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2Léonard de Vinci Pôle Universitaire, Research Center, 92916 Paris La Défense, France
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We examine how disordering joint position influences the linear elastic behavior of lattice mate-
rials via numerical simulations in two-dimensional beam networks. Three distinct initial crystalline
geometries are selected as representative of mechanically isotropic materials low connectivity, me-
chanically isotropic materials with high connectivity, and mechanically anisotropic materials with
intermediate connectivity. Introducing disorder generates spatial fluctuations in the elasticity tensor
at the local (joint) scale. Proper coarse-graining reveals a well-defined continuum-level scale elas-
ticity tensor. Increasing disorder aids in making initially anisotropic materials more isotropic. The
disorder impact on the material stiffness depends on the lattice connectivity: Increasing the disorder
softens lattices with high connectivity and stiffens those with low connectivity, without modifying
the scaling between elastic modulus and density (linear scaling for high connectivity and cubic
scaling for low connectivity). Introducing disorder in lattices with intermediate fixed connectivity
reveals both scaling: the linear scaling occurs for low density, the cubic one at high density, and the
crossover density increases with disorder. Contrary to classical formulations, this work demonstrates
that connectivity is not the sole parameter governing elastic modulus scaling. It offers a promising
route to access novel mechanical properties in lattice materials via disordering the architectures.

PACS numbers: 46.50.+a,62.20.M-,78.55.Qr
Keywords: elasticity, random lattice, elastic constants, numerical simulation, beam model

I. INTRODUCTION

Cellular, reticulated, truss and lattice materials can
exhibit remarkable stiffness-to-weight ratio [1–4]. Nature
exemplifies this phenomenon, e.g. in the cellular struc-
ture of wood [5], trabecular bones [6], plant parenchyma
[7] and sponges [8]. Aerogels, metallic foams and bio-
inspired lightweight cellular materials also find a broad
range of applications in industry, with transportation and
aerospace driving the field. Still, the large porosity of
these materials inevitably causes substantial reduction in
the mechanical properties. The stiffness of a stochastic
foam with a relative density of 1% is about a millionth
of that of its constituent material [9, 10].

Recent and formidable progress in additive manufac-
turing and 3D printing boosted research in the field [3, 4],
giving way to the fabrication of high precision micro-
/nanoarchitectured cellular materials of complex geome-
tries [4]. In this context, micro-/nanolattice materials
consisting of periodically arranged beams or tubes of mi-
crometer/nanometer dimensions exhibit unprecedented
stiffness-to-weight ratio [11–16]. In general, the Young’s
modulus, E, typically scales as the density cubed ρ3 in
foams, aerogels and other cellular materials with ran-
domly distributed porosity[17–19]. On the other hand,
E scales as ρ2 in periodic hollow-tube microlattices with
octahedral basic cells [11], as ρ1.6 in octet-truss geometry
[12], or even linearly with ρ for well-chosen hierarchical
architectures [13, 15].

The E vs. ρ scaling finds its origin in the deforma-
tion mode of the lattice [20–22]. When deformation

is dominated by the bending of the constituent beams,
E ∼ (s/`)4 (E ∼ (s/`)3 in 2D) where s and ` are the typ-
ical cross-sectional size and length of solid beams. When
the lattice deformation arises from beam stretching or
compression, E ∼ (s/`)2 (E ∼ s/` in 2D). Relative den-
sity goes as ρ ∼ (s/`)2 (ρ ∼ s/` in 2D). Hence, E ∼ ρ2

(E ∼ ρ3 in 2D) in bending-dominated lattices, and E ∼ ρ
(likewise in 2D) in stretching-dominated lattices. To as-
sess whether a lattice material is stretching- or bending-
dominated one has to consider the collapse mechanisms
in a pin-jointed structure of the same geometry [20, 23].
Periodic pin-jointed structures of node connectivity Z <
6 (Z < 4 in 2D) do not satisfy Maxwell’s conditions and
are non-rigid [20, 24]. Consequently, the deformations in
the parent welded-joint lattice material are governed by
the beam rotation at the nodes, and bending dominates
elastic behavior. Pin-jointed frames with Z ≥ 12 (Z ≥ 6
in 2D) possess no collapse mechanism, in the sense that
any deformation generates an increase of the strain en-
ergy [20, 25]. They are fully-rigid, the associated lattice
materials are predicted to be stretching-dominated, and
the Gurtner-Durand bound provides a maximum achiev-
able Young’s modulus in isotropic structures [26]. Note
that this predicts E ∼ ρ in Octet-truss lattices (Z = 12).
This is in apparent contradiction with the experimental
observation of E ∼ ρ1.6 reported in Ref. [12]. This dis-
crepancy is discussed in Ref. [12] and attributed to the
hollowness of the tubes, affecting the structural integrity
of the nodes and yielding an effective connectivity smaller
than 12.

Finally, periodic structures of intermediate connectiv-
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ity 6 ≤ Z < 12 (4 ≤ Z < 6 in 2D) are referred to
as periodically rigid. The pin-jointed version of these
lattices obeys Maxwell conditions, but there exists at
least one periodic mechanism causing them to collapse.
In the Kagome structure [27], this collapse mechanism
does not produce macroscopic strain [23] and the par-
ent welded-joint lattice exhibits a stretching-dominated
behavior when loaded in any direction. Conversely, the
square lattice is bending-dominated when loaded in the
diagonal direction. This is because its pin-jointed version
collapses upon such loading.

Literature exemplifies a number of works concerning
the mechanics of lattice materials with periodic (crys-
talline) geometries. However, only a limited number
of studies examined disordered or non-periodic archi-
tectures [28–34]. Hence, the present study focuses on
lattices with constant node connectivity, with a large
range of beam aspect ratios and levels of geometrical dis-
order. Starting from 2D crystalline lattices, increasing
levels of disorder are introduced. Subsequently, studies
herein examine how this modifies their elasticity response
via numerical simulations on beam networks. Sec. II
presents the method. In this regard, different initial ge-
ometries are selected as representative of mechanically
isotropic/anisotropic structures, and low, intermediate
and large connectivity. Section IIIA analyzes the impact
of disorder on the spatial distribution of stress and strain
fields at the local scale, and subsequently Sec. IIIB ana-
lyzes its impact on the local compliance tensor. Special
emphasize is paid to determine the correlation length as-
sociated with the spatial fluctuations, and subsequently
the continuum-level scale elasticity tensor. Section IIIC
concentrates on how anisotropy evolves with increasing
disorder. Lastly, Sec. IIID looks at how disorder af-
fects the elastic response over a broad range of beam
aspect ratios. Additionally, it investigates how disorder
affects the Young’s modulus prefactor and Poisson’s ra-
tio in isotropic lattices. Section IV discusses the results,
and Sec. V provides a brief conclusion.

II. SIMULATION FRAMEWORK

A. Lattice geometry

All lattice specimens studied hereafter are enclosed
within disks of radius R. Starting meshes are summa-
rized in Tab. I. Nodes are connected by elements of
length ` and cross-section size s. Clamping conditions
are prescribed at the nodes, and there is an energy cost
associated with node rotation.

