
HAL Id: hal-03688217
https://hal.science/hal-03688217

Submitted on 3 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

STracking: a free and open-source Python library for
particle tracking and analysis

Sylvain Prigent, Ludovic Leconte, Cesar Augusto Valades-Cruz, Charles
Kervrann, Jean Salamero

To cite this version:
Sylvain Prigent, Ludovic Leconte, Cesar Augusto Valades-Cruz, Charles Kervrann, Jean Salamero.
STracking: a free and open-source Python library for particle tracking and analysis. Bioinformatics,
2022, 38 (14), pp.3671-3673. �10.1093/bioinformatics/btac365�. �hal-03688217�

https://hal.science/hal-03688217
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

STracking: a free and open-source Python library for

particle tracking and analysis

Sylvain Prigent1,2, Cesar Augusto Valades-Cruz1,2 , Ludovic Leconte1,2,

Jean Salamero1,2 and Charles Kervrann 1,2

1SERPICO Project Team, Inria Centre Rennes-Bretagne Atlantique, F-35042 Rennes, France and 2SERPICO Project Team, UMR144

CNRS Institut Curie, PSL Research University, F-75005 Paris, France

Abstract

Summary: Analysis of intra- and extracellular dynamic like vesicles transport involves particle tracking algorithms.
The design of a particle tracking pipeline is a routine but tedious task. Therefore, particle dynamics analysis is often
performed by combining several pieces of software (filtering, detection, tracking, etc.) requiring many manual oper-
ations, and thus leading to poorly reproducible results. Given the new segmentation tools based on deep learning,
modularity and interoperability between software have become essential in particle tracking algorithms. A good
synergy between a particle detector and a tracker is of paramount importance. In addition, a user-friendly interface to
control the quality of estimated trajectories is necessary. To address these issues, we developed STracking, a Python
library that allows combining algorithms into standardized particle tracking pipelines.

Availability and implementation: STracking is available as a Python library using ‘pip install’ and the source code is
publicly available on GitHub (https://github.com/sylvainprigent/stracking). A graphical interface is available using
two napari plugins: napari-stracking and napari-tracks-reader. These napari plugins can be installed via the napari
plugins menu or using ‘pip install’. The napari plugin source codes are available on GitHub (https://github.com/syl
vainprigent/napari-tracks-reader, https://github.com/sylvainprigent/napari-stracking).

Contact: sylvain.prigent@inria.fr or cesar-augusto.valades-cruz@curie.fr

Supplementary information: Supplementary data are available online.

Introduction

The study of cell biology dynamics, such as intracellular membrane
transport inward (i.e. endocytosis) and outward (i.e. exocytosis/
recycling), has been difficult or at least incomplete until recently,
due to the heterogeneity of the motion behavior of the analyzed
structures. Different tracking software have been published [e.g. u-
track (Jaqaman et al., 2008), TrackMate (Tinevez et al., 2017),
MTT (Serge� et al., 2008), MSSEF-TSAKF (Jaiswal et al., 2015),
maptrack (Feng et al., 2011), Cell Tracking Profiler (Mitchell et al.,
2020), btrack (Ulicna et al., 2021)] to track individual biomolecules
or extended objects with a shape, such as cells [e.g. TrackMate
(Ershov et al., 2021) and CellProfiler (Stirling et al., 2021)], to ob-
tain spatial information and to quantify their kinetics. Most of them
focus on the accuracy and reproducibility of the analysis but the
user interfaces remain complex or even limited to a two-dimensional
representation. The development of a user-friendly graphical user
interface (GUI) therefore appears necessary to facilitate the selection
of parameters, the analysis and the visualization of 3D þ time trajec-
tories estimated from complex 3D videos. The use of Python, a

versatile and free programming language is growing rapidly within
the bioimaging user community (Fernandez-Gonzalez et al., 2022).
Python tools for visualization [e.g. napari (Sofroniew et al., 2021),
ipyvolume (Breddels et al., 2018), SeeVis (Hattab & Nattkemper,
2019)] and analysis [ZeroCostDL4Mic (von Chamier et al., 2021),
BioImageIT (Prigent et al., 2021), Cellpose (Stringer et al., 2021)]
are widely applied to microscopy images.

