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Abstract: This paper presents a lateral control Advanced Driver Assistance System for cars,
which uses both steering control and differential braking commands to aid drivers and enhance
vehicle safety. The proposed strategy uses a LPV PI Observer for the estimation of driver
performance over a range of vehicle speeds. This estimation is then used as scheduling signals to
activate / deactivate the ADAS actuators. The strategy is tested in simulation with randomly
generated driver profiles to prove the adaptability to a diverse range of driver’s behavior.
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1. INTRODUCTION

In this work we propose a Linear Parameter Varying
(LPV) Lateral ADAS control which is activated based
on driver’s ability. The proposed strategy uses combined
steering and differential braking as control actions. The
estimation of driver’s performance is obtained from an
LPV PI Observer and some idealistic nominal driver
models, which serves as the desired driver behaviour.
From this estimation, scheduling functions are defined that
modify the allowed control authority of the LPV ADAS
Controller. The objective is here to use differential braking
when driver errors are detected, and use the steering
command only when this error become larger (while still
minimizing the intrusiveness felt by the driver).

Some studies have designed lateral controllers considering
the driver’s lateral steering action through Driver Models.
Let us mention some, e.g Gáspár et al. (2012); Khosravani
et al. (2014); Chen et al. (2019). In these works the empha-
sis has been put on enhancing the ADAS controller robust-
ness to variable human delay and parameter uncertainties
to account for different levels of driving performances, as
well as to other issues such as non linearities in the vehicle
dynamics. However a limiting factor in all these strategies
is that the ADAS controller is always active, which may
be not desirable, see Mars et al. (2014). One prominent
field in the vehicle lateral control problem with human
drivers in the loop is the shared control proposition. Let
us mention some recent works in shared control, e.g. Saleh
et al. (2013); Erlien et al. (2015); Ji et al. (2018), where
the main control approach is the optimal control theory, in
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order to solve some Model Predictive Control or LQ/H2

problems. However, in shared control it is assumed that the
allocation of automation control authority can take a large
percentage, which again, may not be desirable and feel
invasive by the driver and trigger some users to disengage
such systems.

The use of LPV PI Observers is widely covered in the
literature for the problem of fault detection in sensors
and actuators of non linear systems. Let us mention some
recent works, e.g Youssef et al. (2017); Guzman et al.
(2021). In our study, the driver performance estimation
problem is recast as an additive fault estimation on the
output of the nominal driver system, which is similar
to the case of an additive sensor fault. The synthesis of
the LPV/H∞ PI Observer is here carried out using a
Parameter Dependent Lyapunov Function, from the dual
approach used for the synthesis of the LPV State-Feedback
ADAS controller.

A preliminary study has been presented in Medero et al.
(2021), concerning the case in which the driver error
detection is carried out using the Parity Space approach
with the assumption of an LTI driver model and constant
longitudinal speed of the vehicle, with the steering wheel
as the only actuator considered for the lateral ADAS
controller. The main contributions of this paper are first
to extend the driver error detection method to the case of
a varying vehicle speed (using an LPV PI Observer), and
to develop a control algorithm, considering not only the
steering angle but also the differential braking as a control
inputs, scheduled by the car velocity and by the driver
performance estimation.

The paper is organized as follows. Section 2 presents the
velocity dependent LPV driver model. Section 3 explains
the LPV PI Observer designed to estimate the errors
made by a real driver. Section 4 introduces the control-



oriented model used for the ADAS controller synthesis.
Section 5 presents the design of the LPV lateral control
for ADAS. Finally, in Section 6 simulation results shows
the performance of the proposed strategy in an emergency
maneuver scenario. Throughout the paper all variables in
red represent the scheduling variables used in the LPV
formulation.

2. AN LPV DRIVER MODEL

One of the main motivations of this study is that most
of Driver Models (DM) given in the literature are LTI
models, which are not sufficient to globally capture the
driver behaviour over a wide range of vehicle speeds. To
cope with this issue, in this work, the DM used in Medero
et al. (2021) is extended as an LPV model function of the
vehicle longitudinal speed vx, as shown in Fig. 1.