To gradually move from an ordered (crystalline) to a
disordered (amorphous) structure, we proceeded as fol-
low: Nodes are first placed in a 2D periodic configura-
tion. This sets the initial crystalline lattice. Then, a
tunable disorder is introduced by displacing every node
by a prescribed distance u along a randomly chosen di-
rection. Figure 1 shows a typical snapshot of a specimen

Mesh type Node connectivity Isotropic Deformation mode
7 3 Yes Bending
� 4 No Mixed
4 6 Yes Stretching

TABLE I. Deformation mode and isotropy in the 2D crys-
talline lattices studied here, in absence of introduced disorder
(from [1]).

x

y

FIG. 1. (color online) Square lattice disordered by displacing
randomly every node by a prescribe distance u = 0.3`0 along a
randomly chosen direction. Tensile loading (Thick horizontal
blue arrows) is applied by imposing a prescribed displacement
U(Mb) at every node Mb on the lattice boundary (cosine
dependency, see Eq. 4).

obtained following this procedure. The disorder intensity
is set by u, which lies in the range 0 ≤ u < 0.5`0, so that
struts cannot overlap. Three initial periodic lattices were
selected: triangular lattice that is mechanically isotropic
and fully rigid (connectivity Z = 6), honeycomb lattice
that is isotropic and non-rigid (Z = 3), and square lattice
that is anisotropic and periodically rigid (Z = 4).

Henceforth, the lattice architecture is given by four
control parameters: geometry (triangular, honeycomb or
square), element length `0 and element aspect ratio s/`0
in the parent crystalline lattice, and level of disorder u.
The specimen size is set by the specimen radius R. In
the following, `0 is chosen equal to unity and R > 30`0.

B. Mechanical test simulation

In the following, {x̂, ŷ} refers to the global frame.
{x̂l, ŷl} refers to the local frame at the considered ele-
ment, so that x̂l and ŷl are respectively parallel and per-
pendicular to this element. A beam model was used to
determine the lattice deformation in response to a pre-
scribed loading. Each beam has a length `, a square-
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section of side length s and are made of an isotropic bulk
material of Young’s modulus Es and Poisson’s ratio νs.
The state of each node is given by three parameters: the
two components of the displacement vector U and the
rotation φ.

Timoshenko-Ehrenfest beam theory [35] is used to re-
late the axial force N , shear force V , and torque M ap-
plied on beam elements to the nodal displacements U
and rotations φ. The local stiffness matrix is:

Kl =



EsS
`

0 0 −EsS
`

0 0
0 12EsI

(1+λ)`3
6EsI

(1+λ)`2
0 −12EsI

(1+λ)`3
6EsI

(1+λ)`2

0 6EsI
(1+λ)`2

(4+λ)EsI
(1+λ)`

0 −6EsI
(1+λ)`2

(2−λ)EsI
(1+λ)`

−EsS
`

0 0 EsS
`

0 0
0 −12EsI

(1+λ)`3
−6EsI
(1+λ)`2

0 12EsI
(1+λ)`3

−6EsI
(1+λ)`2

0 6EsI
(1+λ)`2

(2−λ)EsI
(1+λ)`

0 −6EsI
(1+λ)`2

(4+λ)EsI
(1+λ)`


(1)

where S and I are the cross-section area and moment
of inertia of the beam element; λ is the shear correc-
tion factor. For square beams, S = s2, I = s4/12 and
λ = (12/5)(1 + νs)(s/`)

2. The term EsS/` in the stiff-
ness matrix is associated with the traction/compression
of the element, whereas the terms proportional to EsI/`

2

and EsI/`
3 are associated with shearing and torque.

Timoshenko-Ehrenfest beam theory is preferred to Euler-
Bernoulli theory since it takes into account the shear
deformation of the cross-section and, as such, permits
the description of thick beams. The relation between lo-
cal nodal displacements and rotations [dl] = [Uxl

(A),
Uyl(A), φ(A), Uxl

(B), Uyl(B), φ(B)]T and local forces
and moments [bl] = [Fxl

(A), Fyl(A),M(A), Fxl
(B),

Fyl(B),M(B)]T is:

[Kl][dl] = [bl]. (2)

In this setting, the subscript l refers to local quantities,
the superscript T represents the transpose of a vector or
matrix, and A and B refer to the edge nodes of the con-
sidered element. To construct the system of equations
for the complete lattice, one needs (1) write each ele-
ment stiffness matrix in the global coordinate frame (by
multiplying it by the appropriate rotation matrix), and
(2) subsequently, add the element matrix in the global
stiffness matrix as classically done in finite element (FE)
or beam models [36]. The set of equations describing
equilibrium at each node is:

[K][d] = [b], (3)

Here, [b] = [Fx(A1), Fy(A1),M(A1), Fx(A2), Fy(A2),
M(A2), ...]T is the load vector, [d] = [Ux(A1), Uy(A1),
φ(A1), Ux(A2), Uy(A2), φ(A2), ...]T is the global dis-
placement vector, and [K] is the global stiffness matrix.

Loading is applied by imposing a displacement on the
boundary nodes [Fig. 1]. A loading direction θload with
respect to x is prescribed. Imposed displacement is then

set to unity along this direction, and decreases as a cosine
law as the considered direction departs from θload :

U(Mb) = Ûtens/shear cos(θb − θload), (4)

where (rb, θb) are the polar coordinates of the consid-

ered node Mb along the specimen boundary. Ûtens and
Ûshear are unit vectors parallel and perpendicular to
θload, and are associated with tension and shear loading,
respectively. This cosine variation allows a minimization
of the impact of boundary discreetness on the stress and
strain fields in the bulk lattice.

The loading conditions above are implemented in Eq.
3, by setting F(Mb) = U(Mb) in {b} at the appropri-
ate places and replacing the corresponding blocks in the
stiffness matrix [K] by identity matrix blocks. The final
set of equations is solved by inverting the stiffness ma-
trix, using sparse Cholesky decomposition to speed up
the process. This provides the displacements U(M) and
rotation φ(M) of each node M in the loaded lattice.

C. Local stress and strain computation

The next step determines the continuum stress and
strain fields in the sample. For this, we draw inspiration
from methods developed to study granular flows [37, 38].
Voronoi tessellation associates a continuum elementary
volume to each node M of the lattice. At each location
(x, y) within the Voronöı polyhedron Pvor(M) centered
on M, the local stress tensor σ is:

σ =
1

2Svors

∑
p

FMp→M ⊗ (x(M)− x(Mp)) , (5)

where Svor is the area of the Voronöı polyhedron, Mp

are the nodes connected to M, x(Mp) and x(M) are the
position of M and Mp, FMp→M is the force applied by
the beam connecting M and Mp to M, and ⊗ is the
vector dyadic product.

