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Highlights: 

 

• Thermal risk assessment using global sensitivity analysis: Sobol’ method. 

 

• A methodology to determine the most influential model inputs on thermal risk 

parameters 

• Most influential inputs on thermal risk parameters for the exothermic reaction of 

vegetable oil epoxidation. 
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Abstract.  

Thermal runaway is still an important cause of accident in chemical industry. To evaluate the 

risk of such events, thermal risk assessment, which is a part of process safety, must be done. 

This assessment determines the safe operating conditions of a process by evaluating the 

thermal risk of an exothermic system. Nevertheless, based on thermal risk assessment, it is not 

possible to know which model inputs have the most influence on the thermal risk parameters. 

The knowledge of the most influential model inputs on thermal risk parameters is important to 

establish adequate safety barriers. Global sensitivity analysis was used to evaluate the 

influence of model inputs and their interaction on thermal risk parameters. It was performed 

on the exothermic system: epoxidation of cottonseed oil by performic acid in semibatch mode 

under isoperibolic conditions. The maximum reaction temperature and the time to reach this 

maximum reaction temperature were chosen as thermal risk parameters. We have also studied 

the influence of model inputs on the temperature rise. In the operating conditions of this 

study, it appeared that two parameters have the most influence on maximum reaction 

temperature and the temperature rise: the initial concentration of hydrogen peroxide and the 

jacket temperature, and one parameter for the time to reach this temperature: the jacket 

temperature. 

 

Keywords: Risk assessment, Thermal runaway, Global sensitivity analysis, Sobol’ method, 

Epoxidation reaction.  
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Graphical abstract 
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1. Introduction 

Thermal risk assessment is an important part of risk assessment for chemical industries. The 

risk of thermal runaway can lead to severe consequences such as the explosion of a chemical 

reactor. The operating conditions (temperature, pressure, concentrations, stirring…) govern 

the evolution of reaction kinetics, product distribution but also reaction temperature and heat-

flow rate released by the reactions. Hence, thermal risk assessment must take into the inputs 

and their interactions. For example, in the case of a cooling failure for a chemical reactor in 

the presence of exothermic reactions, the reaction temperature rise can lead to a thermal 

runaway situation [1,2]. The temperature increase can trigger secondary reactions, which 

could cause overpressure in the reactor. 

Several authors showed that thermal runaway is the main critical scenario in chemical 

industry accidents. For instance, the study of Balasubramanian and Louvar (2002) [3] 

highlighted this fact for US chemical industry between 1990 and 2000, where ca. 26% of US 

major accidents were due to thermal runaway. One can also cite the study of Dakkoune et al. 

(2018) [4] concerning the risk analysis of French chemical industry, where they found that 

thermal runaway ranked first cause of accident in this sector with 25% of the case study from 

1974 to 2014. Dakkoune et al. (2018) [4] showed that operator error is the main initial cause 

of events in chemical industries (about 40% of the events).  

During a chemical process, operators are involved in many situations such as preparation of 

reagents and/or setting up the operating conditions like the temperatures of the system, feed 

rate and time of addition... For this reason, it is important to know how an error in these inputs 

can cause a loss of temperature control. In these circumstances, a thermal risk study of 

chemical reactions is essential.  
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The maximum temperature Trmax is a key safety parameter. Indeed, from a certain temperature 

threshold, specific to each reaction, secondary reactions can be triggered, especially 

decomposition reactions. These reactions can be very exothermic. Therefore, the cooling 

system provided for the main reaction is no longer adequate to remove the heat released by 

this type of reaction. These reactions can be very exothermic. Therefore, the cooling system 

provided for the main reaction is no longer adequate to remove the heat released by this type 

of reaction. 