On the other hand, a lot of particle tracking approaches have
been developed over the last decades. Interestingly, although a num-
ber of studies aimed at comparing particle tracking performance
have been published (Carter et al., 2005; Cheezum et al., 2001;
Chenouard et al., 2014; Ruusuvuori et al., 2010; Smal & Meijering,
2015; Smal et al., 2010), none of the tested methods seems to per-
form in a generic way, regardless of the type of image data. As a
consequence, it is critical for users to have the possibility to test dif-
ferent detectors and/or trackers in order to identify the best solution
for their application. In addition, efforts in the Python community
includes particle tracking packages such as TrackPy (Allan et al.,
2021). TrackPy is a complete particle tracking toolkit, but the code
can be a barrier for non-expert user.

1

https://orcid.org/0000-0002-1786-8207
https://orcid.org/0000-0001-6263-0452
https://github.com/sylvainprigent/stracking
https://github.com/sylvainprigent/napari-tracks-reader
https://github.com/sylvainprigent/napari-tracks-reader
https://github.com/sylvainprigent/napari-stracking
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac365#supplementary-data
https://academic.oup.com/

Here, we present STracking, an open-source Python library for
combining algorithms into standardized particles tracking pipelines
for biological microscopy images. STracking is distributed under a
BSD 3-Clause ‘New’ or ‘Revised’ License. STracking combines par-
ticle detection, tracking and analysis methods and can be used via a
napari plugin. STracking contributes to the recent ecosystem of
Python-based plugins for bioimage analysis.

Implementation and application

STracking breaks down a particle tracking pipeline into five compo-
nents: (i) frame-by-frame particle detection; (ii) particle linking;
(iii) analysis of particle properties; (iv) design of track features; and
(v) filtering of tracks. Each component is represented as a Python
object.

Each component can be implemented separately. This modular
design makes it easy to update and facilitates interoperability with
other plugins/algorithms. Whenever a new detection or tracker algo-
rithm is added, compatibility is guaranteed with the particle tracking
pipeline, and it is versioned within the STracking library. Several
particle detectors are available in STracking: Difference of
Gaussian, Determinant of Hessian and Laplacian of Gaussian from
the Python library scikit-image (van der Walt et al., 2014). In add-
ition, STracking includes a mask detector, called SSegDetector. This
detector takes a label or binary mask as input image and returns a
list of object positions (centroids of connected components).

Moreover, STracking includes a tracker (Matov et al., 2011) that
estimates the optimal tracks as follows: first, a connection graph is
created with all the possible connections. Second, tracks are itera-
tively extracted from the graph using shortest path and graph
pruning.

STracking library uses two data structures: ‘SParticles’ to man-
age the set of detected particles and ‘STracks’ to manage the collec-
tion of trajectories. These data structures contain SciPy (Virtanen
et al., 2020) objects to store the particles and the tracks. The par-
ticles are represented with a 2D numpy array where each row is
dedicated to a specific particle and columns are [T, Z, Y, X] for 3D
data and [T, Y, X] for 2D data. The properties of particles are stored
in a dictionary. Similarly, tracks are stored in a 2D numpy array
where each row is dedicated to specific particle and columns are
[trackID, T, Z, Y, X] for 3D data and [trackID, T, Y, X] for 2D
data. Tracks features and split/merge events are stored using diction-
aries. This data representation is the same as napari (Sofroniew
et al., 2021) points and tracks layers, making STracking natively
compatible with the napari viewer. We thus implemented a
STracking napari plugin suite (napari-tracks-reader, napari-
stracking). It provides a graphical interface to create a STracking
pipeline without writing Python code. STracking could be used as
script in Python or napari plugin. The STracking library can be com-
bined with other Python packages to extend STracking functional-
ities. The napari plugin allows one to perform a full STracking
pipeline, or to load detections or tracks from another software such

Fig. 1. Overview of STracking library implemented in its napari plugin (a–c) and Jupyter Notebook (Kluyver et al., 2016) (d–f). Fifty-five planes 3D volumes of live RPE1 cells

double stained with PKMR for Mitochondria (magenta) and with plasma membrane deep red (PMDR) for endosomal pathway (green) were acquired within 4.3 s per stack

using Lattice light-sheet Structure Illumination Microscopy (LLS-SIM). STracking workflow is illustrated here with single particle tracking of endosomal pathway (PMDR).

napari-stracking includes spots detection (a) and linking (b) through a GUI. 3D data and tracks are rendered using napari viewer (c). Jupyter notebook (d) allows also spots (e)

and tracks (f) analysis. Additionally, they permit to get spots properties and tracks features, as well as tracks filtering. LLS-SIM data were reconstructed using MAP-SIM

(K�r�ı�zek et al., 2016) (A color version of this figure appears in the online version of this article.)