Fig. 1. LPV Driver Model

The motivation for the DM to be velocity dependent
can be explained using a simple simulation, as shown in
Fig. 2. The simulation scenarios, performed on a Renault
Megane car model detailed in Fergani et al. (2016), are the
following:

• First (in blue), an LTI DM steers a vehicle in order to
perform a Double Lane Change (DLC) at a longitudi-
nal speed of vx = 40m/s. The parameters of the DM
are selected to perform such maneuver with a smooth
trajectory and no overshoot.

• Then (in red), the same LTI DM is used to steer
the vehicle but considering a vehicle speed at vx =
25m/s.

From Fig 2, it can be seen that by employing a unique LTI
DM we obtain too large variations of the car trajectory
when tested at different speeds, which presents to use this
LTI DM as a reference model when varying vehicle speeds
are considered.
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Fig. 2. Steering test of one LTI DM at different speeds

To solve this issue, the gain K in the driver model is
modified to be parameter dependent, and denoted K(vx)

in Fig. 1. This change allows to obtain a homogeneous
trajectory of the vehicle for a wide range of speeds. The
value of K(vx) is then chosen so that at all speeds the
DM performs the DLC with a trajectory close to the first
scenario (in blue) from Fig. 2, as detailed below:

Table 1. Values of K(vx) for Different Speeds

vx [m/s] 25 30 35 40

K 1/11 1/17.5 1/21 1/26

This information can then be used to obtain a suitable
value for K(vx) for any vx within the range of 25 to 40m/s
by interpolation. Notice that the values of the parameter
dependent gain decrease with vx, which makes physical
sense, as it is to be expected that at higher speeds the
amount of steering gain required will be smaller than at
lower speeds.

From the DM presented in Fig. 1, it can be seen that the
model is characterized with the set of parameters

P = {K(vx), TL, TN , τ,Kv,Kff} ∈ R6 (1)

Let us first consider a nominal DM with parameters P0 ∈
P. Parameters P0 are chosen as to characterize a driver
with a fast reaction time, so that it can perform emergency
maneuvers, as the DLC, with reduced lateral acceleration
and small overshoots when compared with real drivers.

Then, this nominal DM is represented into a discrete LPV
state-space model (considering a sample time Ts = 0.01s)
as follows:{

xd(k + 1) = A0 · xd(k) +B0 · ud(k)
δd(k) = C0(vx) · xd(k) +D0(vx) · ud(k)

(2)

with

ud(k) =

[
ye(k − τ0/Ts)
kpath(k)

]
(3)

where xd ∈ R is the state of the DM, ud ∈ R2 are the
inputs of the driver model and δd ∈ R is the steering
output of the DM. Notice that the pure delay in Fig. 1,
is treated in (3) as an input delay where τ0 ∈ P0. Notice
also that the output matrices of the DM depend on the
longitudinal velocity, as these terms are function of K(vx).

Different from the nominal DM, the steering of a real
driver δf is modelled as the following additive fault repre-
sentation:

δf (k) = δd(k) + f(k) (4)

3. DRIVER ERROR DETECTION

The objective is now to synthetize a PI observer in order
to estimate f . In that framework, the fault f is assumed
to be such that ḟ = 0, which could be conservative since it
means that the theoretical approach is valid only for slow
varying fault (even if the results will show the efficiency of
the approach when f varies).

By incorporating f(k) as a state variable, the extended
faulty driver model is then given by:

[
xd(k + 1)
f(k + 1)

]
=

[
A0 0
0 1

]
·
[
xd(k)
f(k)

]
+

[
B0

0

]
· ud(k)

+

[
1
0

]
· d̄(k)

δf =
[
C0(vx) 1

]
·
[
xd(k)
f(k)

]
+D0(vx) · ud(k)

(5)



where the disturbance input d̄(k) ∈ R represents high-
frequency uncertainties to account for unmodeled dynam-
ics neglected in the simplified nominal DM (2).