The temperature rise ∆T is the difference between the maximum temperature and the initial 

temperature of the reaction medium. This parameter ∆T gives information about the heat 

accumulated in the reactor. Fig.1 illustrates theses target parameters 

 

Fig. 1 illustration of security parameters 

For this, it is required to determine the risk parameters of the process, that can be represented 

by: the maximum reaction temperature (Trmax) representing the severity of the risk, and the 

time to reach the maximum reaction temperature (tTrmax), representing the probability of the 

risk [1,5]. 

tTrmax represents the time to reach a maximum temperature of the reaction. This time-related 

parameter is considered as a parameter that can give information on the probability of a 
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thermal runaway [1]. Indeed, the longer this time, the lower the probability of a thermal 

runaway. 

In the safety community, the following parameters are used in adiabatic mode ΔTad and 

TMRad. They represent the severity and probability of the thermal risk. To conseve this 

parallelism, we have decided to create similar ones ΔT and tTrmax in isoperibolic mode. Also, 

we have added a third one Trmax. Trmax represents the maximum reaction temperature.  One 

should keep in mind that ΔT also depends on the initial temperature and the Trmax. 

More ΔT increases, the more the severity increases. Even if the variation of ΔT can be 

acceptable in a range from a specific value, this variation poses safety problems. 

More tTrmax decreases, more difficult it becomes to control a possible drift concerning the 

reaction temperature in real-time. 

Furthermore, the temperature rise is commonly used as a risk parameter on thermal risk 

assessment. When a reactive system cannot exchange energy with its surroundings, i.e., 

adiabatic conditions, the whole energy released by the reaction is accumulated. Thus, the 

temperature rise (ΔT) is proportional to the energy released and the final temperature can be 

expressed as T0 + ΔT. The use of the temperature rise as a severity parameter provides 

valuable information on the presence of secondary reactions [1].  

The evaluation of the influence of the inputs on thermal risk is challenging. One should take 

into account the reactor characteristics (geometry, nature of the heat carrier, impeller…), 

operating conditions applied to the reactor (pressure, temperature…), the kinetics and 

thermodynamics of the chemical reaction system. Thus, one needs to find a mathematical 

method to evaluate the influence of these inputs and their interaction. 
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 The risk of thermal runaway is high for batch and semibatch processes handling exothermic 

reactions, due to the heat accumulation. There are several studies concerning the evaluation of 

the thermal risk in these reactors but none of them have used a global sensitivity analysis 

(GSA) method for instance [6–8]. The other traditional approach to perform a thermal risk 

assessment is to use an adiabatic calorimeter [1] to measure the time to maximum rate and the 

temperature rise under adiabatic conditions. This approach gives the thermal risk parameters 

under the worst-case scenario: adiabatic and batch conditions. It can be difficult to extrapolate 

these data to find the most influential inputs on the reaction temperature under non-adiabatic 

conditions.   To make an insightful thermal risk assessment of a chemical reactor, one needs 

to have an advanced mathematical model considering kinetic, thermodynamic and heat 

transfer phenomena. Nevertheless, these models do not allow obtaining explicit and simple 

relations between the safety parameters (Trmax, ΔT and tTrmax) and the operating conditions. 

This makes difficult to determine the safe operating conditions, and which model inputs 

influence the most these risk parameters. To overcome this issue, sensitivity analysis can be 

the appropriate method. 

Sensitivity analysis (SA) has been developed for optimization and chemical engineering 

design as an informative method to find the optimum operating conditions with minimum 

experimental effort based on mathematical model [9–14]. Sensitivity analysis evaluates how 

the impact of model input uncertainties of the mathematical model can be apportioned, 

qualitatively or quantitatively, to the different model output uncertainties [15]. SA will allow 

identifying the influence of the operating conditions on the model outputs, which are the 

thermal risk parameters in this study. 

Sensitivity analysis approaches are classified into local sensitivity analysis (LSA) and global 

sensitivity analysis. LSA studies the changes in the model output, in relation to variations of 

one single model input. There are several studies concerning the evaluation of the thermal risk 
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by LSA based on experimental results [16,17]. Global sensitivity analysis (GSA) is based on 

the exploration of the whole range of model inputs variation. GSA aims to quantify the 

relative importance of model inputs by determining the value of model outputs, taking into 

account their overall influence. Besides that, GSA provides more reliable results despite of the 

higher computational cost, they can quantify the interactions between model inputs [15,18].  

