N

N

ah> +FBM;, 7°22 M/ QT2M@bQm +2 Svi?Ql|
T 'iB+H2 i +FBM; M/ M HvbBD
avHp BM S ' B;2Mi- *2b ° m;mbiQ o H /2b@* mx- Gm/
a HK2 Q-* "H2bE2 p MM

hQ +Bi2 i?Bb p2 " bBQM,

avHp BM S'B;2Mi- *2b ° m;mbiQ o H /2b@* mx- Gm/QpB+ G2+QMi2- C:
ah” +FBM;, 722 M/ QT2M@bQm +2 Svi?QM HB# "v7Q T "iB+H2 i +
kykk- j3 UR9V- TTXjedR@jedjX RyYyXRyNjf#BQBM7Q K iB+bf#i +je8 X

> G A/, ? H@yje33kRd
?2iiTb,ff?2 HXb+B2M+2f? H@yje33kRd
am#KBii2/ QM jCmM kykk

> G Bb KmHiB@/Bb+BTHBM v GOT24WB p2 Dmbp2 "i2 THm B/BbBIBTHBN
"+?Bp2 7Q i?72 /2TQbBi M/ /Bbb2KIBEBMBR MNQ@T™+B2® " H /BzmbBQM /2 /
2MiB}+ "2b2 "+?2 /Q+mK2Mib- r?2i?@+B2MMiB}2mM2b#/@ MBp2 m "2+?22 +?22- T
HBb?2/ Q° MQiX h?2 /IQ+mK2Mib MK VW+RK2Z2EF IQKHBbb2K2Mib /62Mb2B;M
i2 +?BM; M/ "2b2 "+? BMbiBimiBQWER BM?8 7M#M2I @b Qm (i~ M;2 b- /2b H
#Q /-Q 7 QK Tm#HB+ Q T ' Bp i2T2HRAB+B @2MT2BIpXib X

https://hal.science/hal-03688217
https://hal.archives-ouvertes.fr

STracking: afree and open-source Python library for
particle tracking and analysis

Sylvain Prigent 2, Cesar Augusto Valades-Cruz **® Ludovic Leconte *2,

Jean Salamero 2 and Charles Kervrann ©® 12
1SERPIC®roject Team, Inria Centre Rennes-Bretagnéitlantique, F-3504Rennes France and ’SERPIC®roject Team,UMR144

CNRSnstitut Curie PSLResearchJniversity F-7500®Paris,France

Abstract

Summary: Analysis of intra- and extracellular dynamic like vesicles transport involves particle tracking algorithms.
The design of a particle tracking pipeline is a routine but tedious task. Therefore, particle dynamics analysis is often
performed by combining several piecesof software (Pltering, detection, tracking, etc.)requiring many manual oper-
ations, and thus leading to poorly reproducible results. Given the new segmentation tools basedon deep learning,
modularity andinteroperability between software have become essential in particle tracking algorithms. A good
synergy between a particledetector and a tracker is of paramount importance. In addition, a user-friendly interface to
control the quality of estimated trajectories is necessary. To address these issues, wdeveloped STracking, a Rthon
library that allows combining algorithms into standardized particle tracking pipelines.

Availability and implementation: STracking is available as a Python library using Opipinstall®and the source code is
publicly available on GitHub (https://github.com/sylvainprigent/stracking). A graphical interface is available using
two napari plugins: napari-stracking and napari-tracks-reader. These napari plugins can be installed via the napari
plugins menu or using Opipinstall®.The napari plugin source codes are available on GitHub (https://github.com/syl

vainprigent/napari-tracks-reader, https://github.com/sylvainprigent/napari-stracking).

Contact: sylvain.prigent@inria.fr

Supplementary information:

Introduction

The study of cell biology dynamics, suchasintracellular membrane
transport inward (i.e. endocytosis) and outward (i.e. exocytosis/
recycling), has been difficult or at least incomplete until recently,
due to the heterogeneity of the motion behavior of the analyzed
structures. Different tracking software have been published [e.g. u-
track (Jagamanet al., 2008), TrackMate (Tinevez et al., 2017),
MTT (Serg et al., 2008), MSSEF-TSAKF (Jaiswal et al., 2015),
maptrack (Fengetal., 2011), Cell Tracking Profiler (Mitchell etal.,
2020), btrack (Ulicna et al., 2021)] to track individual biomolecules
or extended objects with a shape, such as cells [e.g. TrackMate
(Ershov et al., 2021) and CellProfiler (Stirling et al., 2021)], to ob-
tain spatial information and to quantify their kinetics. Most of them
focus on the accuracy and reproducibility of the analysis but the
userinterfacesremain complex or evenlimited to a two-dimensional
representation. The development of a user-friendly graphical user
interface (GUI) therefore appearsnecessaryto facilitate the selection
of parameters,the analysisand the visualization of 3D p time trajec-
tories estimated from complex 3D videos. The use of Python, a

or cesar-augusto.valades-cruz@curie.fr

Supplementary data are available online.

