn+1(Γ)]

i.e.

Jn(xn+1) = EZ(xn+1)

[∫
(1 − pn+1(x))1pn+1(x)≥α∗µ(dx) +

∫
pn+1(x)1pn+1(x)<α∗µ(dx)

]
This expression can be developed using the expression of pn(x) given for the GPC
model [Bachoc et al., 2020] and GP update formulae provided in [Chevalier, 2013]
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Example - Active learning based on Vorob’ev criterion
Classification problem based on the Branin function
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Results: comparison of different enrichment criteria

Compared strategies:

SUR criterion for classification
Mixed enrichment criterion: add of the point corresponding to the maximum of
the GP variance (exploration) and the one where pn(x) value is the closest to 1

2
(exploitation) simultanously
SMOCU enrichment measure: Soft-MOCU (Mean Objective Cost of Uncertainty)
method [Zhao et al., 2021]
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Results: comparison criteria

1 - Number of true positives (Qα ∩ Γ∗) and true negatives (Ω \ (Qα ∩ Γ∗))

critP =
TP

P

critN =
TN

N
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Results: comparison criteria

2 - Relative error of the feasible set estimation

critF =
FN + FP

P
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Results on the classification problem based on Branin function
Evolution of critF for mixed, SMOCU and SUR criteria
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Results on the classification problem based on Branin function

Evolution of the number of true positives/negatives for SMOCU method
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Results on the classification problem based on Branin function

Evolution of the number of true positives/negatives for mixed criterion
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Results on the classification problem based on Branin function

Evolution of the number of true positives/negatives for SUR criterion
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Example in 4 dimensions

Classification problem with two constraints defined in [0, 1]4:

f1(x1, x2, x3, x4) = x2 + x1 − 1.6 + 0.1 ∗ x3

f2(x1, x2, x3, x4) = 0.15 − (x2
2 + (x1 + 0.1)2)
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Results on the classification problem in 4 dimensions
Evolution of critF for mixed, SMOCU and SUR criteria
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Results on the classification problem in 4 dimensions

Evolution of the number of true positives/negatives for SUR criterion
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Conclusions and outlook

Conclusions:

great potential to learn feasible sets in terms of crash constraints
drawbacks: enrichement criterion computation (integration) and optimization time
in high dimension

Perspectives:

Coupling with an optimization ➜ e.g. NOMAD, see session MB8: Stéphane
Jacquet’s presentation (at 15h30)
Take into account the simulation robustness or convergence level (more than two
classes)
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Expressions of mn and kn for the GPC model

mn(x , z
(i)
n ) = µZ + kZθ (x ,X )(kZθ (X ,X ))−1(z

(i)
n − µZ )

and
kn(x , x

′) = kZθ (x , x
′) + kZθ (x ,X )(kZθ (X ,X ))−1kZθ (X , x ′)
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GP update formulae

Updated GP mean for r new points x (r) = (xn+1, ..., xn+r ):

mn+r (x) = mn(x) + λnew (x)
TZc(x

(r))

with:
Zc(x

(r)) = Z (x (r))−mn(x
(r)) le vecteur des réponses centrées de distribution

N (0,Σ), où Σ est la matrice de covariance de (Zn(xn+1), ...,Z (xn+r ))

λnew (x) = K−T
newkn(x , x

(r)) et Knew = kn(x
(r), x (r))

Updated covariance function of GP Z :

kn+r (x , x
′) = kn(x , x

′)− kn(x , x
(r))TK−1

newkn(x
′, x (r))
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Vorob’ev expectation and deviation

Vorob’ev deviation can be expressed as follows:

varn(Γ) = E[µ(Qα∆Γ)|z ]
=

∫
Qα

(1 − pn(x))µ(dx) +
∫
QC

α
pn(x)µ(dx)

=
∫
(1 − pn(x))1pn(x)≥α∗µ(dx) +

∫
pn(x)1pn(x)<α∗µ(dx)

with ∆ such that A∆B = (A ∪ B) \ (A ∩ B)
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GPC and Jn criterion
Expression of the first term of Jn criterion in the integral on x :

En

[
pn+1(x)1pn+1(x)<α∗

]
= En

 1
N

N∑
i=1

Φ̄

(
−mn+1(x ,z

(i)
n )√

kn+1(x)

)
1

1
N

N∑
j=1

Φ̄

(
−mn+1(x,z

(j)
n )√

kn+1(x)

)
<α∗


= En

 1
N

∑
i
Φ̄

(
−(mn(x ,z

(i)
n )+λnew (x)TU)√
kn+1(x)

)
1

1
N

∑
j
Φ̄

(
−(mn(x,z

(j)
n )+λnew (x)TU)√
kn+1(x)

)
<α∗


avec U ∼ N (0,Σ), où Σ est la matrice de covariance de (Zn(xn+1), ...,Z (xn+r )).

Remark: The realizations z
(i)
n are not updated because sign(Z (xn+1)) do not provide

any information on Zn.
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GPC and Vorob’ev based Jn criterion

The third can be expressed as follows:

En

[
1pn+q(x)≥α∗

]
= En

1
1
N

∑
j
Φ̄

(
−(mn(x,z

(i)
n )+λnew (x)TU)√
kn+q (x)

)
<α∗
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Update of the realizations z (i)n

z
(i)
n+q = z

(i)
n + λZ

new (X )T (Zn(xnew )real − Zn(xnew )simu)Z (x1)
(i)

...
Z (xn)

(i)


n+q

=

Z (x1)
(i)

...
Z (xn)

(i)


n

+ λZ
new (X )TZn,c(xnew )

with Zn,c(xnew ) ∼ N (0, kZ (xnew , xnew )) and
λZ
new (X ) = kZ (xnew , xnew )

−TkZ (xnew ,X ).
Yet:

we do not guarantee that the signs of z(i)n+q correspond to the observed values
y1, . . . , yn anymore,
it can be verified that as for Zn, Zn+q can be modeled by a GP with constant
mean µZ and a stationary covariance function kZθ
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Vorob’ev expectation and deviation

Let us consider the random set:
Γ = {x ∈ Ω : Yn(x) = 1}

The function
PΓ(x) = P[x ∈ Γ]

= pn(x)

is the cover function of Γ and its level sets are the α-percentiles of Γ:

Qα = {x ∈ Ω : pn(x) ≥ α}, α ∈ (0, 1]
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Vorob’ev expectation and deviation

Definition
Vorob’ev expectation is defined as the α∗-percentile of Γ, where α∗ is determined by:

E[µ(Γ)] = µ(Qα∗)

with µ the Lebesgue measure.
Vorob’ev expectation is a global minimiser of the vorob’ev deviation Varn(Γ) among
closed sets of volume equal to the mean volume of Γ:

Varn(Γ) = E[µ(Qα∆Γ)|X ,Y]

with Γ∆Qα = (Γ \ Qα) ∪ (Qα \ Γ)
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Vorob’ev expectation and deviation

Qα = {x ∈ Ω : pn(x) ≥ α}, α ∈ (0, 1]
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MOCU/SMOCU criteria

UMOCU(x) = Exs [En[max(pn+1(xs), 1 − pn+1(xs))]−max(pn(xs), 1 − pn(xs))]

i.e.

UMOCU(x) = Exs [1−max(pn(xs), 1−pn(xs))]−En[Exs [1−max(pn+1(xs), 1−pn+1(xs))]

et

USMOCU(x) = Exs [En[
1
k ln(exp(k ∗ pn+1(xs)) + exp(k(1 − pn+1(xs))))]

− 1
k ln(exp(k ∗ pn(xs)) + exp(k(1 − pn(xs))))]
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