Among the different GSA methods, the Sobol's one can quantify the contribution of each 

model input and their interactions to the overall output variance of the model.  

Sobol’s method has proven to be valuable in different areas of chemical engineering (Table 1) 

with the objective of determining the most influential model inputs on selected model outputs. 

To the best of our knowledge, there is not a mathematical methodology that has been applied 

to select the most significant model inputs for the study of thermal risk. 

In this paper, GSA is applied in order to evaluate the influence of model inputs on thermal 

risk parameters (Trmax, ΔT, tTrmax) by using Sobol’ method. GSA is used as a mathematical 

tool to determine the most influential model inputs on thermal runaway. 

 The model of cottonseed oil epoxidation by in situ generated performic acid performed in 

semibatch reactor under non-isothermal conditions was used [19]. Indeed, this reaction system 

is exothermic with several parallel and consecutive reaction steps making its thermal risk 

analysis complex.  
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Table 1 

Recent GSA – Sobol’ method studies in Chemical Engineering 

Process studied 

Number of 

model 

inputs  

Outputs model  References 

Biodiesel production from crude 
palm oil 

7 Life cycle cost & unit cost [20] 

Bioreactor networks for bioethanol 
production 

18 

Substrate concentration 
Conversion 
Biomass concentration 
Product concentration 

[21] 
 

CO2 storage operations 
Case Study: industrial-scale CO2 
injection 

5 Over- pressure [22] 

Combustion kinetic studies 55 
Kinetic rate constant 
Ignition delay time 

[23] 
 

Co-pyrolysis of rape straw and waste 
tire 

3 
Mass loss 
Reaction heat 

[24] 

Design of parabolic-through direct 
steam generation plants for process 
heat applications 

16 
 

Energy and economic 
parameters  
 

[13] 

Fermentation process of an 
engineered Geobacillus 
thermoglucosidasius strain for 
bioethanol production with gas 
stripping 

11 
Acetate, cellobiose, 
Ethanol, succinate, biomass 
concentration 

[25] 

Gaseous autocatalytic ethane 
pyrolysis 

30 
Calculated concentration of a 
substance 

[26] 

Kinetic of solid thermal degradation 
during thermal exposure 

4 Mass loss rate [27] 

Mineral concentration circuit and 
RO desalination plant designs 

Case I: 65 
Case II: 6 

arsenic grade in the 
concentrate 
salt concentration in clear 
water 

[28] 

Optimization of Batch Processes, 
Case Study: Fed-Batch Fermentation 
of Penicillin G 

11 Kinetic Model Parameters [11] 

Reduction of greenhouse gas 
emissions from wastewater 
treatment 
 

6 
Effluent quality index  
Operational cost index 
Greenhouse gas emissions 

[29] 
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Stochastic optimization of renewable 
energy businesses: multiproduct 
lignocellulosic biorefinery 

86 
Succinic acid production, 
bioethanol 
Production 

[30] 
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2. Methodology 

In this section, the mathematical model describing the kinetic model of epoxidation and the 

GSA are explained. 

2.1. Mathematical model 

Zheng et al. [19] have developed a kinetic model for the epoxidation of cottonseed oil by in 

situ generated performic acid, also known as Prileschajew oxidation, in a semibatch reactor 

under isoperibolic conditions. It is a liquid-liquid reaction system with different exothermic 

reaction and side-reaction steps.  

Fig. 2 illustrates the reaction mechanism of the system.  

 

Fig. 2 Simplified mechanism of the Prileschajew oxidation of vegetable oil 

 
This kinetic investigation was done in a 300 mL jacketed glass reactor, internal diameter of 10 

cm, with a pitched blade turbine impeller, diameter 3.8 cm and 4 blades. The condenser 

temperature was 0°C avoiding the evaporation of liquid phase chemicals. Several temperature 
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probes were put in the mixture, at the inlet and outlet of the jacket. A calibration probe was 

used to provide electrical power to the mixture to measure global heat transfer coefficient and 

heat capacity. This calibration step was done in the absence of chemical reactions. A 

thermostat maintained constant the temperature of around 15 Liters of heat carrier (water). 