A best-fit algorithm then determines the local strain
tensor on the same Voronoi polyhedron. The components
eij = ∂Ui/∂xj of the displacement gradient tensor are
prescribed so that they minimize:

χi =
∑
p

(eij(M) (xj(Mp)− xj(M))− (Ui(Mp)− Ui(M)))
2
,

(6)
where indices {i, j} ∈ {x, y}. Einstein summation con-
vention is used here on repeated indices. The components
of the strain tensor are:

εij(M) =
1

2
(eij(M) + eji(M)) (7)
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FIG. 2. (color online) Maps of local stress and strain in a
square lattice in absence of architecture disorder. The eight
panels correspond to the σxx, σxy, σyx and σyy (left column),
and εxx, εxy, εyx and εyy (right column). εij are expressed in
`0/R units and σij are expressed in Es`0/R units. Horizontal
tensile loading is imposed by prescribing the displacement at
the boundary nodes according to Eq. 4 with θload = 0. In this
simulation, s/`0 = 1/8 and the specimen size is R = 50`0.

III. RESULTS

A. Spatial distribution of local stress and strain
tensors: influence of disorder

Figure 2 shows local stress and strain maps for a peri-
odic square lattice loaded in tension along x axis. Note
that σxy(x, y) = σyx(x, y) everywhere, as expected for a
Cauchy stress tensor. This is always observed, regardless
of the lattice geometry and amount of disorder intro-
duced. Note also that σxx is two orders of magnitude
larger than σxy and σyy. This is due to the fact that
Poisson’s ratio νxy in a square lattice is equal to zero [1].
Here we use the notation νxy rather than ν to empha-
size that square lattices do not exhibit isotropic elastic-
ity response, but orthotropic one (see next section). Note
finally that σxx(x, y) is proportional to εxx(x, y) every-
where. The prefactor gives the Young modulus of the lat-
tice measured along x. It is equal to Ex = Ess/`0 = 1/8,
as expected for a square lattice [1].

Figure 3 presents typical snapshots of the components
of local stress and strain tensors in a disordered square
lattice. Large spatial inhomogeneities are clearly visi-
ble. Note in particular the chain-like structure of the
most stressed zones in the top, left panel of Fig. 3.
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FIG. 3. (color online) Maps of local stress and strain in a
disordered square lattice (disorder intensity: u = 0.3`0, beam
aspect ratio s/`0 = 1/8, specimen size R = 50`0). The eight
panels correspond to the σxx, σxy, σyx and σyy (left column),
and εxx, εxy, εyx and εyy (right column). εij are expressed in
`0/R units and σij are expressed in Es`0/R units. Horizontal
tensile loading is imposed by prescribing the displacement at
the boundary nodes according to Eq. 4 with θload = 0.

These resemble force chains observed in granular media
[39]. Chain-like structures are less visible in the strain
maps where heterogeneities take the form of relatively
isotropic spots [Fig. 3, top, right panel]. Sec. IIIB takes
a closer look at fluctuations to infer relevant length scales
which aid in defining a representative elementary volume
(REV). Averaging such maps over many configurations
of same loading, initial crystal geometry and amount of
disorder u (but different realizations) allows smoothen-
ing the high frequency fluctuations and reveals the large
scale spatial variations of stress and strain fields [Fig. 4].
The configuration-averaged maps obtained in presence
of disorder are significantly different from the maps ob-
served in the pristine crystalline lattice, which show that
the introduced disorder changes the elasticity constants.

B. Spatial distribution of local elasticity constants:
on the RVE scale

The next step is to determine the relevant constants
to characterize the elastic response of the lattice at local
scale. Using Voigt notation, stress and strain components
under plane stress assumption are related via:
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FIG. 4. (color online) Ensemble averaged maps of local stress
(left column) and strain (right column) in a disordered square
lattice (disorder amount: u = 0.3`0, beam aspect ratio s/`0 =
1/8, specimen size R = 50`0). The average was taken over
100 samples with same loading and u, but different disorder
realizations. The eight panels correspond to the σxx, σxy,
σyx and σyy (left column), and εxx, εxy, εyx and εyy (right
column). εij are expressed in `0/R units and σij are expressed
in Es`0/R units. Horizontal tensile loading is imposed by
prescribing the displacement at the boundary nodes according
to Eq. 4 with θload = 0.

 εxxεyy
2εxy

 =

S11 S12 S14

S12 S22 S24

S14 S24 S44

σxxσyy
σxy

 , (8)

where the symmetric compliance tensor, S, fully char-
acterizes the material elasticity. For isotropic materials
such as triangular and honeycomb lattices, Siso is given
by:

Siso =

 1
E

−ν
E 0

−ν
E

1
E 0

0 0 2(1+ν)
E .

 (9)

The elasticity response is fully characterized by two con-
stants: the Young’s modulus E and Poisson’s ratio ν.
For orthotropic materials such as square lattices, Sort is
given by:

Sort =


1
Ex

−νyx

Ey
0

−νxy

Ex

1
Ey

0

0 0 1
G

 , with
−νyx
Ey

=
−νxy
Ex

(10)

The elasticity response is fully characterized by four con-
stants: Young’s moduli Ex and Ey along the x and y
axis, Poisson’s ratio νxy, and the shear modulus G. Note
that in square lattices, Ex = Ey and only three of the
sought constants Skl are required.

In the most general situation of disordered architec-
tures, the six constants, Skl of the compliance ten-
sor should be determined. As Eq. 8 only provides
three independent equations, a single test is not suffi-
cient to determine them [40]. Hence, for each speci-
men studied, six different tests were performed: three
tensile tests and three shearing tests. For these tests,
the imposed external displacements are given by Eq.
4 and θload = {0, π/4, π/2} (square-based lattices) or
θload = {0, π/3, π/2} (triangular- and honeycomb-based
lattices). Each test p provides maps of local stress

σ
(p)
ij (x, y) and strain ε

(p)
ij (x, y). Hence, Eq. 8 provides

at each location (x, y) 18 relations between ε
(p)
ij and σ

(p)
ij .

These relations involve the six Skl constants needed. The
best-fit procedure provides them such that the following
equation is minimized for each constant:

χ =
∑
p

(
ε(p)xx − S11σ

(p)
xx − S12σ

(p)
xx − S14σ

(p)
xy

)2
+
∑
p

(
ε(p)yy − S12σ

(p)
xx − S22σ

p
xx − S24σ

(p)
xy

)2
+
∑
p

(
2ε(p)xy − S14σ

(p)
xx − S24σ

(p)
xx − S44σ

(p)
xy

)2
(11)

Such homogenization methods are classically used, in
FEA, to determine the homogenized elastic constants of
complex materials such as composites [41].

