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Abstract

Summary: Analysis of intra- and extracellular dynamic like vesicles transport involves particle tracking algorithms.
The design of a particle tracking pipeline is a routine but tedious task. Therefore, particle dynamics analysis is often
performed by combining several pieces of software (filtering, detection, tracking, etc.) requiring many manual oper-
ations, and thus leading to poorly reproducible results. Given the new segmentation tools based on deep learning,
modularity and interoperability between software have become essential in particle tracking algorithms. A good
synergy between a particle detector and a tracker is of paramount importance. In addition, a user-friendly interface to
control the quality of estimated trajectories is necessary. To address these issues, we developed STracking, a Python
library that allows combining algorithms into standardized particle tracking pipelines.

Availability and implementation: STracking is available as a Python library using ‘pip install’ and the source code is
publicly available on GitHub (https://github.com/sylvainprigent/stracking). A graphical interface is available using
two napari plugins: napari-stracking and napari-tracks-reader. These napari plugins can be installed via the napari
plugins menu or using ‘pip install’. The napari plugin source codes are available on GitHub (https://github.com/syl
vainprigent/napari-tracks-reader, https://github.com/sylvainprigent/napari-stracking).

Contact: sylvain.prigent@inria.fr or cesar-augusto.valades-cruz@curie.fr

Supplementary information: Supplementary data are available online.

Introduction

The study of cell biology dynamics, such as intracellular membrane 
transport inward (i.e. endocytosis) and outward (i.e. exocytosis/
recycling), has been difficult or at least incomplete until recently, 
due to the heterogeneity of the motion behavior of the analyzed 
structures. Different tracking software have been published [e.g. u-
track (Jaqaman et al., 2008), TrackMate (Tinevez et al., 2017), 
MTT (Serge� et al., 2008), MSSEF-TSAKF (Jaiswal et al., 2015), 
maptrack (Feng et al., 2011), Cell Tracking Profiler (Mitchell et al., 
2020), btrack (Ulicna et al., 2021)] to track individual biomolecules 
or extended objects with a shape, such as cells [e.g. TrackMate 
(Ershov et al., 2021) and CellProfiler (Stirling et al., 2021)], to ob-
tain spatial information and to quantify their kinetics. Most of them 
focus on the accuracy and reproducibility of the analysis but the 
user interfaces remain complex or even limited to a two-dimensional 
representation. The development of a user-friendly graphical user 
interface (GUI) therefore appears necessary to facilitate the selection 
of parameters, the analysis and the visualization of 3D þ time trajec-
tories estimated from complex 3D videos. The use of Python, a

versatile and free programming language is growing rapidly within
the bioimaging user community (Fernandez-Gonzalez et al., 2022).
Python tools for visualization [e.g. napari (Sofroniew et al., 2021),
ipyvolume (Breddels et al., 2018), SeeVis (Hattab & Nattkemper,
2019)] and analysis [ZeroCostDL4Mic (von Chamier et al., 2021),
BioImageIT (Prigent et al., 2021), Cellpose (Stringer et al., 2021)]
are widely applied to microscopy images.

On the other hand, a lot of particle tracking approaches have
been developed over the last decades. Interestingly, although a num-
ber of studies aimed at comparing particle tracking performance
have been published (Carter et al., 2005; Cheezum et al., 2001;
Chenouard et al., 2014; Ruusuvuori et al., 2010; Smal & Meijering,
2015; Smal et al., 2010), none of the tested methods seems to per-
form in a generic way, regardless of the type of image data. As a
consequence, it is critical for users to have the possibility to test dif-
ferent detectors and/or trackers in order to identify the best solution
for their application. In addition, efforts in the Python community
includes particle tracking packages such as TrackPy (Allan et al.,
2021). TrackPy is a complete particle tracking toolkit, but the code
can be a barrier for non-expert user.
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Here, we present STracking, an open-source Python library for 
combining algorithms into standardized particles tracking pipelines 
for biological microscopy images. STracking is distributed under a 
BSD 3-Clause ‘New’ or ‘Revised’ License. STracking combines par-
ticle detection, tracking and analysis methods and can be used via a 
napari plugin. STracking contributes to the recent ecosystem of 
Python-based plugins for bioimage analysis.

Implementation and application

STracking breaks down a particle tracking pipeline into five compo-
nents: (i) frame-by-frame particle detection; (ii) particle linking;
(iii) analysis of particle properties; (iv) design of track features; and 
(v) filtering of tracks. Each component is represented as a Python 
object.

Each component can be implemented separately. This modular 
design makes it easy to update and facilitates interoperability with 
other plugins/algorithms. Whenever a new detection or tracker algo-
rithm is added, compatibility is guaranteed with the particle tracking 
pipeline, and it is versioned within the STracking library. Several 
particle detectors are available in STracking: Difference of 
Gaussian, Determinant of Hessian and Laplacian of Gaussian from 
the Python library scikit-image (van der Walt et al., 2014). In add-
ition, STracking includes a mask detector, called SSegDetector. This 
detector takes a label or binary mask as input image and returns a 
list of object positions (centroids of connected components).