The circulation of the heat carrier in the jacket was fast, thus the jacket temperature was 

constant making the temperature mode isoperibolic. It is a semi-batch mode, where a 

concentrated solution of formic acid was added with a constant volumetric flow-rate. 

More information is given in the supporting information about the experimental matrix used 

in the article of Zheng et al. [19], the estimated kinetic and thermodynamic constants for the 

system epoxidation of cottonseed oil by performic acid from Zheng et al. [19]. 

The kinetics of mass transfer was assumed to be faster than the ones of chemical reactions. 

Vegetable oil and their derivatives were supposed to be non-soluble in the aqueous phase. 

According to the mass and the energy balances, the mathematical model for the reaction 

system is as follow: 

Material balance 

- Organic phase 

��,����� = ��. �� + 1 − ����. ���.  !�" . #$%," + �1 − ��.  !�" . #���,"  & + �. '())*,� − �� . �,���+,$% - �1� 

- Aqueous phase 

 

��,$%�� = .� + 1 − ��� /�� . ���.  !�" . #$%," + �1 − ��.  !�". #���," & + �. '())*,� − ��. �,$%+,$% - �2� 

Energy balance 
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Heat exchange with the external environment was neglected because the reactor was well 

insulated. 

 

*01*2 = � �31.4561& . 7− �#8)�9. ∆;<=>?@ + #*)A�38,�. ∆;<B>CDE=,F + #*)A�38,G. ∆;<B>CDE=,H& . I$% −
                                .'#J8�K�*$2��L,� + #J8�K�*$2��L,G + #J8�K�*$2��L,M+. ∆;<N=DOPBQRPDS   +
                                  �#<TU +  #<TVW + #<TXVW�. ∆;<1Y/ . I���  +
                                   Z[\]())*. ^VW. X̅`a . 'b())* − b<+ + c\'b" − b<+d    �3� 

where,  

- The subscripts i and j stand for each compound and each reaction, respectively. 

- aq and org refer to aqueous and organic phase, respectively.  

- Vaq is the aqueous volume and VTot is the total volume,  

- α is the ratio of aqueous volume phase on total phase volume, Vaq/VTot,  

- Ki is the equilibrium molar ratio of compound i between the organic and aqueous 

phase, 

- νij is the stoichiometric coefficient of compound i for j reaction, 

- raq,j or rorg,j represents the reaction rate of the j reaction in the aqueous or organic 

phase,  

- Ci is the concentration of compound i, 

- The subscripts Epo, Perh, RO, ROFA and ROPFA represent the following reactions: 

Epoxidation, Perhydrolysis, Ring-opening, Ring-opening by formic acid, Ring-

opening by performic acid and Ring-opening by water. 

- qacc represents the accumulated heat-flow rate,  

- qdosing is the sensible heat-flow rate,  

- qexchange is the heat exchange to the heat carrier,  
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- qloss represents the heat losses,  

- qreaction is the heat-flow rate due to the reactions, 

- A is the heat-transfer area, 

- CP is the molar heat capacity, 

- ĈP is the specific heat capacity,  

- mR is the reaction mass,  

- ΔHR is defined as the reaction enthalpy,  

- Tfeed is the inlet flow temperature, 

- Tj is the jacket temperature, 

- TR is the reaction temperature, 

- Q represents the volumetric flow rate,  

- U is the overall heat-transfer coefficient,  

 

Based on the mathematical model developed and validated by Zheng et al., (2016) the 

following model inputs were varied: feed rate, addition time, feed temperature, hydrogen 

peroxide concentration and jacket temperature. The following risk parameters were recorded 

as outputs model:  

- Maximum reaction temperature (Trmax), representing the severity of the risk 

- The Temperature rise (ΔT), representing the severity of the risk  

- Time to reach the maximum reaction temperature (tTrmax), representing the probability 

of the risk. 

