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Abstract

Normalization constitutes an important aspect involves in supervised and unsupervised pattern recognition. In

this work, we approach this relevant issue from the perspective of preliminary modeling, mainly in terms of respective

formulae, the characteristics of the involved features adopted for representation of the entities to be compared and

recognized. After presenting several related concepts and methods, including random vectors, densities, and modeling

formulae, several normalization approaches are described. Two main methods for comparing the data (signals or

sets of features), namely the Pearson correlation coefficient approach and the multiset coincidence similarity, are then

presented. The interacting effects between the several described normalizations and comparison approaches, which can

critically influence the comparison and classification results, is then addressed and discussed and studied respectively to

three case examples involving relatively complex signals/features involving more than one level of detail. The reported

concepts, methods and results led to the identification of several important issues, including the intrinsic distinctions

between the Pearson correlation and coincidence similarity, with the latter being able to take into account constant or

mean portions of the signals. The marked effect that different normalization approaches can have on the comparison

was confirmed and discussed. The reported developments motivate an approach involving the optimization of distinct

features, possibly in different manners compatible to their mathematical model, wile optimizing some required criterion

has also been described.

1 Introduction

Patterns have long been important for humans, as they

provide an effective means for representing all types of

objects, entities and phenomena in the real-world. In-

deed, recurring entities that have some special importance

are often organized into groups or categories that often,

but not necessarily, have mutually similar characteristics

while differing from other entities. In this case, the groups

can be understood as clusters. It is interesting to observe

that not every cluster has an associated category, and not

every category corresponds to a cluster, in the sense of

its entities not being well-separated from the remainder

entities, as is the case of e.g. two or more adjacent groups.

The assignment of categories to entities constitutes the

main objective in pattern recognition (e.g. [1, 2, 3, 4, 5,

6, 7]), which can be of two main types: (a) supervised,

where preliminary information or prototypes about the

categories are available; or (b) unsupervised, when not

information is known about the categories. Needless to

say, the latter type of recognition is typically more chal-

lenging than the former. Observe that in the latter case,

the categories are not known a priori and need to be

inferred from the data. However, though often simpler

than the unsupervised counterpart, supervised pattern

recognition also represent several challenges implied by

each of the involved stages and elements. These diffi-

culties, which can interact one another while influencing

the recognition, have diverse origins that include but are

by no means limited to: noise and other interferences,

undersampling, inconsistent categories, overlap between

categories, curse of dimensionality, biased sample, as well

as inadequate recognition methods (e.g. [8, 9, 7]). In addi-

tion to these issues, unsupervised pattern recognition also

involves problems related to the definition of the number

of categories and their delimitation.

Given the ubiquitous and critical importance of pattern

recognition for most human activities, their automation

through artificial means has received growing attention

along the last decades. The motivation for automated

pattern recognition often relates to enhancing robustness,

accuracy, and speed, as well as alleviating humans from
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repetitive tasks. The importance of this multidisciplinary

area, extending from multivariate statistics (e.g. [10, 11])

to neuronal networks (e.g. [12]), has been corroborated by

an impressive number of interesting works in the litera-

ture.

Figure 1 illustrates, in simplified manner, the main

involved data and stages involving in a typical pat-

tern recognition approach: (a) acquisition of measure-

ments (features) of the entities to be recognized; (b)

pre-processing, possibly involving normalization and min-

imization of unwanted data; and (c) the recognition

proper; (d) the respective quantification of the perfor-

mance of the whole system in terms of each of its involved

aspects, aiming at respective validation of the approach.

Figure 1: Typical pattern recognition pipeline, represented in sim-

plified manner. Feature extraction: A set of features are measured

from the entities to be recognized. Pre-processing: the features are

handled in order to curate their quality, normalization purposes,

as well as minimization of unwanted aspects. Pattern recognition:

methods are applied in order to assign categories to the entities.

Validation: The validation of the approach considering each of the

involved data, stages, and results.

Each of the data and tasks in Figure 1 have their own

specific effects on the recognition result, but the overall

result is often a consequence also of complex interactions

between those effects. Is is therefore not surprising that

each of these aspects have been addressed in a substantial

number of related works in the literature.

The present work focuses on the problem of data nor-

malization (e.g. [13, 14, 15, 16, 17, 18, 19]), which con-

stitutes one of the main objectives of the pre-processing

stage. Oftentimes, once the features have been measured

from the samples, they will be characterized by their own

physical units, distinct value variations, including or not

negative values. Since having features with markedly dif-

ferent ranges can influence (bias) the recognition results,

means for making these measurements more commensu-

rated often have to be devised and applied.

For generality’s sake, this work henceforth takes into

account that one-dimensional signal (and sets of fea-

tures can be represented and handled in the same man-

ner concerning the concepts and methods presented here

(e.g. [20, 21]). In the case of signals, their values are

considered as features irrespectively of the original adja-

cency/topology. At the same time, the values of a feature

can be visualized as a function along the horizontal axes,

though the order of the abscissae is immaterial and can be

taken in any permutation. In other words, the approaches

to signal and features normalization treat each signal or

feature value independently of their position along the

horizontal axis,. By adopting this approach, it becomes

possible to address both signal and features normalization

in an integrated manner.

We start by briefly revising some important related

concepts from multivariate statistics (e.g. [10, 11]) and

proceed by describing the suggested modeling of the val-

ues of the signals or sets of features in terms of respec-

tive basic mathematical formulae. The several normal-

ization methods considered in this work, which include

the standardization and minmax approaches, are subse-

quently presented. Then, the two main comparison ap-

proaches addressed here, namely the Pearson correlation

coefficient and the multiset coincidence similarity, are de-

scribed. The remainder of the work studies the effects

of the several normalization and comparison approaches,

with emphasis on their respective combinations, on the

comparison results in terms of three case examples involv-

ing relatively complex signals/features presenting more

than one level of detail, or scale. Several interesting re-

sults, as well as a respectively motivated basic optimiza-

tion approach involving heterogeneous normalization of

the features are also presented and discussed.

2 Random Variables, Densities,

and Transformations

Science and technology are amply underlain by modeling

approaches, which can be developed from a probabilistic

point of view.

Any measurement, no mattering its level of random-

ness, can be conceptualized and modeled in terms of a

respective random variable X. Random variables, which

are intrinsically associated to random experiments, can

be sampled in terms of N respective values. In case more

than one measurement is taken per sample, they are often

organized as a random vector ~X.

Random variables and random vectors can be fully

characterized, from the probabilistic point of view, in

terms of the respective probability density functions, prob-

ability densities, or even simply density for short.

In the case of a random variable X, we would have

p(X); while p( ~X) would apply for a random vector.

Henceforth, the set of all values of X or ~X for which

a probability density is assigned will be understood as

the respective support of that density. To be statistically

well-posed, a density needs to have: (a) all its values be-

ing non-negative; (b) the integral of the density along the
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support needs to be identical to one.

Uniform probability density functions are characterized

as:

p(s) = c, or (1)

p(~x) = ~c (2)

The standard deviation σX of a random variable X is

equal to the positive root of the respective variance.