2

as StarDist (Schmidt et al., 2018), TrackMate (Tinevez et al., 2017)
or u-track (Jaqaman et al., 2008) and continue the analysis with
STracking and napari. Documentation on STracking library with
examples is available at https://sylvainprigent.github.io/stracking/.
STracking documentation was created using sphinx and the autodoc
extension.

STracking pipeline using the napari plugin is illustrated with
data obtained in Lattice Light-Sheet Structured Illumination
Microscopy (Chen et al., 2014) (Fig. 1 and Supplementary Video
S1). The STracking workflow could also be implemented using
Jupyter notebook (Supplementary Note S1). Additionally,
STracking library can be used for cell migration experiments
(Supplementary Note S2) using label mask images produced by
other software such as CellPose (Stringer et al., 2021) or StarDist
(Schmidt et al., 2018) through napari-stracking plugin, Jupyter
Notebook or Python scripting. These examples demonstrate the
ability of STracking to analyze complex datasets acquired with most
advanced microscopy technologies.

Conclusions

The STracking library simplifies the design of single particle tracking
workflows through a graphical interface using napari and a compre-
hensive Python library of functions. Unlike previous single particle
tracking tools in Python ecosystem, it provides a very flexible solu-
tion for processing and visualizing the tracks taking advantage of
Napari (Sofroniew et al., 2021) viewer for 3D þ time representation.
A similar approach was introduced in TrackMate software (Tinevez
et al., 2017) for the visualization and validation of 2D tracks in Fiji
(Schindelin et al., 2012) java-based environment. Thus, reproducible
analysis can be performed without being an expert programmer. For
this purpose, STracking library includes a pipeline class to allow
executing a tracking pipeline recorded as a json file. We would point
out that this plugin-implemented recording technique is not an opti-
mal software architecture since it should be done by the host plat-
form. To overcome this difficulty, we recommend using a powerful
data management software such as the recent BioImageIT platform
(Prigent et al., 2021).

In summary, the STracking library greatly simplifies the inspec-
tion and optimization of single particle tracking algorithms and thus
allows the evaluation of new detection and tracker algorithms in
this context, which are constantly being developed.

Funding

This work was supported by the French National Research Agency (France-

BioImaging Infrastructure [ANR-10-INBS-04-07] and LabEx Cell(n)Scale
[ANR-11-LABX-0038] as part of the IDEX PSL [ANR-10-IDEX-0001-02]).

Data availability

The data underlying this article are available in FigShare, at https://
doi.org/10.6084/m9.figshare.19322171.

References

Allan,D.B. et al. (2021) Trackpy v0.5.0. https://doi.org/10.5281/ZENODO.
4682814 (11 March 2022, date last accessed).

Breddels,M. et al. (2018) ipyvolume v0.4.5. https://doi.org/10.5281/

ZENODO.1286976 (11 March 2022, date last accessed).

Carter,B.C. et al. (2005) Tracking single particles: a user-friendly quantitative

evaluation. Phys. Biol., 2, 60–72.

Cheezum,M.K. et al. (2001) Quantitative comparison of algorithms for track-

ing single fluorescent particles. Biophys. J., 81, 2378–2388.

Chen,B.-C. et al. (2014) Lattice light-sheet microscopy: imaging molecules to

embryos at high spatiotemporal resolution. Science, 346, 1257998.

Chenouard,N. et al. (2014) Objective comparison of particle tracking meth-

ods. Nat. Methods, 11, 281–289.

Ershov,D. et al. (2021) Bringing TrackMate into the era of machine-learning

and deep-learning. bioRxiv, 2021.09.03.458852.

Feng,L. et al. (2011) Multiple dense particle tracking in fluorescence micros-

copy images based on multidimensional assignment. J. Struct. Biol., 173,

219–228.