The influence of the model inputs on the output was evaluated by Sobol´ method. 

2.2.Global Sensitivity Analysis 

 



16  

In this work, Sobol’s method [31] was used to compute sensitivity indices. The aim of using 

this method was to study the influence of different model inputs x (flow rate, addition time, 

temperature, hydrogen peroxide concentration and temperature of the jacket) on the outputs 

model y (maximum reaction temperature, temperature rise and time to reach the maximum 

reaction temperature).  

Consider, 

e = f b�3$K∆b�0�3$K 

 

And,  

 

g� =
hij
ik [ll� #m�l �^�\��n�nop �nql ��$**�[ll� �lqrl#m�s#l tmuvl� �lqrl#m�s#l �b"�wpn�nmx uopulp�#m�nop oy ℎe�#o{lp rl#ogn�l �Z;|]}

 

 

If the function, i.e. the mathematical model, can be integrated in the [0, 1] k, then it can be 

decomposed into terms of increasing  dimensions [32] as follow:  

 

y = y} +  y��g��� +   y�"�g�, g"�"~�� + ⋯ + y�,G,…,�'g�, g" , … , g�+                                        �4� 

where, each term is also square integrable and is a function of the factors in its index. Sobol’ 

proved that if each term of the expansion, called High Dimensional Model Representation 

(HDMR), has zero mean then all the terms of the decomposition are orthogonal in pairs. In 

that case, all the terms in Eq. (4) can be uniquely estimated by the conditional expectations of 

the variable y, 
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��e� = � y�g��g = y}                                                                                                                         �5� 

 

��e|g�� = � y�g� � �g���� = y} + y��g��                                                                                         �6� 

 

Eq. (5) represents the definition of the expected value of a variable y that is function of 

uncertain variables, and Eq. (6) defines the conditional expected value of a variable y when xi 

is known. These expressions are obtained by integrating Eq. (4) over all variables except xi. 

By square integrating each term of Eq. (4) 

 

I�e� = � … � yG �g��g� … �gL − y}G                                                                                              �7� 

 

I�F…�� = � … � yG�F…�� �g�F … �g��                                                                                                    �8� 

 

V(y) is the unconditional variance and I�F…�� represents the conditional variance. By deriving 

the so-called ANOVA-HDMR decomposition: 

 

I�e� =  I�� +   I�""~�� + ⋯ + I�,G,…,�                                                                                        �9� 

 

Dividing Eq. 9 by V(y) the index decomposition is obtained: 

 

1 =  ��� +   ��""~�� +    ��"��~""~�� … + ��,G,M,…,�                                                               �10� 
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where Si and Si
TOT can be defined as: 

 

�� = I'��e|g��+I�e� = I�I�e�                                                                                                                   �11� 
��0T0 = �'I�e|g���+    I�e� = I�0T0I�e�                                                                                                       �12� 
 

where,  

 

- ��  and �nb�b  are the first and total-order sensitivity indices, respectively. 

- ��" and ��"� are the second and third-order sensitivity indices, respectively. 

- I� = I'��e|g��+  computes the variance (over all possible realizations of parameter xi) of the 

conditional expected value of the variable y under all parameter’s variation, excluding xi. 

- I�0T0 = �'I�e|g���+ is the average output variable variance if all variables excluding xi may 

be fixed. 

These indices measure the effect of the variation of the parameters on the model variables.  

An additional index, Si
int, is introduced and considers the effects of all interactions among 

model parameters and it can be determined as:  

���L2 =  ��" + ⋯ + ��,G,M,…,�  =   ��0T0 − ��                                                                                     �13�         
For an extensive description of the Sobol’s method, the reader should refer to the works of 

Sobol’ [31,32]. 