The 1−dimensional and N−dimensional normal densi-

ties can be expressed as:

g(x, µ, σ) =
1

2π
√
σ
e
−0.5

(
(x−µX )

σX

)2

(3)

p(~x) =
1√

(2π)M |K|
e−0.5[~x−~µ]

TK−1[~x−~µ] (4)

where ~µ and K are the average vector and covariance

matrix of ~X, and |K| is the determinant of the latter

matrix.

Given the standard deviation of a random variable X,

which corresponds to the positive square root of the re-

spective variance, the coefficient of variation (also relative

standard deviation) of X is defined as:

cv(X) =
σX
µX

(5)

Though the mean and standard deviation of a random

variable are, in principle, independent, relationships be-

tween these two statistical measurements can be found

relatively often in practice, being of special interest while

normalizing data. For instance, in the binomial, log-

normal, and exponential densities, the mean is propor-

tional to the standard deviation, implying in constant co-

efficient of variation. In these cases, taking the mean and

standard deviation of a measurement as features inher-

ently implies in redundancy. Poisson densities, the mean

is proportional to the variance.

Given 1D density p(x), xm ≤ X ≤ xM , its respective

cumulative distribution funtion, cumulative distribution,

or simply distribution, can be defined as:

P (x) =

ˆ x

−∞
p(x)dx =

ˆ x

xm

p(x)dx (6)

Random variables not only have diverse units and

choices, but can also be statistically transformed, or data

transformed in a virtually infinite number of ways. For

instance, given a random variable X, it is possible to con-

sider respectively linear transformations of the type:

X̃ = aX + b (7)

These transformations typically change the respective

density, which can be found by several methods, includ-

ing those based on the respective density or distribution

functions. In the present work, we focus our attention on

the Jacobian method summarized in the following.

Let pX(~x) be a multivariate (N dimensions) density on

the random vector ~x. Let also q(~x) be a function on ~x

used to transform that original random vector into a new

random vector ~y. The Jacobian of this transformation

can be placed as:

J =


∂y1
∂x1

∂y1
∂x2

. . . ∂y1
∂xM

∂y2
∂x1

∂y2
∂x2

. . . ∂y2
∂xM

. . . . . . . . . . . .
∂yM
∂x1

∂yM
∂x2

. . . ∂yM
∂xM

 (8)

As an example, in case the above Jacobian exists, the

density pY (~y corresponding to the new random vector ~y

can then be expressed as:

pY (~y) =
pX(~x)

|J |
(9)

In the case of the above linear transformation, in case

X were originally described by p(x), we would have:

J = a (10)

Hence:

pY (y) =
pX(x)

a
(11)

Considering a random vectors ~x and respective density

p(~x undergoing the same linear transformation, it would

follow that:

J =


a 0 0 0

0 a 0 0

. . . . . . . . . . . .

0 0 0 a

 (12)

from which:

pY (~y) =
pX(~x)

aN
(13)

When applied to features, which are random variables,

statistical transformations yield new features that, though

somewhat related to the original ones, typically possess

distinct statistical properties. Therefore, features trans-

formations can actually though of as constituting an ap-

proach to obtain new, or alternative features in a pattern

recognition application.

A particularly important type of statistical transfor-

mation consists in the respective standardization. More

specifically, given a set of N samples observed from a ran-

dom variable X with average µX and standard deviation

σX , these values can be normalized by, for each sample xi,

subtracting the average and then dividing by the standard

deviation, i.e.:

x̃i =
x− µX
σX

(14)
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In addition to becoming dimensionless, the new values

X̃i have null mean and unit standard deviation, and most

of then result comprised in the interval [−2, 2].

Observe that the standardization corresponds to a lin-

ear transformation of the original random variable, be-

ing expressable through Equation 7 with a = 1/σX and

b = −µ/σX .

3 Modeling Formulae

Real world and analytical signals have specific intrinsic

characteristics that define them. Even when the origi-

nal formulae of these signals are not available, which is

often the case, they can still be hypothesized in terms

several mathematical manners, e.g. by using polynomials

or Fourier series, e.g.:

f(x) = a2x
2 + a1x+ a0 (15)

g(x) = b3 cos(3x) + b2 cos(2x) + b1 cos(x) + b0 (16)

where a2, a1, a0, b3, b2, b1 and b0 are generic real values.

Even when the formula is available, it is often interest-

ing to decompose it in terms of some expansion such as

the Fourier series in case one is interested in investigating

the effect of each of respective terms on the recognition

results.

The mean value of a function f(x), which appears as

a term in several expansions including Fourier series, can

be defined as:

〈f〉 =
1

xM − xm

ˆ xM

xm

f(x)dx (17)

It is important to bear in mind that the mean of a

function or signal does not necessarily coincides with its

constant term, which is the case in Equation 16, where

the constant term b0 is also the average of the overall

signal. This is so because all other terms have null mean

values. However, this is not so in the case of Equation 16,

where the constant term a0 does not correspond to the

overall average as a consequence of the other two terms

not having null mean.

It follows from the above reasoning that, given a generic

signal representation in the form:

f(x) = aEfE(x) + . . .+ a1f1(x) + a0 (18)

the respective mean value will correspond to:

〈f〉 = aE 〈fE(x)〉+ . . .+ a1 〈f1(x)〉+ a0 (19)

So, a0 will correspond to the overall mean of the signal

if and only the sum of the means of all other terms results

zero.

The above approach to composed signals immediately

extends to noise, for instance:

h(x) = a2 u(x) + a1 g(x, µ, σ) + a0 (20)

where u(x) and g(x, µ, σ) are uniform and normal noise

distributed along the respective support.

When all (or a subset) of the available features have

the same nature and units, such as the pixels of images,

it is also possible to consider normalizing the whole set (or

subset) of uniform features along not only the respective

samples, but also among all those features.

Another situation deserving particular attention is

when outliers (e.g. [22, 23, 24]) are present in the data.

Basically and informally speaking, an outlier is a pattern

which has features too distinct from all others. One of the

main implied problems concerns the fact that the outlier

samples can strongly influence the normalization, impos-

ing a substantial bias on the values of that features for

all other samples. One possibility to deal with outliers is

to identify and remove them from the dataset before nor-

malization, or treat them separately and them compare

with the results obtained for the other samples.

As it will be discussed in the present work, the formula

of the available signals or features to be recognized plays

a critical role respectively to the recognition results. As

we will see in this work, even the simple constant and

average terms can have dramatic effects Indeed on the

recognition results. The signals and features formulae can

be understood as mathematical models of the each signal

or features to be characterized, and then classified.

Though the form of the involved signals/features is

rarely known for certain, it is still interesting to hypothe-

size them. As an example, let us suppose that we have a

metal plate containing three points of interest. We may

consider each three points on the plate as a category,

and then take N samples of a measurement of interest

(e.g. temperature) along time for each of those points.

Though these samples could be understood as being re-

lated to a single same feature (temperature), it is also

possible to understand each of the samples for each point

as an individual feature with the same nature and unit.