Fernandez-Gonzalez,R. et al. (2022) PyJAMAS: open-source, multimodal seg-

mentation and analysis of microscopy images. Bioinformatics, 38, 594–596.

Hattab,G. and Nattkemper,T.W. (2019) SeeVis—3D space-time cube render-

ing for visualization of microfluidics image data. Bioinformatics, 35,

1802–1804.

Jaiswal,A. et al. (2015) Tracking virus particles in fluorescence microscopy

images using multi-scale detection and multi-frame association. IEEE

Trans. Image Process., 24, 4122–4136.

Jaqaman,K. et al. (2008) Robust single-particle tracking in live-cell time-lapse

sequences. Nat. Methods, 5, 695–702.

Kluyver,T. et al. (2016) Jupyter notebooks—a publishing format for reprodu-

cible computational workflows. In: Loizides, F. and Schmidt, B. (eds.),

Positioning and Power in Academic Publishing: Players, Agents and

Agendas. Göttingen, Germany. IOS Press, Amsterdam, Netherlands,

pp. 87–90.

K�r�ı�zek,P. et al. (2016) SIMToolbox: a MATLAB toolbox for structured illu-

mination fluorescence microscopy. Bioinformatics, 32, 318–320.

Matov,A. et al. (2011) Optimal-flow minimum-cost correspondence assign-

ment in particle flow tracking. Comput. Vis. Image Underst., 115, 531–540.

Mitchell,C. et al. (2020) Cell tracking profiler—a user-driven analysis frame-

work for evaluating 4D live-cell imaging data. J. Cell Sci., 133, jcs241422.

Prigent,S. et al. (2021) BioImageIT: Open-source framework for integration of

image data-management with analysis. bioRxiv, 2021.12.09.471919.

Ruusuvuori,P. et al. (2010) Evaluation of methods for detection of fluores-

cence labeled subcellular objects in microscope images. BMC

Bioinformatics, 11, 248.

Schindelin,J. et al. (2012) Fiji: an open-source platform for biological-image

analysis. Nat. Methods, 9, 676–682.

Schmidt,U. et al. (2018) Cell detection with star-convex polygons. In:

Frangi,A.F. et al. (Eds.), Medical Image Computing and Computer Assisted

Intervention—MICCAI 2018, Granada, Spain. Springer International

Publishing, Cham, Switzerland, pp. 265–273.

Serg�e,A. et al. (2008) Dynamic multiple-target tracing to probe spatiotemporal

cartography of cell membranes. Nat. Methods, 5, 687–694.

Smal,I. and Meijering,E. (2015) Quantitative comparison of multiframe data

association techniques for particle tracking in time-lapse fluorescence mi-

croscopy. Med. Image Anal., 24, 163–189.

Smal,I. et al. (2010) Quantitative comparison of spot detection methods in

fluorescence microscopy. IEEE Trans. Med. Imaging, 29, 282–301.

Sofroniew,N. et al. (2021) napari: 0.4.12rc2. https://doi.org/10.5281/ZENODO.

5587893 (11 March 2022, date last accessed).

Stirling,D.R. et al. (2021) CellProfiler 4: improvements in speed, utility and us-

ability. BMC Bioinformatics, 22, 433.

Stringer,C. et al. (2021) Cellpose: a generalist algorithm for cellular segmenta-

tion. Nat. Methods, 18, 100–106.

Tinevez,J.-Y. et al. (2017) TrackMate: an open and extensible platform for

single-particle tracking. Methods, 115, 80–90.

Ulicna,K. et al. (2021) Automated deep lineage tree analysis using a Bayesian

single cell tracking approach. Front. Comput. Sci., 3, 734559.

van der Walt,S. et al. (2014) Scikit-image: image processing in Python. PeerJ,

2, e453.

Virtanen,P. et al. (2020) SciPy 1.0: fundamental algorithms for scientific com-

puting in Python. Nat. Methods, 17, 261–272.

von Chamier,L. et al. (2021) Democratising deep learning for microscopy with

ZeroCostDL4Mic. Nat. Commun., 12, 2276.

3

https://sylvainprigent.github.io/stracking/
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac365#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac365#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac365#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac365#supplementary-data
https://doi.org/10.6084/m9.figshare.19322171
https://doi.org/10.6084/m9.figshare.19322171