Figure 5 displays typical maps Skl(x, y) obtained in
a disordered square lattice (same lattice material as in
Fig. 3). Note the large spatial variations observed on
the Skl maps. Ensemble averaging over 100 samples al-
lows decreasing spatial variability [Fig. 6]. Still, the
maps continue to present the same visual aspects: Ex-
cept for the edges, these maps are statistically spatially
homogeneous, with localized spots uniformly distributed.
Note the absence of spatial variations at large wavelength
(continuum-level scale), as expected for material con-
stants and contrary to what is observed on the ensemble
averaged stress and strain maps [Fig. 4]

To characterize the typical size of the random spots
observed in the maps of Fig. 5, we compute the radial
correlation function gkl(r):



6

-28.0

71.0

S 1
1

-34.0

28.0

S 1
2

-26.0

69.0

S 2
2

-240.0

240.0

S 1
4

-430.0

1500.0

S 4
4

-230.0

230.0

S 2
4

FIG. 5. (color online) Maps of local compliance tensor S in a
disordered square lattice (disorder amount: u = 0.3`0, beam
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compliance tensor S in a disordered square lattice (disorder
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size R = 50`0). The average was taken over 100 samples of
different disorder realisations. The six panels correspond to
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are all expressed in Es units.

gkl(r) =

〈
S̃kl(r0 + rêθ)S̃kl(r0)

〉
√〈

S̃2
kl(r0 + rêθ)

〉〈
S̃2
kl(r0)

〉 , (12)

where S̃kl(r0) = Skl(r0) − Skl and 〈〉 denotes averaging
over all positions r0 and subsequently over all direction
êθ. S is the global compliance tensor calculated with
averaged stress 〈σ〉 and strain 〈ε〉. By analogy with S,
gkl(r) forms a symmetric radial correlation matrix g(r).
Figure 7 presents the variation of its Euclidean norm,
g(r) = ||g(r)||, as a function of r at increasing disor-
der u. Very rapidly, g(r) drops to zero. Fitting these
curves by an exponential function g(r) = exp(−r/lc) al-
lows defining a correlation length, lc. Its evolution with
u is shown in Fig. 8 in the different geometries stud-
ied. It is measured to be ∼ `0 in all cases except the
disorder-free square lattice, where lc ' 3`0.

A priori, the knowledge of lc allows setting a REV size
lREV : Calling N = lREV /lc, one can split the REV into
n = Nd elementary cells (d = 2 in 2D, d = 3 in 3D) where
the quantity of interest is independent and identically
distributed (i..i.d.). Calling σ the standard deviation of
this quantity over one elementary cell, the central limit
theorem tell us that the standard deviation of the same
quantity over the REV goes as σ/

√
n = σ/(lREV /lc)

d/2

. As a result, a given quantity coarse-grained over the
REV will typically exhibit typical fluctuations that de-
crease as lc/lREV in 2D (or (lc/lREV )3/2 in 3D). Addi-
tional work (see appendix A for details) also shows that
when REV size is equal to ' 4`0 then global compli-
ance tensor can be calculated directly from macroscopic
stresses and strains or alternatively from the averaging
of local compliance tensor on REV cells. As will be dis-
cussed in Sec. IV A, this condition does not imply that
the elastic constants are independent of specimen size. In
fact, a much larger REV should be prescribed to ensure
that these elastic constants are bulk material constants
(Sec. IV A and Fig. 14)

The next section analyzes the global compliance ten-
sor S for different levels of disorder and a large range of
aspect ratios.

C. Anisotropy of elasticity response: influence of
disorder

This section takes a look at how disorder affects the
anisotropy of the elasticity response. Initially the global
compliance tensor S is calculated. Next the effective com-
pliance tensor Seff is defined as:

Seff =

S11+S22

2 S12 0

S12
S11+S22

2 0

0 0 S11+S22+S44−2S12

2

 (13)
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FIG. 7. (color online) Radial correlation function g(r) at 6
increasing disorder u in honeycomb-based (panel a), square-
based (panel b), and triangular-based (panel c). r and u are
expressed in `0 units. Here, beam aspect ratio is s/`0 = 1/8
and specimen size is R = 40`0.
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FIG. 8. (color online) Correlation length lc as a function of
disorder u in the three type of lattice materials. Here, beam
aspect ratio is s/`0 = 1/8 and specimen size is R = 40`0.
Both lc and u are expressed in `0 units.
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FIG. 9. Universal anisotropy index UAI (Eq. 14) as a
function of disorder level u in the three types of geometries:
Honeycomb-based (red 7), square-based (green �), and tri-
angular (blue 4). Here, beam aspect ratio is s/`0 = 1/8 and
specimen size is R = 40`0. u is expressed in `0 units. In all
the curves, UAI has been obtained from the analysis of a sin-
gle specimen. Black � in inset shows the result obtained after
having averaged over 100 configurations in a square-based lat-
tice with u = 0.3. u is expressed in `0 units.

This tensor meets the requirement that S = Seff in
mechanically isotropic materials. Lastly, the Universal
Anisotropy Index (UAI) is defined by analogy to the
Zener index which is limited to the cubic crystals case
[42]:

UAI =
||Seff − S||
||Seff ||

(14)

It quantitatively defines how close S is to Seff . Indeed,
with this definition, if the elastic material is isotropic
then UAI = 0, otherwise UAI > 0. Moreover, as UAI
increases, the anisotropy increases.

Figure 9 presents the evolution of UAI with disorder
intensity for the three studied geometries. In absence of
disorder, UAI = 0 in honeycomb and triangular lattice
and these lattice materials obey isotropic elasticity, as
expected. Increasing disorder has nearly a null effect on
the anisotropy index of the already isotropic materials.
The largest value in this context is UAI = 5.7%, which
is observed in the honeycomb lattice at maximum disor-
der (u = 0.45`0). Conversely, in absence of architecture
disorder, the square lattice is highly anisotropic, with
UAI = 97%. In this case, increasing architecture dis-
order significantly improves the elasticity isotropy, and
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FIG. 10. (color online) Shear modulusG as a function of beam
aspect ratio s/`0 with increasing disorder u in honeycomb-
based lattices (panel a), square-based lattices (panel b), and
triangular-based lattices (panel c). In all panels, axes are
logarithmic. In panels (a) and (c), blue (dark gray) curve
correspond to u = 0 (no disorder) and red (light gray) curve
corresponds to u = 0.45 (maximal disorder). In these two
panels, the introduction of disorder does not affect the scal-
ing exponent, which remains equal to 3 in honeycomb-based
(panel (a)), and to 1 in triangular-based lattice (panel (c)).
Conversely, the introduction of disorder affect the scaling in
square-based lattice (panel (b)), and the two scaling expo-
nents are observed: 1 at small aspect ratios and 3 at large
ones. The different colors correspond to different levels of
disorder u (see caption in panel (b)). Here, specimen size is
R = 32`0. G is expressed in Es units and u is expressed in `0
units.

UAI is nearly half the initial value, ∼ 58%, for the max-
imum disorder intensity.

10-3 10-2 10-1

aspect ratio s/l

10-5

10-4

10-3

10-2

10-1

100

E
x

1.381

u= 0.0 u= 0.45

FIG. 11. (color online) Young’s modulus along the x-axis Ex
as a function of beam aspect ratio s/`0 for increasing disorder
u in the square-based lattices. The different curves correspond
to different values u: u = 0 for the blue (upper) curve and
u = 0.45 for red (lower) curve. Here, the specimen size is
R = 32`0. Ex is expressed in Es units and u is expressed in
`0 units.