In this case we would have 3 categories, each one repre-

sented by N respective features, as illustrated in Figure 2.

How could these features be normalized?

Another possibility would be to have 3 features taken

from 20 distinct points (samples) on 5 distinct plates (en-

tities, possible organized in categories). In case we group

the features subsequently, we would have three groups of

100 elements, which could be represented by the same

type of diagram as in Figure 2. How could these features

be normalized?

Observe that the former of the above approaches can

be understood as the analysis of three signals, each repre-
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sented by 100 samples that are here treated as individual

features. Given this representation, we may be interested

in comparing or classifying these signals. The latter ap-

proach can be understood as a unsupervised pattern recog-

nition problem involving 5 entities, each represented by 20

samples with 3 features each.

Observe that another approach to address the for-

mer situation would be to consider stochastic processes

(e.g. [25, 26, 27]) taking place along time, but this alterna-

tive is not considered in the present work for simplicity’s

sake.

The approach presented in this work applies to both

cases, though with quite distinct interpretations and

treatments while of the respective analysis and/or recog-

nition.

Figure 2: Three categories, each of which represented in terms of 100

features of the same nature and unit (e.g. temperature). In this case,

the colors indicate the respective categories. How can we normalize

this feature? Alternatively, we could understand this diagram as

corresponding to 3 features, each represented by 20 samples taken

from 5 different plates. In this case, the colors represent each of the

three features. How could we normalized these features?

Figure 3 illustrates another hypothetical possible result,

characterized by much more substantial variations of the

measurements along the observations, possibly as a con-

sequence of overall heating reflects on features 1 and 3,

while point 2 would be subjected to other environmental

conditions (e.g. receiving some oscillatory air convection).

These two examples will be further considered along

this work in order to illustrate the effect of normalization

choices on the recognition results.

It could be hypothesize that the temperatures above

follow the following mathematical formula:

x(t) = v(t) + n(t) + `(t) + a (21)

where a3v(t) is variation term such as a sinusoidal or a

power of t (as in a polynomial), n(t) is a noise term, `(t)

is a linear variation term, and a is a constant term. Ob-

serve that this formula is specific to our examples. Many

Figure 3: Another hypothetical set of the three features, character-

ized by more substantial variations along the observations. Groups

1 and 2 present a progressive increase that could be related to over-

all temperature variation. Observe also the tiny variations along

the slanted profile of feature 1.

other formulae can be adopted concerning other datasets

or research questions.

Given that the signals in Figure 2 and 3 were synthe-

sized, their respective formulae are known. In the former

case, they are:

x1 = 0.2 cos(t) + 0.1 u(t) + 5 (22)

x2 = 0.5 u(t) + 4.4 (23)

x3 = 0.1 cos(0.5t) + 0.15 u(t) + 5.2 (24)

where u(t) corresponds to uniformly random noise

within the interval [0, 1] and, in the second case exam-

ple:

x1 = 0.2 cos(t) + t+ 15 (25)

x2 = 8 cos(0.5t) + 14.4 (26)

x3 = 4 cos(2t) + 0.5t+ 15.2 (27)

Observe that, for simplicity’s sake, we have avoided

having formulae with more than three terms. More specif-

ically, the first case does not involve linear variations, and

the latter does not incorporate noise. So, the formula to

be considered henceforth in the subsequent examples can

be summarized as:

x(t) = v(t) + [n(t) or `(t)] + a (28)

with the term within brackets being referred to as the

‘linear’ term. More generally, formulae with less or more

terms of different types will apply to signals and features.

Of particular relevance is the consideration of eventual

mutual interrelationships between the involved features,

which can be approached in terms of combined multidi-

mensional formulae.

The activity of trying to develop a model respectively

to each considered feature is important not only for its po-

tential value while defining the normalization, comparison

5



and recognition approaches to be adopted, but also pro-

vides a motivation for considering in a more careful, com-

prehensive and systematic manner the nature and proper-

ties of each of the features, leading to an enhanced overall

understanding of each specific problem and dataset.

4 Other Normalization Ap-

proaches

Having discussed the modeling of signals and features in

terms of respective putative formulae, we now proceed to

discussing the other normalization approaches to be con-

sidered in the present work. We will present these nor-

malizations respectively to the formulae in Equation 28.

Given a non-null signal or features set x, it can be

minusmin normalized by subtracting its minimum value,

i.e,:

x̃i = xi −min {x} (29)

with i = 1, 2, . . . , N . The new variable x̃ therefore will

have its minimum value equal to 0, while nothing else can

be said about its other properties.

The minmax normalization of that same original vari-

able is implemented as:

x̃i =
xi −min {x}

max {x} −min {x}
(30)

Now, we have that 0 ≤ x̃ ≤ 1.

Another interesting possibility consists of transforming

the original signal or feature set into a respective proba-

bility density function, which can be obtained as:

x̃i =
xi −min {x}∑M

i=1 (xi −min {x})
(31)

The new random variable x̃ will have minimum value

equal to zero and area equal to one.

Provided we have the signal or features set represented

in terms of the formula in Equation 28, we can perform

normalizations respective to each of the involved terms.

For instance, the constant term can be removed as:

x̃i = xi − a (32)

which will be henceforth referred to as the minusconst

normalization.

Similarly, it is possible to remove the linear term:

x̃i = xi − `(t) (33)

leading to the minuslin normalization.

One potential problem when using extrema (minimum

or maximum) values in normalizations is that the results

can become strongly affected by outliers. An interesting

alternative that reduces this potential effect consists of

dividing the feature values by their respective mean, i.e.:

x̃i =
xi
〈x〉

(34)

This is scheme, which will be henceforth called mean,

yields results directly proportional to those obtained by

the density normalization approach.

It is also possible to consider only the constant terms,

in the so-called constant normalization, implying:

x̃i = a (35)

or only the linear (or noise) term, yielding the linear

normalization:

x̃i = `(t) or n(t) (36)

It is also possible to consider only the varying terms,

but this will not be considered here for simplicity’s sake.

Another interesting possibility regarding the normal-

ization of a signal or set of features consists in combining

two or more normalization schemes. For instance, it is

possible to apply standardization after any of the above

normalization possibilities.

Comparisons are the basic component involved in most

pattern recognition approaches, as they are required both

to estimate relationships between the entities and to pro-

vide subsidies for deciding on the respective separation

(e.g. [8]).

Having discussed several normalization possibilities, it

is now time to proceed to addressing the two main types

of comparisons between signals or feature sets adopted in

this work, namely by Pearson correlation (next section)

and coincidence similarity (Section 6).

5 The Pearson Correlation Coeffi-

cient

Given two random variables X and Y represented by N

paired samples xi, yi, their covariance can be estimated

as follows:

cov(x, y) =
1

N − 1

N∑
i=1

[xi − µX ] [yi − µY ] (37)

The Pearson correlation coefficient between these two

variables can be expressed as:

ccoef(x, y) =
1

N − 1

N∑
i=1

[xi − µX ]

σX

[yi − µY ]

σY
(38)

In case the two variables X and Y are presented be-

ing already standardized, their Pearson correlation can
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be more directly estimated as:

ccoef(x, y) =
1

N − 1

N∑
i=1

x̃i ỹi =
~̃xY ~̃y

N − 1
(39)

We have that −1 ≤ ccoef(x, y) ≤ 1, with the value 1

meaning maximum joint variation and −1 corresponding

to the maximum opposite variation.