Moreover, STracking includes a tracker (Matov et al., 2011) that
estimates the optimal tracks as follows: first, a connection graph is
created with all the possible connections. Second, tracks are itera-
tively extracted from the graph using shortest path and graph
pruning.

STracking library uses two data structures: ‘SParticles’ to man-
age the set of detected particles and ‘STracks’ to manage the collec-
tion of trajectories. These data structures contain SciPy (Virtanen
et al., 2020) objects to store the particles and the tracks. The par-
ticles are represented with a 2D numpy array where each row is
dedicated to a specific particle and columns are [T, Z, Y, X] for 3D
data and [T, Y, X] for 2D data. The properties of particles are stored
in a dictionary. Similarly, tracks are stored in a 2D numpy array
where each row is dedicated to specific particle and columns are
[trackID, T, Z, Y, X] for 3D data and [trackID, T, Y, X] for 2D
data. Tracks features and split/merge events are stored using diction-
aries. This data representation is the same as napari (Sofroniew
et al., 2021) points and tracks layers, making STracking natively
compatible with the napari viewer. We thus implemented a
STracking napari plugin suite (napari-tracks-reader, napari-
stracking). It provides a graphical interface to create a STracking
pipeline without writing Python code. STracking could be used as
script in Python or napari plugin. The STracking library can be com-
bined with other Python packages to extend STracking functional-
ities. The napari plugin allows one to perform a full STracking
pipeline, or to load detections or tracks from another software such

Fig. 1. Overview of STracking library implemented in its napari plugin (a–c) and Jupyter Notebook (Kluyver et al., 2016) (d–f). Fifty-five planes 3D volumes of live RPE1 cells

double stained with PKMR for Mitochondria (magenta) and with plasma membrane deep red (PMDR) for endosomal pathway (green) were acquired within 4.3 s per stack

using Lattice light-sheet Structure Illumination Microscopy (LLS-SIM). STracking workflow is illustrated here with single particle tracking of endosomal pathway (PMDR).

napari-stracking includes spots detection (a) and linking (b) through a GUI. 3D data and tracks are rendered using napari viewer (c). Jupyter notebook (d) allows also spots (e)

and tracks (f) analysis. Additionally, they permit to get spots properties and tracks features, as well as tracks filtering. LLS-SIM data were reconstructed using MAP-SIM

(K�r�ı�zek et al., 2016) (A color version of this figure appears in the online version of this article.)
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as StarDist (Schmidt et al., 2018), TrackMate (Tinevez et al., 2017) 
or u-track (Jaqaman et al., 2008) and continue the analysis with 
STracking and napari. Documentation on STracking library with 
examples is available at https://sylvainprigent.github.io/stracking/. 
STracking documentation was created using sphinx and the autodoc 
extension.

STracking pipeline using the napari plugin is illustrated with 
data obtained in Lattice Light-Sheet Structured Illumination 
Microscopy (Chen et al., 2014) (Fig. 1 and Supplementary Video 
S1). The STracking workflow could also be implemented using 
Jupyter notebook (Supplementary Note S1). Additionally, 
STracking library can be used for cell migration experiments 
(Supplementary Note S2) using label mask images produced by 
other software such as CellPose (Stringer et al., 2021) or StarDist 
(Schmidt et al., 2018) through napari-stracking plugin, Jupyter 
Notebook or Python scripting. These examples demonstrate the 
ability of STracking to analyze complex datasets acquired with most 
advanced microscopy technologies.

Conclusions

The STracking library simplifies the design of single particle tracking 
workflows through a graphical interface using napari and a compre-
hensive Python library of functions. Unlike previous single particle 
tracking tools in Python ecosystem, it provides a very flexible solu-
tion for processing and visualizing the tracks taking advantage of 
Napari (Sofroniew et al., 2021) viewer for 3D þ time representation. 
A similar approach was introduced in TrackMate software (Tinevez 
et al., 2017) for the visualization and validation of 2D tracks in Fiji 
(Schindelin et al., 2012) java-based environment. Thus, reproducible 
analysis can be performed without being an expert programmer. For 
this purpose, STracking library includes a pipeline class to allow 
executing a tracking pipeline recorded as a json file. We would point 
out that this plugin-implemented recording technique is not an opti-
mal software architecture since it should be done by the host plat-
form. To overcome this difficulty, we recommend using a powerful 
data management software such as the recent BioImageIT platform 
(Prigent et al., 2021).

In summary, the STracking library greatly simplifies the inspec-
tion and optimization of single particle tracking algorithms and thus 
allows the evaluation of new detection and tracker algorithms in 
this context, which are constantly being developed.
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