Quasi-Monte Carlo Sobol sequence fills space in a highly uniform manner and was used as 

sampling method which gives satisfactory results between the filling of the space and the 

computing time. 
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In this work, the methodology was used following Saltelli et al. [33]  to compute the indices, 

as defined by Eqs. (14) - (16). 

I�e� = .1�/  y���"G�
"��   − y} G                                                                                                        �14� 

I'��e|g��+ =  .1�/  y���"'y�������" − y���"+G�
"��                    n = 1 … v                            �15� 

�'I�e|g���+ =  . 12�/  'y���" − y�������"+G�
"��                            n = 1 … v                           �16� 

where N is the number of simulations; A, B and AB are matrices of N quasi-random values for 

the k uncertain model inputs and f(A), f(B), and f(AB), are vectors of N outputs model values 

obtained when model parameters are evaluated in matrices A,B and AB, respectively. The main 

steps are described in Table 2. 
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Table 2  

Steps for computing sensitivity indices 

 Step  Calculations 

1. 
Generate two quasi-random point set of model parameters from the Sobol' 

sequence, A and B matrices 

 
- Matrices dimension : N x k 

 
- N, Sample size 

 
- k, Number of parameters 

2.  Define a new matrix Ci = AB
(i) = (N,k) 

 

- Matrix formed by the ith column of matrix B and all other k −1 column 

come from matrix A   

3.  
Calculation of outputs model for all parameter values in the sample matrices of 

Steps 1 and 2 

 

- Three vectors (N x 1) of output model are obtained, ya = f(A), yb = f(B), 

yci = f(AB
(i)) 

4.  Calculation of variance and conditional variances for outputs model  

5.  Calculation of sensitivity indices  

 

The value of indices (Si, Si
int and Si

TOT) represents the percentage of variation on the output 

model due to the model input i.  

For a better understanding of the results of sensitivity indices; Table 3 gives general 

information on the influence of parameter xi based on the value of its indices. 
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Table 3  

Condition for parameter xi based on its indices values 

Indices Comparative Value Condition of parameter xi 

Si High  Influential 

Si and Si
TOT Small  Non-influential 

Si
int  High Important interaction 

Si
int Small Little or non-interaction 

Si, Si
int and Si

TOT represent the first order, interactional and total sensitivity index for parameter 

i.  

3. Results and discussion 

A global sensitivity analysis was applied to the kinetic and thermal model comprising 

ordinary differential equations (ODEs). The ODEs for the mass and energy balances were 

solved out by using the solver ode23s that is based on a modified Rosenbrock method 

restricted to order 2 and used for the solution of stiff problem [34]. Sobol’ sensitivity 

calculation steps were performed using Parallel Computing Toolbox™, (R2017b) [35] in 

MATLAB®. 

GSA-Sobol’s method was carried out over different model inputs, which are shown in Table 4 

with their range of values. These ranges were chosen following the values used in Zheng et al. 

[19] . From the work of Zheng et al. [19], it was found that the decomposition of hydrogen 

peroxide can be neglected in these operating conditions. 
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Table 4  

Ranges of variation of each model input 

Notation Definition Units 

Range 

Low High 

Q Feed rate L/s 0.0001 0.0002 

tadd Addition time s 1500 3000 

Tfeed Feed temperature K 288.15 308.15 

Tj Temperature of the jacket K 313.15 333.15 

[HP]0 

Initial concentration of hydrogen 

peroxide 
mol/L 3.5 7 

 

In this study, the model inputs were assumed to be independent of each other. Sobol sequence 

Quasi-random points have been generated for all the model inputs listed in Table 4, according 

to the sampling method, with sample size of N= 200 000 scenarios. 