D. Elasticity versus aspect ratio scaling: effect of
disorder on material stiffness

Now let us shift to understanding how the material
lattice compliance depends on the beam aspect ratio
and disorder. Figure 10 presents the shear modulus
G = Es/S44 as a function of the aspect ratio s/`0 for
increasing disorder levels in the three investigated geome-
tries (honeycomb, square, and triangular). In absence of
disorder, the elasticity constants can be determined the-
oretically (Table II and Ref. [1]), and the values from the
simulations match theoretical predictions.

In honeycomb-based lattices, G ∼ (s/`0)3 (that is
G ∼ ρ3) independent of the disorder level. This is ex-
pected, as the node connectivity (Z = 3) does not sat-
isfies Maxwell’s condition for rigidity. Hence, bending-
dominated deformations dominate and elastic modulus
scale as (s/`0)3 [20].

Similar to honeycomb-based lattices, increasing disor-
der does not modify the scaling G ∼ s/`0 in triangular-
based lattices. In these cases, Z = 6, which ensures that
the pin-jointed version of the lattice is fully rigid; hence
G ∼ s/`0 [20].

The behavior of square-based disordered lattices is
surprising. As disorder is introduced, the coexistence
of two distinct scaling regimes is observed: G ∼ s/`0
at small aspect ratios and G ∼ (s/`0)3 at large ones.
On the contrary, a similar transition is not observed for
Ex = Es/S11 whose scaling exponent increases from 1 to
1.38 as disorder is introduced. But this change happens
with a unique regime (Fig. 11).

All but the square-based lattices are mechanically
isotropic. Hence, the elasticity behavior is fully char-
acterized by two constants: Young’s modulus and Pois-
son’s ratio. Figure 12(a) (resp. Figs. 12(b)) presents
E/(s/`0)3 (resp. E/(s/`0)) versus s/`0 for increasing ar-
chitecture disorder in honeycomb-based lattices (resp. in
triangular-based lattices). In absence of disorder, the
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Lattice geometry Honeycomb Square Triangular

Density (ρs) ρ = (2/
√

3)(s/`) ρ = 2s/` ρ = 2
√

3(s/`)

Young’s modulus (Es) E = (4/
√

3)(s/`)3 Ex = Ey = s/` E = (2/
√

3)(s/`)
Poisson’s ratio ν = 1 ν = 0 ν = 1/3

Shear modulus (Es) G = (1/
√

3)(s/`)3 G = (1/2)(s/`)3 G = (
√

3/4)(s/`)

TABLE II. Elasticity constants in 2D crystalline lattices in absence of introduced disorder (from [1]).

curves coincide with the theoretically predicted value
(Tab. II) in the limit of slender beams (i.e. s � `0).
The plateau departure observed at larger s/`0 is also
fully consistent with the theoretical corrections provided
in [29, 43] for thicker beams. In bending-dominated lat-
tice (honeycomb-based lattice), increasing disorder stiff-
ens the material and increases E/(s/`0)3 by ∼ 40% for
the maximum disorder (u = 0.45`0), see Fig. 12(a).
This variation is qualitatively consistent but quantita-
tively more pronounced than what is reported in the liter-
ature [29, 32, 44, 45]. The root cause of these differences
lies with how disordering occurs, by displacing randomly
the points, the Voronoi tessellation of which provides
the initial periodic honeycomb lattice. In stretching-
dominated lattices (triangular-based lattices), increasing
disorder yields softening effect and decreases E/(s/`0)
by respectively ∼ 8% and ∼ 12% for maximum disorder
(Fig. 12(b)). This is consistent with the finite element
observations reported in [31] on imperfect triangular lat-
tices.

Figure 13 shows the variations of Poisson’s ratio, ν, as
a function of s/`0 for the honeycomb- (panel (a)) and
triangular-based (panel (b)) lattices. Like E versus s/`0
curves (and probably for the same reason), plateaus occur
for s/`0 � 0.1, and a departure exists for higher values.
In honeycomb-based lattices, ν starts from the theoret-
ically predicted value ν = 1 in absence of disorder, and
decreases to ν ' 0.78 as disorder increases to u = 0.45.
This decrease is significantly larger than that reported in
Refs. [29, 44, 45]. In triangular-based lattices, ν starts at
the theoretically predicted value ν = 1/3 and increases
up to ν ' 0.42 as disorder level increases to u = 0.45.

IV. DISCUSSION AND ANALYTICAL
ANALYSIS

This numerical study was designed to shed light on
how the introduction of disorder in the architecture of
lattice materials modifies their elasticity response. In
this context, we derived and validated a novel procedure
to determine the spatial distribution of Hooke’s softness
tensor at the local (joint) scale in 2D beam networks of
prescribed architecture. Introducing disorder yields large
spatial variations for local elasticity constants. Neverthe-
less, the correlation length associated with these spatial
variations is small, approximately the beam length. Av-
eraging them over the specimen provides an accurate es-
timation of the continuum-level scale values.

A first effect of disordering is to promote elasticity

10-3 10-2 10-1

aspect ratio s/l

0.5
1.0
1.5
2.0
2.5
3.0
3.5

E
(l
/s

)3

(a)E(l/s)3 over 100 averaged configurations

10-3 10-2 10-1

aspect ratio s/l
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1.25
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1.35

E
l/
s

(b)

u= 0.0
u= 0.1

u= 0.2
u= 0.3

u= 0.4
u= 0.45

Theoretical value for u= 0.0

FIG. 12. (color online) Prefactor of scaling E ∼ (s/`0)n

as a function of beam aspect ratio s/`0 for increasing dis-
order u in honeycomb-based lattices (panel a, n = 3) and
triangular-based lattices (panel b, n = 1). The different col-
ored curves correspond to different values u according to the
legend provided in panel c. Thick dash gray curve in panel a
is the theoretical prediction E/(s/`0)3 = (4

√
3/3)/(1 + (5.4 +

1.5νs)s
2/`20) [29]. Thick dash gray curve in panel b is the the-

oretical prediction E/(s/`0) = (2
√

3)×(1+s2/`20)/(3+s2/`20)
[43]. Here, specimen size is R = 40`0. E is expressed in Es
units and u is expressed in `0 units.

isotropy when the parent crystalline architecture exhibits
anisotropic elasticity (Fig. 9). This is expected since in-
creasing disorder attenuates the rotation axis inherent
to the pristine crystalline lattice and makes it more and
more statistically invariant upon rotation.

Beyond isotropy, introducing disorder modifies the
continuum-level (global) scale elastic constants in a way
that depends deeply on the parent periodic geometry and
connectivity. In summary:

I In lattices of high and low connectivity like
triangular-based and honeycomb-based ones re-
spectively, increasing disorder does not modify the
scaling between elastic modulus and s/`0 (or equiv-
alently ρ): E ∼ s/`0 in highly connected lattices
(Z = 6) and E ∼ (s/`0)3 in weakly connected ones
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FIG. 13. (color online) Poisson’s ratio ν as a function of
beam aspect ratio s/`0 at increasing disorder u in honeycomb-
based lattices (panel a) and triangular-based lattices (panel
b). The different colored curves correspond to different values
u according to the legend provided in panel b. Thick dash
gray curve in panel a is the theoretical prediction ν = (1 +
(1.4 + 1.5νs)s

2/`20)/(1 + (5.4 + 1.5νs)s
2/`20) [29]. Thick dash

gray curve in panel b is the theoretical prediction ν = (1/3)×
(1−s2/`20)/(1+s2/3`20) [43]. Here, specimen size is R = 40`0.
u is expressed in `0 units.