versatile and free programming language is growing rapidly within
the bioimaging user community (Fernandez-Gonzaleet al., 2022).
Python tools for visualization [e.g. napari (Sofroniew et al., 2021),
ipyvolume (Breddelset al., 2018), SeeVis Hattab & Nattkemper,
2019)] and analysis [ZeroCostDL4Mic (von Chamier et al., 2021),
BiolmagelT (Prigent et al., 2021), Cellpose (Stringeret al., 2021)]
are widely applied to microscopy images.

On the other hand, a lot of particle tracking approaches have
been developed over the last decades. Interestingly, although a num-
ber of studies aimed at comparing particle tracking performance
have been published (Carteret al., 2005; Cheezumet al., 2001,
Chenouardet al., 2014; Ruusuvuori et al., 2010; Smal & Meijering,
2015; Smal et al., 2010), none of the tested methods seems to per-
form in a generic way, regardless of the type of image data. As a
consequence, it is critical for users to have the possibility to test dif-
ferent detectors and/or trackers in order to identify the best solution
for their application. In addition, efforts in the Python community
includes particle tracking packages such as TrackPy (Allaret al.,
2021). TrackPy is a complete particle tracking toolkit, but the code
can be a barrier for non-expert user.

https://orcid.org/0000-0002-1786-8207
https://orcid.org/0000-0001-6263-0452
https://github.com/sylvainprigent/stracking
https://github.com/sylvainprigent/napari-tracks-reader
https://github.com/sylvainprigent/napari-tracks-reader
https://github.com/sylvainprigent/napari-stracking
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac365#supplementary-data
https://academic.oup.com/

Fig. 1. Overview of STracking library implemented in its napari plugin (a—c) and Jupyter Notebook (Kluyver et al., 2016) (d—f). Fifty- ve planes 3D volumes of live RPEL1 cells
double stained with PKMR for Mitochondria (magenta) and with plasma membrane deep red (PMDR) for endosomal pathway (green) were acquired within 4.3 s per stack
using Lattice light-sheet Structure Illumination Microscopy (LLS-SIM). STracking work ow is illustrated here with single particle tracking of endosomal pathway (PMDR).
napari-stracking includes spots detection (a) and linking (b) through a GUI. 3D data and tracks are rendered using napari viewer (c). Jupyter notebook (d) allows also spots (e)
and tracks (f) analysis. Additionally, they permit to get spots properties and tracks features, as well as tracks Itering. LLS-SIM data were reconstructed using MAP-SIM
(Kr zeket al., 2016) (A color version of this gure appears in the online version of this article.)

Here, we present STracking, an open-sourcePython library for
combining algorithms into standardized particles tracking pipelines
for biological microscopy images.STracking is distributed under a
BSD 3-Clause‘New’ or ‘Revised’ License.STracking combinespar-
ticle detection, tracking and analysismethodsand can be usedvia a
napari plugin. STracking contributes to the recent ecosystemof
Python-basedplugins for bioimage analysis.

Implementation and application

STracking breaksdown a particle tracking pipeline into five compo-
nents: (i) frame-by-frame particle detection; (ii) particle linking;
(iii) analysisof particle properties; (iv) designof track features;and
(v) filtering of tracks. Each component is representedas a Python
object.

Each component can be implemented separately. This modular
designmakesit easyto update and facilitates interoperability with
other plugins/algorithms. Whenevera new detection or tracker algo-
rithm is added,compatibility is guaranteedwith the particle tracking
pipeline, and it is versioned within the STracking library. Several
particle detectors are available in STracking: Difference of
Gaussian,Determinant of Hessianand Laplacian of Gaussianfrom
the Python library scikit-image (van der Walt et al., 2014). In add-
ition, STracking includesa mask detector, called SSegDetectorThis
detector takes a label or binary mask as input image and returns a
list of object positions (centroids of connected components).

Moreover, STracking includes a tracker (Matov et al., 2011) that
estimates the optimal tracks as follows: first, a connection graph is
created with all the possible connections. Second, tracks are itera-
tively extracted from the graph using shortest path and graph
pruning.