Table 5 shows the influence of model inputs (feed rate, addition time, feed temperature, 

hydrogen peroxide concentration and jacket temperature) on three outputs model: Trmax, ΔT 

and tTrmax by using GSA method. 
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Table 5 

Estimated Sobol’ sensitivity indices for thermal risk parameters 

Sobol' indices 
                          Model inputs Model outputs Q tadd Tfeed Tj ZHP]0   First-Order �Si� Trmax 0.00 0.00 0.00 0.81 0.15 tTrmax 0.00 0.01 0.00 0.97 0.01 

∆T 0.00 0.00 0.00 0.63 0.28  Total-Order �SiTOT� Trmax 0.00 0.00 0.00 0.88 0.21 tTrmax 0.00 0.05 0.00 1.00 0.03 

∆T 0.00 0.00 0.00 0.72 0.37 

 

In the following discussion, risk parameters (Trmax, ΔT and tTrmax) and global sensitivity 

analysis was addressed with respect to model inputs. 

3.1.Effect on the maximum reaction temperature 

Fig. 3 shows the Sobol’ first-order and total indices. First-order indices estimate the single 

parameter contributions to the variance of the maximum reaction temperature (Trmax). The 

total-order indices indicate the contributions of the single parameters and their interaction 

effect to the variance of this temperature. The difference between the two bars represent the 

total interactive contribution of one parameter with all the other parameters. 
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Fig. 3 Total- and first-order indices using Sobol’ variance decomposition for Trmax 

As indicated in Fig. 3 and Table 5, the maximum reaction temperature is mainly influenced by 

the initial hydrogen peroxide concentration ([HP]0) and the jacket temperature (Tj). One can 

notice that if we calculate the interactional index (Siint = Si
TOT - Si), there is an interaction 

between ([HP]0) and (Tj) (Si
int = 0.06 and 0.07, respectively).   

The concentration of hydrogen peroxide has an important influence on Trmax, because it is the 

oxidizing agent, more hydrogen peroxide in the reaction system and higher will be the 

maximum reaction temperature. The parameter Tj has also a strong influence on Trmax. As 

expressed in Eq.(17), under isoperibolic conditions, the reactants are heated to reaction 

temperature by the heating/cooling system (Tj) and the values of maximum reaction 

temperature strongly depends on the choice of Tj. 

 

b�3$K = b" + ∆b                                                                                                                       �17� 
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3.2.Effect on the temperature rise 

 

Fig. 4 and Table 5 show the results of sensitivity indices for the temperature rise as model 

output. One can notice from Fig. 4 that the initial hydrogen peroxide concentration ([HP]0) 

and the jacket temperature (Tj), are also the two most influent model inputs. For ΔT there is 

also an interactional index of 11% for both model inputs. 

 
Fig. 4 Total- and first-order indices using Sobol’ variance decomposition for ΔT 

Making a comparison between the sensitivity indices for Trmax and ΔT, one can observe that Tj 

has more influence on Trmax that on ΔT per se, as we explained in the previous section, the 

variation of the maximum reaction temperature depends on the choice of Tj. This is due to the 

fact that ΔT is the difference between Trmax and Tj. 

 

3.3.Effect on the time to reach the maximum reaction temperature 

 

Fig. 5 shows the first and total-order indices for the time to reach the maximum reaction 

temperature. 
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Fig. 5 Total- and first-order indices using Sobol’ variance decomposition for tTrmax 

 

The first-order Sobol’ indices indicate that the variance of the time to reach the maximum 

reaction temperature is almost all attributed to the jacket temperature explaining 96% of the 

total variance (Table 5). 

This statement makes sense with the previous results. The time to reach the maximum 

reaction temperature is strongly linked to the kinetics of the system. The kinetics of any 

chemical systems very exponentially with the reaction temperature.  
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4. Conclusions 

The global sensitivity analysis method of Sobol’ was used in order to quantify the 

contribution of each model input and their interactions to the overall output variance of the 

model. 

The kinetic model of the epoxidation of cottonseed oil by performic acid generated in situ 

carried out in semibatch reactor under isoperibolic conditions was chosen, because it is 

complex reaction system comprising several consecutive and parallel exothermic reactions 

and it can pose thermal safety issues. The three model outputs, safety parameters, were the 

maximum reaction temperature (Trmax), the temperature rise (ΔT) and the time to reach the 

maximum reaction temperature (tTrmax).   