(Z = 3), no matter how much disorder is intro-
duced.

II Increasing disorder softens highly connected (tri-
angular) lattices; the prefactor, E/(s/`0) decreases
with the amount of disorder, u.

III Increasing disorder stiffens weakly connected (hon-
eycomb) lattices, with a prefactor, E/(s/`0)3 de-
creasing with u.

IV Introducing disorder in lattices of intermediate con-
nectivity like square-based ones (Z = 4) dramati-
cally modifies the scaling between shear modulus
and s/`0. Indeed, in the absence of any disorder,
G ∼ (s/`0)3 over the whole range, but a novel scal-
ing regime G ∼ s/`0 ocurs at small s/`0 values as
soon as disorder is introduced.

On the effect of disorder on E vs. s/` scaling at low
and high connectivity

As already mentioned in Sec. III.D, observation I is
explained by the fact that introducing disorder, here,
does not change lattice connectivity. In disordered
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radius of the domain (l units)

0
5

10
15
20
25
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/s
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FIG. 14. (color online) Prefactor of Young’s modulus for
hexagonal and triangular lattices as function of the size of
the sample. Lattices are disordered at u = 0.45 and have an
aspect ratio of s/`0 = 1/1024.

triangular-based lattices, the connectivity is always suf-
ficient (Z ≥ 6) to prevent collapsing mechanisms in
the pin-jointed version; hence deformations, are always
stretching-dominated [20]. Similarly, in honeycomb-
based lattices, Z = 3 no matter how much disorder is in-
troduced; Maxwell’s criterion for stability is not fulfilled
and, as such the structure remains bending-dominated at
any value u.

A. Local vs global elasticity constants in
disordered lattices

Observations II and III are more counter-intuitive. In
particular, observation II is opposite to what would have
been analytically predicted for local elastic modulus, at
the cell scale, after averaging over disorder configura-
tions (Appendix B). This highlights that, as soon as dis-
ordered lattices are considered and irrespectively of the
amount of disorder (even for arbitrary small ones), spa-
tial correlation in stress redistribution should be taken
into account and a large enough specimen should be de-
fined. Figure 14 shows how the prefactor E/(s/`0) (resp.
E/(s/`0)3) evolves with the specimen radius R in disor-
dered triangular-based (resp. honeycomb-based) lattices.
Specimens of radius R > 30`0 should be prescribed to
ensure that the determined elasticity moduli are truly
material constants, independent of R.

B. On the origin of disorder-induced softening in
stretching-dominated lattices

Because of the nonlocality mentioned in the previous
section, observation II is extremely difficult to rationalize
quantitatively. It has been shown in Ref. [26], that the
stiffness of stretching-dominated lattices decreases when
geometrical disorder yields non-affine strain fields. Here,
we propose an alternative explanation and argue that the
observed softening is due to the increase of mean beam
length as disorder increases.
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FIG. 15. (color online) (a) Sketch of beam deformation in a
streching-dominated lattice loaded under a compressive stress
σ. The stretching force applying onto the considered beam is
F = σ`sF(θ) where θ is the typical angle between two joint
beams and `F(θ) is the typical distance separated two succes-
sive vertically stretched beams. In response to this stretching
force, each edge of the beam moves over a distance δ. Thick
black vertical plain line and dotted black inclined lines present
the considered beam and two jointed ones before the lattice
deformation while gray vertical thick plain line and gray dot-
ted inclined lines show the same beams after deformation.

To some extent, this can be rationalized by considering
a given beam, OM, and a constant compressive stress
σ applying parallel to it OM (Fig. 15). The force F
applying at each edge of the beam is F = σ`sF(θ) where
` is the beam length, θ is the typical angle between two
joint beams (considered to be the same everywhere, e.g.
θ = π/6 in disorder-free triangular lattice), and `F(θ)
is the typical distance separating two successive beams
compressed by σ (Fig. 15). Each node, O and M, moves
by δ = F`/Ess

2 = σ`2F(θ), due to beam contraction.
This yields a strain ε = δ/` = σ`F(θ)/Ess. Finally,
Young’s modulus E(str) = σ/ε is given by:

E(str) =
Ess

`F(θ)
(15)

Now, disorder is introduced on edge position: x(M) =
x0(M) + uη(M), where η(M) is given by:

η(M) = x̂(cos θM − cos θO) + ŷ(sin θM − θO), (16)

where θM and θO are two angles selected randomly be-
tween −π and π. This yields fluctuations of the beam
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FIG. 16. (color online) Young’s modulus prefactors for tri-
angular lattices computed numerically (black triangles) and
estimated through analytical second order’s expansion (Eq.

18), with E
(str)
0 = 2

√
3s/`0 (Tab. II).

length, which, to second order terms in u, now writes
` = `0 + uηy(M) + u2η2x(M)/(2`0) + o(u2/`20). As a
result, the strain also fluctuates in space. By averag-
ing ε over different configurations {θO, θM}, one gets
ε = σ`F(θ)/Ess, and the effective Young’s modulus be-
comes:

E
(str)

=
Ess

`F(θ)
(17)

To the second order in u, the mean beam length is `(u) =
`0 + 1/2u2/`0 + o(u2/`20), and finally:

E
(str)

(u) = E
(str)
0

(
1− 1

2

u2

`20
+ o

(
u2

`20

))
(18)

As shown in Fig. 16, this analytical estimate is con-
sistent with numerical observations in triangular-based
disordered lattices, as least as long as u is not too large.

C. On the origin of disorder-induced stiffening in
bending-dominated lattices

A priori, the same argument can be applied to
bending-dominated lattices. As Ebnd ∼ (s/`)3, this

would yield E
bnd

(u) = Ebnd0 (1 − 3/2u2/`20 + o(u2/`20);
hence, the lattice would have been expected to soften as
disorder increases. Observation III is the opposite.

We argue that the disorder-induced stiffening observed
in bending-dominated lattices translates the fact that, in
any bending-dominated lattice, part of applied stress is
accommodated by beam stretching. Indeed, as force ap-
plied on a given node, its projection parallel to the con-
sidered beam yields beam dilation or stretching while the
part perpendicular to this beam yields bending. As dis-
order increases, the relative importance of the stretching
part increases. Assuming that the lattice deformation
due to strecthing are negligible with respect to those due
to bending, the total lattice deformation is fully governed
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by the part of applied stress accomodated by beam bend-
ing, only. Then, as the Young’s modulus E(bnd) is set by
the total force over the total deformation ratio, E(bnd) is
set by the total force over effective bending force ratio,
which increases as disorder increases.