STracking library uses two data structures: ‘SParticles’ to man-
age the set of detected particles and ‘STracks’ to manage the collec-
tion of trajectories. These data structures contain SciPy (Virtanen
et al., 2020) objects to store the particles and the tracks. The par-
ticles are represented with a 2D numpy array where each row is
dedicated to a specific particle and columns are [T, Z, Y, X] for 3D
data and [T, Y, X] for 2D data. The properties of particles are stored
in a dictionary. Similarly, tracks are stored in a 2D numpy array
where each row is dedicated to specific particle and columns are
[trackID, T, Z, Y, X] for 3D data and [trackID, T, Y, X] for 2D
data. Tracks features and split/merge events are stored using diction-
aries. This data representation is the same as napari (Sofroniew
et al., 2021) points and tracks layers, making STracking natively
compatible with the napari viewer. We thus implemented a
STracking napari plugin suite (napari-tracks-reader, napari-
stracking). It provides a graphical interface to create a STracking
pipeline without writing Python code. STracking could be used as
script in Python or napari plugin. The STracking library can be com-
bined with other Python packages to extend STracking functional-
ities. The napari plugin allows one to perform a full STracking
pipeline, or to load detections or tracks from another software such

as StarDist (Schmidt et al., 2018), TrackMate (Tinevezet al., 2017)
or u-track (Jagamanet al., 2008) and continue the analysis with
STracking and napari. Documentation on STracking library with
examplesis available at https://sylvainprigent.github.io/stracking/.
STracking documentation was createdusing sphinx and the autodoc
extension.

STracking pipeline using the napari plugin is illustrated with
data obtained in Lattice Light-Sheet Structured Illumination
Microscopy (Chen et al., 2014) (Fig. 1 and Supplementary Video
S1). The STracking workflow could also be implemented using
Jupyter notebook (Supplementary Note S1). Additionally,
STracking library can be used for cell migration experiments
(Supplementary Note S2) using label mask images produced by
other software such as CellPose(Stringer et al., 2021) or StarDist
(Schmidt et al., 2018) through napari-stracking plugin, Jupyter
Notebook or Python scripting. These examples demonstrate the
ability of STrackingto analyzecomplex datasetsacquired with most
advanced microscopytechnologies.

Conclusions

The STrackinglibrary simplifies the designof singleparticle tracking
workflows through a graphical interface using napari and a compre-
hensive Python library of functions. Unlike previous single particle
tracking tools in Python ecosystemt provides a very flexible solu-
tion for processingand visualizing the tracks taking advantage of
Napari (Sofroniew et al., 2021) viewer for 3D p time representation.
A similar approachwas introduced in TrackMate software (Tinevez
etal., 2017) for the visualization and validation of 2D tracks in Fiji
(Schindelinet al., 2012) java-basedenvironment. Thus, reproducible
analysiscan be performed without being an expert programmer. For
this purpose, STracking library includes a pipeline classto allow
executinga tracking pipeline recordedasa json file. We would point
out that this plugin-implemented recording techniqueis not an opti-
mal software architecture sinceit should be done by the host plat-
form. To overcomethis difficulty, we recommendusing a powerful
data managementsoftware such as the recentBiolmagelT platform
(Prigentetal., 2021).

In summary, the STracking library greatly simplifies the inspec-
tion and optimization of single particle tracking algorithms and thus
allows the evaluation of new detection and tracker algorithms in
this context, which are constantly being developed.

Funding

This work was supported by the French National ResearchAgency (France-
Biolmaging Infrastructure [ANR-10-INBS-04-07] and LabEx Cell(n)Scale
[ANR-11-LABX-0038] aspart of the IDEX PSL[ANR-10-IDEX-0001-02]).

Data availability

The data underlying this article are available in FigShare,at https://
doi.org/10.6084/m9.figshare.19322171

References

Allan,D.B. et al. (2021) Trackpy v0.5.0. https://doi.org/10.5281/ZENODO.
4682814 (11 March 2022, datelast accessed).
Breddels,M. et al. (2018) ipyvolume vO0.4.5. https://doi.org/10.5281/

ZENODO.1286976 (11 March 2022, date last accessed).

Carter,B.C. et al. (2005) Tracking single particles: a user-friendly quantitative
evaluation. Phys. Biol., 2, 60-72.

Cheezum,M.K. et al. (2001) Quantitative comparison of algorithms for track-
ing single uorescent particles.Biophys. J, 81, 2378-2388.

Chen,B.-C. et al. (2014) Lattice light-sheet microscopy: imaging molecules to
embryos at high spatiotemporal resolution.Science 346, 1257998.