A critically important characteristic of the Pearson cor-

relation coefficient that is not often realized corresponds

to the fact that it intrisic and unavoidably implements the

standardization of both random variables (Equation 38).

As a direct consequence, it makes no difference whatso-

ever to apply or not to have the variables standardized.

In addition, any preliminary normalization that leaves a

constant term will be modified in the sense that this term

will not be taken into account by the Pearson correla-

tion analysis. The same applies to transformations that

multiply the features by a constant factor.

As with every comparison approach, the Pearson corre-

lation coefficient has relatively advantages and shortcom-

ings. Its main advantage consists of being intrinsically

linked to the concept of joint variation between a pair of

random variables, being particularly effective and suited

to that finality. On the other hand, the fact that this

coefficient removes the average level from features and

signals may be suitable or unsuitable depending on each

specific case. In particular, situations where the average

level is important and needs to be taken into account may

not be effectively treated by using the Pearson correlation

approach. In addition, this method can also amplify un-

wanted or irrelevant tiny variations along the signal as a

consequence of its normalization of the signal magnitude

after mean removal, as illustrated in Figure 4.

Observe that the small oscillations can be or not im-

portant for a specific analysis.

Another aspect of the Pearson approach that demands

special attention is when the features or signals can be

divided into two parts: one with well-defined joint vari-

ation, and another involving variation of only one of the

variables while the other remains at particularly low val-

ues. Figure 5 illustrates this effect respectively to two

signals or sets of features (a) and (b), with the former be-

ing composed by two peaks corresponding to normalized

gaussians, therefore having unit area. The comparison

value obtained by using the coincidence similarity (to be

described in the next) section, also shown in (c), provides

a more effective quantification of the relationship between

these two signals, be it regarding joint variation or shared

graph areas.

The consequence of this normalization is a Pearson cor-

Figure 4: As a consequence of the standardization intrinsically im-

plemented by the Pearson correlation coefficient, which removes the

mean level and normalize the values magnitude dispersion to stan-

dard deviation of one, tiny oscillations (a) may get substantially

amplified (b). This could be wanted or not depending on the im-

portance of the osciallations for each specific analysis or recognition.

relation coefficient of 0.84, which is possibly too high given

that half of the area of the signals is unrelated. The coinci-

dence similarity also shown in (c) provides a more compat-

ible quantification of the interrelationship between these

two signals regarding their joint variation and shared ar-

eas below the graphs of the signals.

Yet another situation that has to be carefully consider-

ing when using standardization and Pearson correlation

concerns the present of possible outliers, as illustrated in

Figure 6.

Observe the significant amplification of the value of the

outlier in (c), implying a more substantial reduction of

the value obtained for the Pearson correlation coefficient

than for the coincidence similarity. Not that, except for

the single outlier point, the two signals would be identi-

cal. These situations can be dealt with by removing the

outliers prior to the respective normalization and com-

parison of the signals and/or features. At the same time,

the coincidence comparison will lead to a markedly accu-

rate result even without outlier removal in the case of the

above example.

6 Multiset Coincidence Similarity

Similarity indices have been extensively employed in sev-

eral areas as means for comparing sets and quantities

(e.g. [28, 29, 30, 31, 20, 32, 33, 17]). In particular, the Jac-

card similarity index has been systematically used since
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Figure 5: The values of two signals (a) and (b), and respective standardization (c). Observe that this particular normalization scheme aligns

almost completely the two highest peaks, while the smaller peak in (a) becomes paired with a constant small value counterpart in (b). The

result of the respective standardizations are shown jointly in (c).

Figure 6: The effect of outliers on the respective standardization and Pearson correlation coefficient respectively to a signal (a) and this

signal in presence of a single outlier (b). The respective standardization results are shown in (c).

its description by Paul Jaccard in 1901 [34, 35]. Basically,

it provides an effective means for quantifying the similar-

ity between two sets A and B as stated in Equation 40. It

can be readily verified that 0 ≤ J (A,B) ≤ 1. However,

as shown in [20], this interesting index does not take into

account the relative interiority of the two sets being com-

pared. This property can be gauged by another index

given in Equation 41, known as overlap (eg. [28]), but

here referred to as interiority. The coincidence similarity

index has been introduced [20, 21] as a means to combine

the comparisons implemented by the Jaccard and interi-

ority index, so that a more strict — and therefore selective

– measurement could be obtained. More specifically, as

indicated in Equation 42, the coincidence similarity corre-

sponds to the product between the Jaccard and interiority

indices.

J (A,B) =
A ∩B
A ∪B

(40)

I(A,B) =
A ∩B

min {|A|, |B|}
(41)

C(A,B) = J (A,B) I(A,B) (42)

with 0 ≤ I(A,B), C(A,B) ≤ 1.

In multiset theory (e.g. [36, 37, 38, 39, 40, 41]), the

union and intersection of two multisets X̃ and Ỹ corre-

sponds to the maximum and minimum between the re-

spective non-negative multiplicities x̃ and ỹ, i.e. the num-

ber of times that each element appears in each multiset.

This allows the previous indices to be expressed as:

J (X̃, Ỹ ) =
min {x̃, ỹ}
max {x̃, ỹ}

(43)

I(X̃, Ỹ ) =
min {|ỹ|, |ỹ|}

min
{´
S
|x̃|dx̃,

´
S
|ỹ|dỹ

} (44)

C(X̃, Ỹ ) = J (x̃, ỹ) I(x̃, ỹ) (45)

with 0 ≤ J (X̃, Ỹ ), I(X̃, Ỹ ), C(X̃, Ỹ ) ≤ 1.

Though the above equations adopt the function repre-

sentation of multisets [20, 21], for simplicity’s sake, it can

be readily adapted to vectors, matrices, graphs, etc.

More recently [20, 21, 42, 43], the above indices were

verified to be expressable in terms of multiset operations
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adapted to take into account negative multiplicities:

J (X,Y ) =
sx sy min {|x|, |y|}

max {|x|, |y|}
(46)

I(X,Y ) =
min {|x|, |y|}

min
{´
S
|x|dx,

´
S
|y|dy

} (47)

C(X,Y ) = J (x, y) I(x, y) (48)

with 0 ≤ I(x, y),≤ 1 and −1 ≤ J (x, y), C(x, y) ≤ 1.

The index in Equation 46 had been described previously

in the context of analogy to L1 norm in [31], being also

related to another index with similar motivation [44].

Interestingly, the coincidence index has been found to

present some particularly interesting characteristics in-

cluding enhanced selectivity and sensitivity while com-

paring similar patterns, as well as robustness to localized

perturbation of the features being compared [43]. Allied

to other desirable properties, these have paved the way to

a number of successful applications to several problems in

diverse areas, including template matching (e.g. [21]) and

translation of datasets into respective networks [42].