D. On the two elasticity scaling regimes in
disordered square lattices

As in honeycomb-based bending-dominated lattices,
the appearance of two scaling regimes in the Gvs. s/`
curves (Fig. 10b) in disordered square lattice is also at-
tributed to the fact that an increasing proportion of ap-
plied shear stress is accommodated via latttice stretching
as introduced disorder increases. In this specific case, this
can be rationalized as follow.

Let us first consider the case of disorder-free square
lattice loaded by a constant shear stress, τ , applied per-
pendicularly to a given beam OM (Fig. 17). Force F ex-
erted on node M is F = τs`, and it applies perpendicular
to the beam. Due do beam bending, M moves over a dis-
tance δ = F`3/(Ess

4) = τ`4/(Ess
3). O moves along the

opposite direction over the same distance, and the result-
ing elementary shear deformation γ = 2δ/` = τ2`3/Ess

3

is:

γ =
2`3

Ess3
τ (19)

Let us now introduce disorder on edge positions. This
yields fluctuations on the angle θ between OM and the
vertical to applied shear (Fig. 17b). As a result F , is not
perpendicular to OM anymore. The perpendicular com-
ponent T = F cos θ makes the beam bend and M moves
over a distance δT = F cos θ`3/(Ess

4) along a direc-
tion perpendicular to OM; the parallel component N =
F sin θ makes the beam stretch and M moves over a dis-
tance δN = F sin θ`/(Ess) in a direction parallel to OM.
The former implies a bending-induced elementary shear
deformation γ(bnd) = δT cos θ/` = 1/2τ cos2 θ`3/(Ess

3);
the latter implies a shear-induced elementary shear de-
formation γ(str) = δN sin θ/` = 1/2τ sin2 θ`/(Ess).

Let us now assume that disorder is introduced by mov-
ing lattice edge over a random displacement as stipu-
lated in Eq. 16. To the second order in u/`0, cos2 θ =
1 − 1/2η2xu

2/`20 + o(u2/`20) and sin2 θ = 1/2η2xu
2/`20 +

o(u2/`20). By averaging over the configurations {θO, θM},
one gets:

γ(bnd)(u) = τ
2

Es

`30
s3

(
1− 1

2

u2

`20
+ o

(
u2

`20

))

γ(str)(u) = τ
2

Es

`0
s

(
1

2

u2

`20
+ o

(
u2

`20

)) (20)
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FIG. 17. (color online) (a) Sketch of beam deformation in a
square lattice loaded under a shear stress τ . Due to the shear,
the force applying onto the considered beam is F = τ`. In
response to F , the beam bends and its two edges moves over
a distance δ. Thick black vertical plain line and dotted black
inclined lines present the considered beam and two jointed one
before the lattice deformation while gray vertical thick plain
line and gray dotted inclined lines show the same beams after
deformation. (b) Due to disorder, the considered beam makes
now an angle θ with respect to the perpendicular of shear.
Applied force F then splits into a component T perpendicular
to the beam and a parallel one, N . The former makes the
beam bend and its two edges move over a distance δT and
the former makes the beam stretch and its two edges move
over a distance δN .

Finally, the averaged shear-induced and bending-induced

elementary shear moduli G
(str)

= τ/γ(str) and G
(bnd)

=

τ/γ(bnd) become:
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FIG. 18. (color online) Shear modulus G as a function of
beam aspect ratio s/` at increasing disorder u in square-based
disordered lattices. Colored symbols connected by plain lines
are the curves obtained via simulation. Colored dash lines are
the analytical expression given by Eq. 22 with α = 0.1. G is
expressed in Es units and u is expressed in ` units.

G
(bnd)

(u) =
Es
2

s3

`30

(
1 +

1

2

u2

`20
+ o

(
u2

`20

))
G

(str)
(u) = Es

s

`0

(
u2

`20
+ o

(
u2

`20

)) (21)

The difficulty is to go from these local, configuration-
averaged, shear moduli to the global specimen-scale shear
moduli, G(sq). As discussed in Sec. IV A, this upscaling
is not trivial and cannot be obtained quantitatively via
the simple addition of the two contributions. Still, mak-

ing G(sq) = G
(bnd)

+ G
(str)

allows reproducing at least
qualitatively the observed features: When s/` � u/`,

G
(str)

(u) � G
(bnd)

(u) and G(sq)(u) ≈ G
(str)

(u) ∼ s/`;

conversely, when s/` � u/`, G
(str)

(u) � G
(bnd)

(u) and

G(sq)(u) ≈ G
(bnd)

(u) ∼ s3/`3. This qualitatively ex-
plain observation IV and Fig. 10b, with a linear scaling
regime G ∼ s/` at small aspect ratios, a cube scaling
regime G ∼ s3/`3 at large aspect ratios, and a crossover
aspect ratio increasing as disorder increases. Actually, as
shown on Fig. 18, all the numerical curves obtained in
disordered square lattices are reproduced quantitatively
using a weighted sum:

G
(sq)

(u) = (1− αu2)G
(bnd)

(u) + αu2G
(str)

(u) (22)

with α ' 0.1.

V. CONCLUSION

The series of simulations reported here investigated
how the introduction of disorder modifies the elasticity
behavior of 2D lattice materials of various architectures.
A procedure inspired from the modeling of granular sys-
tems has been developed to determine the map of the full
elasticity tensor at the local scale. This procedure has

been validated via comparisons with theoretical results
known for pure crystalline lattices. Introducing disor-
der has the disadvantage of generating important spatial
fluctuations on these elastic constants. Nevertheless, the
associated correlation length remains small, on the order
of the beam length `. Averaging over the specimen pro-
vides an accurate determination of the continuum-level
scale elasticity constants (compliance tensor).

First, as demonstrated here on 2D square-based lattice
materials, introducing disorder in a crystalline architec-
ture of initial anisotropic elasticity promotes elasticity
isotropy. Note that, while there are elastically isotropic
crystalline architectures in 2D (e.g. the triangular or
honeycomb lattice studied here), this is no longer the
case in 3D [42]. Lattice structures with isotropic elas-
ticity are important for many applications and, as such,
are the subject of several works [26, 46–49]. Introducing
disorder in a tunable way as proposed here may offer a
promising route to this aspect.

Second, introducing disorder softens highly-connected
stretching-dominated lattice materials. This observation
is somehow counter-intuitive since a simple argument,
based on the analysis of the elastic energy stored in an el-
ementary cell of the parent crystalline lattice and the evo-
lution of this configuration-averaged energy in presence
of disorder would have predicted the opposite (appendix
B). This highlights the importance of nonlocality (and
the induced difficulty to anticipate the effect of disor-
der) on the elasticity properties of lattice materials. This
also relates to previous studies [26] that evidence corre-
lations between network stiffness and disorder-induced
non-affine strain fields in stretching-dominated lattices.