First and total Sobol’ sensitivity indices have been calculated based on the mathematical 

model coupling material and energy balances.  

Since the maximum reaction temperature represents the severity, and the time required to 

reach this value represents the probability of the risk, this study makes it possible to determine 

the model input responsible for the thermal risk assessment of this reaction, for operating 

conditions within the defined ranges.  

GSA can be used to find the most influential inputs for the thermal risk assessment of 

complex chemical system. This method allows defining the model inputs to be monitored in 

order to ensure safe operation. 

In this study, showed was demonstrated that: the cooling temperature and the concentration of 

hydrogen peroxide are main inputs influencing the severity parameters (Trmax, ∆T) and the 

probability parameter (tTmax) of the thermal risk. Hence, the safety barriers for this system 

must prevent any faults on these two inputs to avoid a thermal runaway. This methodology 
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proposes a better thermal risk assessment of a chemical reactor and on where the safety 

barriers must be placed. 

The global sensitivity analysis method of Sobol’ was used in order to quantify the 

contribution of each model input and their interactions to the overall output variance of the 

model. 

The kinetic model of the epoxidation of cottonseed oil by performic acid generated in situ 

carried out in semibatch reactor under isoperibolic conditions was chosen, because it is 

complex reaction system comprising several consecutive and parallel exothermic reactions 

and it can pose thermal safety issues.  

First and total Sobol’ sensitivity indices have been calculated based on the mathematical 

model coupling material and energy balances.  

GSA can be used to find the most influential inputs for the thermal risk assessment of 

complex chemical system. This method allows defining the model inputs to be monitored in 

order to ensure safe operation. 

The three model outputs, safety parameters, were the maximum reaction temperature (Trmax), 

the temperature rise (ΔT) and the time to reach the maximum reaction temperature (tTrmax).   

The maximum reaction temperature and the reaction temperature rise represent the severity.  

The time required to reach the maximum reaction temperature value represents the probability 

of the risk. This study makes it possible to determine the model input responsible for the 

thermal risk assessment of this reaction, for operating conditions within the defined ranges.  

In this study, showed was demonstrated that:  
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- the cooling temperature and the concentration of hydrogen peroxide are main 

inputs influencing the severity parameters (Trmax, ∆T) of the thermal risk. 

- The cooling temperature is main input influencing the probability parameter 

(tTmax) of the thermal risk. 

Hence, the safety barriers for this system must prevent any faults on these two inputs to avoid 

a thermal runaway. This methodology proposes a better thermal risk assessment of a chemical 

reactor and on where the safety barriers must be placed. 

A continuation of this work will be to consider multivariate output global sensitivity analysis. 
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Notation 

X̅ Capacity per mol, J/mol K 

Ci Concentration of compound i 

ĈP Capacity per mass, J/g K 

Ki Equilibrium molar ratio of compound i 

mR Mass, kg 

Q Volumetric flow rate, L/s 

qacc Accumulating heat-flow rate, J/s 

qdosing sensible heat-flow rate, J/s 

qexchange to heat carrier flow Heat Exchange to the Heat Carrier, J/s 

qloss Heat losses, J/s 

qreaction Reactions heat-flow rate, J/s 

ri Reaction rate, mol/L s 

T 

TMR 

Time, s 

Time to Maximum Rate 

Tj Jacket temperature, K 

Tr Reaction temperature, K 

UA Overall heat-transfer coefficient, W/ K 

V Volume, L 

ΔHR Reaction enthalpy, J/mol 

 

Greek letters 

 

 

α Vaq/VTot 
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νij Stoichiometry coefficients 

τ residence time, s 

 

Subscripts 

 

 

aq 

ad 

Aqueous phase 

adiabatic 

Epo Epoxidation 

FA Formic acid 

feed Feed 

i Component i 

j Reaction 

org Organic phase 

Perh Perhydrolysis 

RO Ring-opening reactions 

ROFA Ring-opening by formic acid 

ROPFA Ring-opening by performic acid 

ROW Ring-opening by water 
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