As with the Pearson correlation coefficient, the coinci-

dence similarity presents features that can be wanted or

not depending on each specific problem. One of the po-

tential advantages of the coincidence approach is that it

does not inherently remove the mean level of features or

signals, allowing this potentially important information

to be considered in the comparison. If required, the mean

level can be removed during normalization.

The preservation of the mean level paves the way to

considering many alternative normalization schemes that

preserve this information, as well as regarding the choice

of methods to be subsequently applied for respective anal-

ysis and recognition.

One aspect of the coincidence similarity that should re-

ceive special attention regards the fact that the relative

mean levels can impact the gauged similarity, as illus-

trated in Figure 5. For instance, consider the two follow-

ing signals:

x(t) = cos(t) + a (49)

y(t) = cos(2t) + b (50)

with x(t), y(t) ≥ 0 and a > b+ 1.

The respective real-valued Jaccard similarity, which is

one of the terms in the coincidence similarity, can be writ-

ten as (e.g. [20, 21]):

mathcalJ(x, y) =
min {x, y}
max {x, y}

=
cos(2t) + b

cos(t) + a
(51)

It follows that distinct ratios a/b will imply in differ-

ent Jaccard similarity values. In particular, we will have

similarity value equal to one whenever a = b, and smaller

values otherwise. However, this aspect of the coincidence

similarity could actually be understood as being useful

in case the mean levels are important for the analysis or

recognition.

It should also be kept in mind that, even though the

coincidence focuses on relationships between the shared

areas of the signals graphs, being not intrinsically related

for quantifying the joint variation between two signals or

feature values, its version catering for possibly negative

values (Eq. 46) can also provide indication about the joint

variation in a similar, but at the same time distinct, way

to that provided by the Pearson correlation coefficient.

7 Normalization and Comparison

Interrelationships

We have so far addressed several types of normalization

and two main approaches to comparing the random vari-

ables, allowing several respective combinations. Interest-

ing and importantly, each of these combinations can lead

to distinct comparison and classification results, so that it

is useful to better understand these several possibilities.

Figure 7 illustrates the possible combinations of all the

above presented normalization schemes followed by re-

spective correlation or coincidence analyses.

Figure 7: The combinations of the several described normalization

schemes, followed by standardization, to be followed by Pearson

correlation analysis.

Observe that all normalizations in the green box result

identical as a consequence of the Pearson correlation coef-

ficient implementing the standardization of both involved

variables. As a consequence, we end up with only the four

approaches illustrated in Figure 7.
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The relationships between normalizations and coinci-

dence similarity comparison are presented in Figure 8.

Two main groups of interrelationships can be observed.

One of them involve the minusmin, minmax, density and

minusconst normalizations, all of which can result distinct

in the case of subsequent coincidence analysis. That is so

because that comparison approach, in its non-negative

form, can take into account non-null constant and mean

terms in the respective signals or features sets. However,

the results of all these normalizations will become equal

one another and also to the standardization of the original

data after they are respectively standardized. The other

main group in Figure 8 is analogous to that discussed in

the case of Pearson correlation analysis.

All in all, we have that the coincidence approach allows

the effective consideration of many more normalizations

than the Pearson correlation counterpart.

8 Case Example 1: Nearly con-

stant averages

We are now in a better position to approach the compar-

ison of the signals in our first example in Section 3.

Figure 9 illustrates the original groups (which may cor-

respond to categories or features depending on how a

problem is approached) and their respective normaliza-

tion by employing the considered approaches described

previously.

The results of the comparison between the groups of

values by using the Pearson correlation coefficient are pre-

sented in Figure 10. Recall that the features now incor-

porate slant variations instead of noise terms.

As a consequence of this comparison approach incor-

porating standardization of both variables, the six first

networks, as well as the mean case, resulted identical.

Though smaller correlation values have been obtained in

the cases minuslin and minuslin standardized, the rel-

ative interactions are similar to those obtained for the

previous cases. The results of the last const, linear and

linear standardized cases indicate almost no interrelation-

ships between the three groups. All in all, the Pearson

comparison of the three patterns suggest almost no inter-

relationship between them even though the have markedly

distinct constant and/or mean terms, which is reasonable

since the Pearson approach focuses on joint variations be-

tween the features or signal values.

Figure 11 depicts the interactions between the three

groups in our first case examples as quantified by the co-

incidence similarity.

Remarkably, each of the networks in Figure 11 resulted

mutually distinct. That is a direct consequence of the

coincidence similarity being able to take into account the

constant and/or mean terms in the original features or

signals. The original, as well as the normalizations den-

sity, constant and mean led to similar results indicating

that the three groups are mostly similar one another as

a consequence of their comparable mean and/or constant

terms. The approaches minusmin and minmax also sug-

gest that the three groups are similar, though in a less

intense degree. The results obtained for minusconst and

minuslin are more asymmetric and indicate a stronger

similarity between groups 2 and 3, and 1 and 3, respec-

tively. Little similarity has been quantified in the other

cases in Figure 11.

The results suggesting distinctions between the groups

are mostly a consequence of the amplification of the small

scale respective variations as implemented by the min-

const and minulsin standardization.

It is important to keep in mind that neither of these re-

sults can be deemed to be absolutely better or correct, be-

cause each of the obtained comparisons take into account

specific hypothesis about the features and their character-

istics. These results always need to be further evaluated

from the perspective of each specific problem and dataset.

In addition, the trends observed respectively to our first

example are specific to this dataset and cannot be gener-

alized respectively to other datasets. For instance, much

different results could have been obtained in case the sig-

nal oscillations were larger, or the constant and/or mean

terms were smaller in absolute or relative terms.

9 Case Example 2: Diverse pat-

terns

In order to complement our investigation of the possible

effects of combinations of several normalization and com-

paring approaches, we now consider our second case ex-

ample, corresponding to the second example in Section 3.

Figure 12 presents the original dataset, involving 100

samples of three groups, as well as its several normaliza-

tions.

The results of the Pearson correlation analysis of the

datasets in Figure 12 are shown as networks (or graphs)

in Figure 13.

Similarly to what happened when of applying the Pear-

son correlation comparison, most of the results suggest
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Figure 8: The relationship between the several considered normalizations respectively to coincidence similarity comparision.

Figure 9: The original groups of our first example and the results

of its normalization by applying the several described approaches.

Surprisingly distinct results can be readily observed, corroborating

the potentially critical influence of normalization on patterns com-

parison and classification.

lack of interrelationship or similarity between the three

groups, other than between the pair 1 and 3. Again, this

is a consequence of the Pearson approach eliminating the

constant and/or mean terms in the features.

The networks resulting from the comparison of the

three groups in our second dataset are presented in Fig-

ure 14.