Third, introducing disorder helps stiffening low con-
nectivity bending-dominated lattice materials. The ef-
fect is quite small in honeycomb lattices: elastic modu-
lus varies as the cube of density (driven by changing the
beam aspect ratio) regardless of the disorder level, and
disorder only plays on the prefactor, which increases by
∼ 40%. On the other hand, the effect is drastic in square-
based lattices. In this scenario, stiff regime (linear scal-
ing between shear modulus and density) is observed at
low density, whilst the soft regime observed in absence of
disorder (cubic scaling between shear modulus and den-
sity) is only recovered at large density. Additionally, the
crossover density between these two regimes is selected
by the disorder level. We conjecture that similar features
will be observed in any lattices where connectivity is too
low to ensure full structure rigidity (Z < 6 in 2D, Z < 12
in 3D), but large enough to get rigid local cells (Z > 3
in 2D, Z > 4 in 3D).

On-going work aims at assessing this conjecture. If this
were the case, modulating spatially the disorder intro-
duced in an initially crystalline architecture would pro-
vide a promising way to obtain meta-composites made
of soft and stiff zones, the spatial entanglement of which
could be arranged. This may allow the design of novel
architectures for materials with both large stiffness and
energy-absorbers, which are a priory antagonist.
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Appendix A: On the effect of averaging procedure
onto macroscale compliance tensor

Compliance tensor can be calculated following two
schemes. First, S is classically obtained using macro-
scopic stress and strain. Second, a local SN (x, y) is
computed by first coarse-graining local stress and strain
fields over square meta-cell of edge size N`0 which gives
σN (x, y) and εN (x, y) and then using the classical best-fit
procedure.

A coefficient α is defined as:

α =

∥∥S− 〈SN 〉∥∥∥∥S∥∥ (A1)

where 〈〉 denotes the specimen average and || || the Eu-
clidean norm. Figure 19 shows the variation of α with
N in the different geometries studied here. Like g(r),
α(r) decreases rapidly to zero. Hence, it is equivalent to
average over space or over configurations for compliance
tensor components.

Appendix B: Analytical expression of local
configuration-averaged elastic moduli in disordered

triangular-based lattices

The idea is based on the equivalence between the
continuum-level scale elastic strain energy stored in a
unit cell, Ucontinuum and the total energy stored in the
beams of this cell, Ucell [50, 51]. Ucontinuum is given by:

Ucontinuum =
1

2
εijCijklεkl, (B1)

Where Cijkl are the components of stiffness tensor and
εij are the components of strain tensor. Here and in the
following, Einstein summation convention is employed on
repeated indices. Moreover, εij are considered to be uni-
form throughout the lattice. Ucell is given by:

Ucell =
1

4Svors

Z∑
p

Fi(p)Ui(p), (B2)

where Svor is the area of the Voronöı polyhedron around
the considered node (labeled O), p index runs over all
beams starting from this node, F(p) = FMp→O, and
U(p) = U(Mp) − U(O) is the relative displacement of
node Mp with respect to node O. Note the factor 1/4
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FIG. 19. (color online) Ratio α (Eq. A1) as a function of
coarse-graining scale N , at increasing levels of disorder u,
in honeycomb-based lattices (panel a), square-based lattices
(panel b) and triangular-based lattices (panel c). In each
panel, the three curves correspond to u = 0 for the blue
(lower) curve, u = 0.25 for the green (intermediate) curve
and u = 0.45 for the red (upper) curve. Here, beam aspect
ratio is s/`0 = 1/8 and specimen size is R = 32`0. u is ex-
pressed in `0 units.

(and not 1/2) in Eq. B2 that comes from the fact that
the energy of each beam equally splits in the two Voronoi
cell associated to each edge. as strain εij are uniform:

Ui(p) = εijxj(p), (B3)

where x(p) = x(Mp) − x(O) is the relative position of
node Mp with respect to node O. Due to their high
connectivity, deformation in triangular-based lattices are
dominated by beam stretching. Hence, F(p) is:

Fi(p) = Ess
2xi(p)xj(p)

`(p)3
Uj(p), (B4)

where `(p) is the length of beam p. Finally, one gets:
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Cijkl =
Ess

2Svor

Z∑
p

xi(p)xj(b)xk(p)xl(p)

`(p)3
(B5)

Let us first consider a disorder-free triangular lattice.
Then, all beams have same length `0, Svor = `20

√
3/2,

and the relative positions x0(p) of the six nodes Mp

are: {`0, 0}, {`0/2, `0
√

3/2}, {−`0/2, `0
√

3/2}, {−`0, 0},
, {−`0/2,−`0

√
3/2)} and {`0/2,−`0

√
3/2}. As a result,

we get:

C0(tr) =
3

4
√

3

Ess

`0

3 1 0
1 3 0
0 0 1

 , (B6)

This compliance matrix is that of a linear elastic isotropic
material of Young’s modulus and Poisson’s ratio given by:

E0(tr) =
2√
3

Ess

`0
, ν0(tr) =

1

3
(B7)

Now, disorder is introduced on the positions: x̂(p) =
x̂0(p) + uη(p) where η(p) is given by Eq. 16. These
changes are introduced in Eq. B5 and the compliance
matrix is deduced:

C11 =
Ess

2Svor

Z∑
p

(x0(p) + uηx(p))4

((x0(p) + uηx(p))2 + (y0(p) + uηy(p))2)3/2

C22 =
Ess

2Svor

Z∑
p

(y0(p) + uηy(p))4

((x0(p) + uηx(p))2 + (y0(p) + uηy(p))2)3/2

C12 =
Ess

2Svor

Z∑
p

(x0(p) + uηx(p))2(y0(p) + uηy(p))2

((x0(p) + uηx(p))2 + (y0(p)) + uηy(p))2)3/2

C13 =
Ess

2Svor

Z∑
p

(x0(p) + uηx(p))3(y0(p) + uηy(p))

((x0(p) + uηx(b))2 + (y0(p) + uηy(p))2)3/2

C23 =
Ess

2Svor

Z∑
p

(x0(p) + uηx(p))(y0(p) + uηy(p))3

((x0(p) + uηx(p))2 + (y0(p) + uηy(p))2)3/2

(B8)

where Voight notation has been used and Svor has been
assumed to remain unchanged by the disordering proce-
dure. After expanding to second order in u/`0 and sub-
sequently averaging over disorder configurations so that
ηx = ηy = ηxηy = 0 and η2x = η2y = 1, we get:

C(tr|u) =
3

4
√

3

Ess

`0

3 1 0
1 3 0
0 0 1

(1 +
u2

`20
+ o

(
u2

`20

))
(B9)

In the disordered triangular-based lattice, elasticity re-
mains isotropic and local configuration-averaged Pois-
son’s ratio at the elementary cell scale remains constant,
ν(tr|u) = 1/3. Conversely, local Young’s modulus in-
creases with disorder strength:

E(tr|u) = E0(tr)

(
1 +

u2

`20
+ o

(
u2

`20

))
(B10)

This increase is opposite to the decrease observed for
global (specimen-scale) Young’s modulus (Fig. 16). Note
that Eq. B3 assume uniform strain at the local scale,
which is not true in the presence of geometrical disorder
[26].
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