Chenouard,N. et al. (2014) Objective comparison of particle tracking meth-
ods.Nat. Methods, 11, 281-289.

Ershov,D. et al. (2021) Bringing TrackMate into the era of machine-learning
and deep-learningbioRxiv, 2021.09.03.458852.

Feng,L.et al. (2011) Multiple dense particle tracking in uorescence micros-
copy images based on multidimensional assignmentl. Struct. Biol., 173,
219-228.

Fernandez-Gonzalez,Ret al. (2022) PyJAMAS: open-source, multimodal seg-
mentation and analysis of microscopy imagesBioinformatics, 38, 594-596.
Hattab,G. and Nattkemper, T.W. (2019) SeeVis—3D space-time cube render-
ing for visualization of micro uidics image data. Bioinformatics, 35,

1802-1804.

Jaiswal,A. et al. (2015) Tracking virus particles in uorescence microscopy
images using multi-scale detection and multi-frame associationlEEE
Trans. Image Process 24, 4122—-4136.

Jagaman,K.et al. (2008) Robust single-particle tracking in live-cell time-lapse
sequencesNat. Methods, 5, 695-702.

Kluyver,T. et al. (2016) Jupyter notebooks—a publishing format for reprodu-
cible computational work ows. In: Loizides, F. and Schmidt, B. (eds.),
Positioning and Power in Academic Publishing: Players, Agents and
Agendas Gottingen, Germany. I0S Press, Amsterdam, Netherlands,
pp. 87-90.

Kr zek,P.et al. (2016) SIMToolbox: a MATLAB toolbox for structured illu-
mination uorescence microscopy.Bioinformatics, 32, 318-320.

Matov,A. et al. (2011) Optimal- ow minimum-cost correspondence assign-
mentin particle ow tracking. Comput. Vis. Image Underst, 115, 531-540.

Mitchell,C. et al. (2020) Cell tracking pro ler—a user-driven analysis frame-
work for evaluating 4D live-cell imaging data. J. Cell Sci, 133, jcs241422.

Prigent,S.et al. (2021) BiolmagelT: Open-source framework for integration of
image data-management with analysisbioRxiv, 2021.12.09.471919.

Ruusuvuori,P. et al. (2010) Evaluation of methods for detection of uores-
cence labeled subcellular objects in microscope images.BMC
Bioinformatics, 11, 248.

Schindelin,J.et al. (2012) Fiji: an open-source platform for biological-image
analysis.Nat. Methods, 9, 676—682.

Schmidt,U. et al. (2018) Cell detection with star-convex polygons. In:
Frangi,A.F. et al. (Eds.), Medical Image Computing and Computer Assisted
Intervention—MICCAI 2018, Granada, Spain. Springer International
Publishing, Cham, Switzerland, pp. 265-273.

Serg,A. et al. (2008) Dynamic multiple-target tracing to probe spatiotemporal
cartography of cell membranesNat. Methods, 5, 687-694.

Smal,l. and Meijering,E. (2015) Quantitative comparison of multiframe data
association techniques for particle tracking in time-lapse uorescence mi-
croscopy.Med. Image Anal., 24, 163-189.

Smal,l. et al. (2010) Quantitative comparison of spot detection methods in
uorescence microscopy.lEEE Trans. Med. Imaging, 29, 282—-301.

Sofroniew,N. et al. (2021) napari: 0.4.12rc2. https://doi.org/10.5281/ZENODO.
5587893 (11 March 2022, date last accessed).

Stirling,D.R. etal. (2021) CellPro ler 4: improvements in speed, utility and us-
ability. BMC Bioinformatics , 22, 433.

Stringer,C. et al. (2021) Cellpose: a generalist algorithm for cellular segmenta-
tion. Nat. Methods, 18, 100-106.

Tinevez,J.-Y. et al. (2017) TrackMate: an open and extensible platform for
single-particle tracking. Methods, 115, 80-90.

Ulicna,K. et al. (2021) Automated deep lineage tree analysis using a Bayesian
single cell tracking approach.Front. Comput. Sci., 3, 734559.

van der Walt,S. et al. (2014) Scikit-image: image processing in PythonPeer]
2,e453.

Virtanen,P. et al. (2020) SciPy 1.0: fundamental algorithms for scienti ¢ com-
puting in Python. Nat. Methods, 17, 261-272.

von Chamier,L. et al. (2021) Democratising deep learning for microscopy with
ZeroCostDL4Mic. Nat. Commun., 12, 2276.