As could be expected by now, the coincidence similar-

ity analysis led to distinct results respectively to each of

the considered normalization approaches, reflecting the

specific hypothesis and characteristics in each case. In-

terestingly, strong indication about mutual symmetry of

similarities between the three groups in this dataset have

been obtained only respectively to the minuslin, minuslin

standardized, and constant normalizations, with the for-

mer two cases involving small comparison values. The

result obtained by the latter case is consistent with the

Figure 10: The interrelationships identified by application of the

Pearson correlation analysis to several normalizations of the first

dataset. All obtained networks suggest that the groups are weakly

interrelated or similar.

substantial similar values of the constant/mean terms of

the values in the three considered categories.

Most of the other results indicate a stronger similar-

ity between groups 1 and 3 in this dataset, though with

varying values being obtained concerning the interrela-

tionships involving group 2. For instance, the density

normalization case suggests a stronger similarity between

that group and the others, which is compatible with the

distributions in Figure 14. All cases involving subsequent

standardization yielded almost negligible coincidence val-

ues, which is expected given the almost orthogonal nature

of the small scale oscillations (sinusoidals with multiple

frequencies). Indeed, as a more careful study of the re-

sults in this figure will indicate, the coincidence similarity

comparison results tend to reflect in a mostly objective

and accurate manner the interrelationships between the

three categories respectively to the considered feature nor-

malizations.
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Figure 11: The interrelationships identified by application of the

coincidence similarity analysis to several normalizations of the first

dataset. Quite diverse results have now been obtained, each of them

providing a distinct indication about the interrelationships between

the three groups according to specific hypothesis and features char-

acteristics.

Figure 12: The original set of features of our second case example

and the results of its normalization by applying the several described

approaches. Even more distinct results have been again observed,

corroborating the potentially critical influence of normalization on

patterns comparison and classification.

10 Case Example 3: Real-World

Data

In order to complement our analysis of normalization ef-

fects, we now approach a real-world dataset consisting of

3 types of handwritten characters (‘c’, ‘e’, and ‘o’), each

represented by 50 respective samples and 4 features cor-

responding to geometric properties of the characters [42].

These four measurements correspond to: (1) total area

(in pixels2); (2) width (in pixels); (3) height (in pixels);

Figure 13: The interrelationships identified by application of the

Pearson correlation analysis to several normalizations of the second

case example. Except for the normalization approaches minuslin

and minuslin standardized, the obtained networks otherwise suggest

that the signals are weakly interrelated or similar.

Figure 14: The interrelationships identified by application of the co-

incidence similarity analysis to several normalizations of the second

dataset. Markedly diverse results have again been obtained, each

of them providing a different indication about the interrelationships

between the three categories according to specific hypothesis and

data characteristics.

and (4) perimeter (in pixels) of each handwritten char-

acter. Observe that these measurements , used mostly

for didactic’s sake, are not particularly effective for re-

vealing specific geometrical properties of the characters,

and therefore unlikely to lead to substantial separation

between the groups.

Figure 15 illustrates the four features involved in this

dataset.

The values shown in this figure immediately indicates

12



Figure 15: The distribution of the features in the handwritten char-

acter dataset. Each type of character has been represented in a

specific color. Each group contains the values of the four features,

organized in respective sequence. Observe the great variations of

magnitudes presented by each of the four features, which can imply

biases in subsequent analysis or recognition.

that, though all features are positive, they have markedly

distinct respective magnitudes, with the first involving the

largest values, following by the forth, third and second.

Another important property of these features that can

readily appreciated from Figure 15 concerns the fact that

all the four features have non-null respective mean values,

which is a consequence of all features being positive and

presenting variations.

The first decision regarding the normalization dataset

actually regards whether to normalize or not. In case

the original magnitudes are considered essential for the

categorization of the samples, no normalization should be

applied. In that case, a heavy influence of the first, and

then the second features can be expected.

However, in case the features are to be taken in a rel-

ative manner while comparing the samples, it is possible

to apply several normalization schemed leading to com-

parable magnitudes in all four cases. In the case of the

present example, we consider the respective standardiza-

tion as well as minmax, mean as well as dividing the fea-

tures by the respective maximum values, referred to as

max. We observe that the later normalization possibility

was not previously considered in this work as it is likely to

be susceptible to instabilities caused by sample outliers.

A distinct result has been produced by each of the four

considered normalization approaches. As could be ex-

pected, the features standardization (a) led to negative

values, as well as null means and unit standard devia-

tion for each feature. It is the latter characteristic that

implements the magnitudes leveling. The minmax ap-

proach (b) rolls the values of each feature from 0 to 1,

therefore also making them more comensurated. Observe

the critical influence of the maximum value within each

feature group on the resulting normalization. Instabilities

can therefore be caused by outliers with large magnitudes.

Figure 16: The handwritten character four features as normalized

by: (a) standardization; (b) minmax ; (c) max ; and (d) mean nor-

malization schemes. All normalizations have been implemented

along each of the features taken separately.

The max normalization (c), which suffers from this same

potential problem, resulted slightly distinct from the min-

max result as a consequence of the minima of the features

not being identical to zero. The normalization imple-

mented by the mean scheme, shown in (d), is likely to

be relatively less affected by outliers with large values, as

the respective averages in each feature group is here taken

into account instead of the respective maxima.

Though additional considerations about the specific

type of patterns and features in this dataset could be

taken into account in order to narrow down on the five

possibilities (four normalizations plus the unnormalized

values), here we show the effect of all these possibili-

ties while obtaining respective coincidence networks by

using the methodology described in [42]. Figure 17 de-

picts the five respectively obtained coincidence similarity

networks. The links correspond to pairs of samples whose

coincidence is equal or larger than a respectively adopted

threshold.

Several interesting effects can be observed from the ob-

tained results. First, we have that each of the approaches

led to markedly distinct coincidence results. In particular,

the net in (a) presents the greatest separation between the

blue group from the other two types of characters. That

is a direct consequence of the fact that a substantial dif-

ference can be observed in Figure 15 between the first

category and the other two in the case of the first fea-

ture (blue). Given that no normalization was applied in

(a), this difference predominated while of the comparison
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Figure 17: The coincidence similarity networks obtained for the handwritten characters dataset obtained respectively to five normalization

possibilities. Remarkably distinct results can be observed for each of these alternatives. The decision on the most appropriate required

additional considerations about the data, research interest and specific properties of the adopted features, as well as additional verifications

involving validation schemes such as k-fold cross validation approaches. Different coincidence values were chosen so as to end up with most

of the samples interconnected. The colors indicate the three types of characters.

between the samples.

The coincidence network obtained for the features stan-

dardization, shown in Figure 17(a), presents a the three

types of characters defining a ring, implied by similarities

identified in this case between the blue and green groups.

It is also interesting to observe the satellite branch involv-

ing four samples of the third group of characters.

The network obtained respectively to the minmax and

max normalizations are mostly similar, which is a conse-

quence of the minimum values of each feature group not

to be much larger than zero. A moderate separation be-

tween the blue group from the other two groups can be

observed. Interestingly, three points resulted isolated in

the case of the former normalization.

The mean normalization implied the coincidence net-

work shown in Figure 17(e), which is similar to the nets

obtained respectively to the minmax and max normal-

izations, though with the difference that the blue group

resulted more separated in the case of the mean normal-

ization.

The greatest simultaneous separation between all the

three groups can be observed respectively to the net-

work obtained by features standardization shown in Fig-

ure 17(b). However, this result needs to be considered

with special attention and caution because, by ignoring

the mean values of the features, the standardization may

actually have implied some bias on the features that does

not necessarily reflects the relationship between the orig-

inal categories. Cross-validation approaches can be con-

sidered for better understanding the effect of the stan-

dardization (as well as all other normalization) on the

separation between the categories.

It is also interesting to keep in mind that the above

analysis could aim not necessarily at the separation be-

tween the groups, but as an investigation of the original

data as represented by specific normalization on them-

selves, chose while take other considerations into account.
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11 Case Example 4: Known

Model

Having discussed normalization respectively to two hy-

pothetical cases, as well as a real-world dataset, we now

approach a situation in which everything is know about

the possible characteristics of the datasets.

The problem concerns the study of simulated 3D paral-

lelepiped objects with dimension A×B×C, as illustrated

in Figure 18. The values A, B and C of each object is to

be considered as a respective feature.

Figure 18: The objects in our forth case example constitute of paral-

lelepipeds as illustrated in this figure scales at the same proportion

a.

In principle, these objects are supposed to scale at the

same proportion along all the three dimensions respec-

tively to a reference Ã× B̃ × C̃, i.e.:
A = a Ã

B = a B̃

C = a C̃

(52)

As a consequence, the coefficients of variation of every

group are mutually identical to a specified constant cv, so

that:

σA = cv µA (53)

We henceforth assume the following refence:

Ã = 3; B̃ = 4; C̃ = 2 (54)

Observe that the above equations specify the relation-

ship between the three features, but not the distribution

of features within each possible type of objects. The lat-

ter controls the way in which the objects are associated to

the groups. As an example, let us suppose that there are

4 groups of objects, each consisting of the above specified

parallelepipeds whose sizes follow a normal density with

mean µ1, µ2, µ3, and µ4, and respective standard devi-

ations σ1, σ2, σ3, and σ4. Samples are extracted from

these groups with probabilities values according to the

respective densities. Therefore, we now have a complete

statistical model of all the aspects regarding the four cat-

egories and possible samplings.

Let us make:

a1 = 1; cv = 0.5 =⇒


µA,1 = A = 3; σA,1 = 1.5

µB,1 = B = 4; σB,1 = 2.0

µC,1 = C = 2; σC,1 = 1.0

a2 = 9 =⇒


µA,2 = 27; σA,2 = cv µA = 1.35

µB,2 = 36; σB,2 = cv µB = 1.8

µC,2 = 18; σC,2 = cv µC = 0.9

a3 = 5 =⇒


µA,3 = 15; σA,3 = cv µA = 0.75

µB,3 = 20; σB,3 = cv µB = 1

µC,3 = 10; σC,3 = cv µC = 0.5

a4 = 8.5 =⇒


µA,4 = 25.5; σA,4 = cv µA = 1.275

µB,4 = 34; σB,4 = cv µB = 1.7

µC,4 = 17; σC,4 = cv µC = 0.85

Given that the means of these groups are relatively well

separated, except possibly between the groups 2 an 4,

they provide a particularly valuable resource for recogni-

tion, provided they can be estimated from the available

samples with reasonable accuracy. Figure 19 shows the es-

timated means for successively larger sets of samples with

size N respectively to each feature and each of the four

types of patterns. It can be readily verified that excellent

separation is observed between the means of groups 1, 3,

and 2/4, though the separation between groups 2 and 4

is not reliable given the respective statistical oscillations.

Now, let us suppose a recognition problem in which we

receive N samples, all from a same group, and the objec-

tive is to know which group they belong to. Figure 20(a)

illustrates the sets of features respectively to one such

sample.

Given that the means provide an interesting resource

for group identification, they are addressed first. More

specifically, we normalize the original features by remov-

ing the oscillating portion while retaining only the esti-

mated mean, yielding the results shown in Figure 20(b).

As the means estimated from the 30 samples — namely

14.86, 19.81 and 9.91 are close to the respective reference

values in group 3, which is well-separated from the oth-

ers, we conclude that the 30 supplied samples are of type

3. This example illustrates a situation in which the os-

cillating part of a set of feature values (or signal) can be

disregarded while attention is focused on the mean value.
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Figure 19: Values of the means of features A, B and C within each of the 4 groups as estimated from successively larger number of samples

N . The original mean values are shown as diamonds in the upper portion of the plots. An excellent separation can be observed between

the means of categories 1, 3 and 2/4. The means of groups 2 and 4 are very close one another respectively to the respective statistical

oscillations, which could lead to identification mistakes.

Figure 20: (a) The sets of features A, B and C respective to 30

samples of one of the groups. The problem consist of identifying

to which group these samples belong. The normalization by re-

moving the oscillation, leaving only the estimated mean values (b),

provides excellent indication about the identity of the group, which

can be determined by comparing these averages with those of the

groups, indicating that the samples should be categorized as type 1.

The removal of the oscillations could only be performed because we

know the samples are from a same group, the groups have relatively

separated means, and that there are enough samples to provide a

reasonably accurate estimation of the means.

Other situations can lead to different choices, such as fo-

cusing on the oscillations while removing the mean value,

or taken both into account.

It is interesting to observe that any normalization that

would imply in removing the means would completely un-

dermine the recognition because, despite their intrinsic

dispersion, most of the groups are well characterized by

the respective means.

Now, let us suppose that we receive a large number of

samples, namely N = 120, as shown in Figure 21.

Figure 21: The three sets of features A, B, and C supplied for

classification. All features have non-null means.

Now, we aim at normalizing so as to enhance the

chances of correct recognition of each of these samples rep-

resented by respective features A, B and C. Given that

the three sets of features have distinct ranges of magni-

tudes, it is interesting to verify the possible effect by some

normalization scheme implementing some magnitude lev-

eling with each of the three features. Figure 22 illustrates

the result of the application of the mean normalization

described in Section 4.

This normalization reveals that the three sets of fea-

tures are identical, so that only one of these sets can be

retained for subsequent recognition. Given the relatively
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Figure 22: The result of mean normalization applied separately to

each of the three sets of features in the dataset shown in Fig. 21.

It can be readily verified that the three groups are identical, which

allows us to use only one feature for subsequent recognition, e.g. by

using Bayesian decision theory.

good separation of most involved groups, we could re-

source to Bayesian decision theory by using the decision

regions indicated by the intersections between the refer-

ence normal densities shown in Figure 23. Exceptionally,

as a consequence of the identical scaling of the means and

standard deviations underlying the respective reference

model, only one of the set-ups in this figure will need to

be applied in the case of this specific example.

Let us now assume that other features are available

about the parallelepiped objects, such as their weight and

color, represented by three components such as R (red),

G (green), and B (blue). These additional variables are

rather unlikely to present a proportional relationship with

the dimensions A, B, C described above. Indeed, they

can follow distinct statistic models and incorporate noise

or other distortions that should be modeled by different

densities and approaches. These cases would possibly re-

quire what we shall call heterogeneous normalization of

the available features, in the sense that each feature or

subset of features would be treated in a possibly distinct

and respectively more appropriate manner. This possibil-

ity is important enough two be highlighted by the follow-

ing snippet:

Figure 23: The reference sets of probability functions for our forth

case example, respective to each of the three involved features and

four categories. The intersection between these density functions

define decision regions that can be considered for classifying the

samples in Figure 21. Observe that the densities in each of the three

plots are mutually proportional one another through the constants

a1, a2, a3 and a4.

When the features in a dataset have distinct natures

and characteristics, it may be interesting to implement

respective heterogeneous normalization of their values.

This allows each feature to be pre-processed in specific

means so as to enhance their respective important as-

pects while minimizing unwanted parts or components.

This specific, heterogenous normalization requires the

separated and joint study and modeling of all involved

features, while also taking into account the recognition

demands.

Despite its simplicity, the case example discussed in

this section illustrates several important aspects involved

in features normalization. In particular, the knowledge

about the model defining the samples and categories pro-

vided valuable subsidies for taking several important de-

cisions, therefore illustrating the importance of having as

accurate as possible models of the data, sampling, as well

as eventual perturbations as noise and error involved in

the data analysis and recognition. It should be observed

that the procedure adopted for the analysis of this case

example is completely specific and unlikely to work when

transported directly to other problems and datasets.

Another interesting observation is that several real-

world situations may be underlain by joint scaling of sev-

eral measurements as in the case of the situation discussed

above. For instance, the features 1 and 4, and to some
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smaller extent also relatively to feature 3 in the handwrit-

ten character database example (see Figure 15) present a

relationship that resembles those observed in our forth

case example.

Other interesting possibilities relating scaling relation-

ships between measurements are addressed in the area of

allometry (e.g. [45, 46, 47, 48]), namely the existence of

interrelationships between pairs of features X and Y of

the type:

Y = aXb (55)

with a, b ∈ R.

12 Concluding Remarks

With the continuously increasing applications and impor-

tance of data analysis and respective supervised and un-

supervised recognition, the issue of how to normalize the

respectively involve data, represented in terms of sets of

samples respective features, becomes more and more rel-

evant.

The present work addressed this important issue from

the perspective of modeling the involved signals and sets

of features in terms of mathematical formulae that can ac-

commodate the respective decomposition of each type of

signal in terms of terms of particular relevance specifically

to each problem and dataset.

After presenting the several involved concepts and

methods — including random variables, transformations,

modeling formulae, several standardization approaches,

as well as the Pearson correlation and coincidence sim-

ilarity approaches to patter comparison, we proceeded

to studying two case examples involving three categories

synthesized through respective formulae involving three

terms, as well as a real-world dataset involving three

types of handwritten characters represented by four fe-

tures. This study involved taking each of the considered

normalizations followed by comparison by the Pearson

correlation and coincidence similarity approaches.

In addition to the presented concepts and methods re-

lated to the data normalization, the experimentally ob-

tained results highlighted several critically important re-

lated aspects, especially the critical influence that distinct

normalizations can have on the overall analysis and recog-

nition results.

Another point of special relevance is that the above

observed effect is often strongly modulated by the respec-

tive choices of combinations between normalizations and

respective comparison methods. For instance, the use

of several normalization schemes discussed in this work

have no impact on the Pearson correlation analysis, as

this comparison approach involves the removal of con-

stant and/or mean respective feature values. However,

those same normalizations can have a strong impact on

the results while of application of the coincidence similar-

ity approach.

In addition, it has been verified that the small scale

component of features may lead to comparison interrela-

tions that are completely distinct. This is not an artifact,

but actually a reflection of the fact that the similarity be-

tween signals and sets of features depends on the scale of

the analysis, as well as the selection of specific combina-

tions of terms in their original formulae to be used in the

comparison.

Among other observed results and effects, the identified

effects of normalization yield some important conclusions.

First, we have that normalization has to be chosen care-

fully while taking into account existing or putative models

of the signals and sets of features in terms of respective

formulae involving possible decomposition in terms of spe-

cial signification for each application, is necessary. Then,

we also have that oftentimes each of the signal or feature

that constitute the patterns representation may have dis-

tinct nature or mathematical model, therefore implying

that they should be normalized accordingly to possibly

distinct schemes and manners, in a heterogeneous feature-

by-feature way.

Another important conclusion that can be reached from

the reported developments concerns the fact that the

choice of normalization can be performed while taking

into account distinct requirements, including enhanced ro-

bustness to noise and perturbation in the data, optimal

separation between the groups while of respective recogni-

tion and clustering, or so as to emphasize some specific as-

pects of interest implied by each problem and application,

among other possibilities. However, once an optimization

parameter has been set, it is possible to perform an op-

timization between the several normalization alternatives

respectively to each of the involved features, therefore sug-

gesting a normalization selection research area analogous

to that of feature selection (e.g. [49, 50, 51, 52]). This

is particularly reasonable given that, as discussed in the

present work, features normalization can actually be un-

derstood as a manner to derived new features from the

original set of measurements.

When aiming at a specific optimum criterion, such as

maximum separation, special attention and care need to

be invested respectively to these efforts leading to biased

sampling, which can undermine the data analysis and

recognition. Therefore, cross-validation and other perfor-

mance approaches (e.g. [8]) need to be incorporated into

each approach.

All in all, it can be inferred from the several concepts,

methods and results presented and discussed in this work

that pattern recognition is actually closely related to sci-

entific modeling, sharing several aspects. First, we have
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that both these areas aim at developing models of phe-

nomena/data as a means to better understand and make

predictions about the studied problems. Then, we have

that both rely on quantification of properties of the phe-

nomena under study, which are understood as variables

in scientific modeling and features in pattern recognition.

Both these approaches often involve selecting and pre-

processing the features, which are critically important for

the modeling. In both cases, normalization has great im-

portance, providing a bridge between the raw dataset and

the subsequent analysis and modeling of the problems.

In particular, what has been shown in particular is that

more effective approaches to pattern recognition may ben-

efit from a more comprehensive understanding of the cho-

sen features and their properties, which can be achieved

by developing respective statistical and/or other types of

modeling. Thus, in a sense, pattern recognition could be

also understood as an important case of scientific mod-

eling characterized by approaches that involve concepts

and methods that are more general than those in scien-

tific modeling, where often highly specific resources from

related areas are often required.

As with most approaches to data analysis and pattern

recognition, the choices of methods and respectively ob-

tained results should not be understood as having ab-

solute implications, or being relatively better or correct.

These choices results need to be taken relatively to the

type of data and questions of interest in each specific prob-

lem, and further validated through several means.

The several concepts, methods, and results presented

in this work paves the way to a wide range of possible

developments. For instance, it would be interesting to

consider larger number of features and patterns, leading

to more elaborate network representations. In addition,

other comparison and recognition indices and approaches

could be evaluated by using the suggested concepts and

methods. Another issue of particular interest would be to

try to identify how each of the combinations of normal-

ization and comparison approaches result coherent with

the way in which humans visually perceive and compare

patterns.
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