The above driver error f(k) can then be estimated with
the aid of an LPV PI observer of the form:

[
x̂d(k + 1)

f̂(k + 1)

]
=

[
A0 0
0 1

]
·
[
x̂d(k)

f̂(k)

]
+

[
B0

0

]
· ud(k)

−L(vx) · (δf − δ̂f )

δ̂f =
[
C0(vx) 1

]
·
[
x̂d(k)

f̂(k)

]
+D0(vx) · ud(k)

(6)

According to (6) and with the interconnection as shown
in Fig. 3, where WD is a high-pass filter approximating
the high-frequency uncertainties and WF is a low-pass
filter used to ensure the observer estimation convergence
performance at low-frequencies, the extended observer
error dynamics are given by:{

xO(k + 1) = A(θ) · xO(k) +B(θ) · d(k)
ze(k) = C(θ) · xO(k)

(7)

with xO ∈ R2+nD+nF the estates of the extended error
dynamics (with nD the order of the low-pass filter WD

and nF the order of the high-pass filter WF ), ze ∈ R the
estimation error for the additive fault f and θ = vx ∈ R
the vector of LPV scheduling parameters.

Fig. 3. PI Observer Error Dynamics Interconnection with
Filters WD and WF

The objective for observer gain synthesis is then to mini-
mize the induced L2 norm of the LPV PI observer estima-
tion error from disturbance d to observer estimation error
ze.

∥ze∥2 ≤ γ∞∥d∥2 (8)

The synthesis of the LPV / H∞ observer gain consists
in applying the Bounded Real Lemma (BRL) to the
extended observer error dynamics (7). When considering
a Parameter Dependent Lyapunov Matrix, such a solution
is defined by an infinite set of Linear Matrix Inequalities
(due to the infinite number of parameter values). To reduce
it to a finite dimensional problem, the referred-to-as grid
based approach is here used. It is well known for the case
of continuous-time systems Wu (1995) by incorporating
the parameter derivatives into the LMI formulation. In
this work, considering discrete-time PDLM, it is used a
discrete version of the parameter derivatives approach by
considering increments on the parameter variations. A
similar approach can be found in Na and Ke-You (2007).

The existence of the observer gain L(θ) is given in the
following theorem.

Theorem 1. Given the discrete-time observer error ex-
tended dynamics (7), gridded at N grid points for M
varying parameters, the parameter dependent observer
gain L(θ) exists if there exists a PDLMX(θ) ∈ R2+nF+nD ,
X(θ) = X(θ)T > 0 such that the following LMI optimiza-
tion problem is feasible:

minλ s.t.

X(θi) > 0, X(θji ) > 0 (9)

NT
Pi

(
ATi X(θji )Ai −X(θi) ATi X(θji )Bi CTi

∗ BTi X(θji )Bi − λI 0
∗ ∗ −I

)
NPi ≤ 0

(10)

∀(i = 1, 2, ..., N ; j = 1, 2, ..., 2M ) combinations

with

NPi = null

([[
[C0i 1 ] 0 0

0 0 0
0 0 0

]
, 0, 0

])
(11)

where the sub index i indicates that the element has been
frozen at the i grid point of the LPV system, and for each
frozen grid point i, then the upper index j corresponds to
a vertex of the bounding box for θi(k+1). Then, the upper
bound of the induced L2 norm of the LPV system is given
by γ∞ =

√
λ.

Sketch-of-Proof : This theorem is the dual version of the
more standard control problem solution, presented later in
Theorem 2. ■

If there exists a feasible PDLM X(θ), the parameter
dependent observer gain L(θ) ∈ R2 can then be computed
over the BRL LMI applied to the extended error dynamics
(7). This two steps approach is identical as introduced in
Gahinet and Apkarian (1994), with the difference that the
LMIs are applied here at each frozen grid point.

For the driver error detection PI Observer, the shaping
filters have been considered of order nD = 2 and nF = 6.
The chosen PDLM is as:

X(vx) = X0 +
1

vx
X1 +

1

vx2
X2 (12)

with considered grid points:

vxi = [25, 27.5, 30, 32.5, 35, 37.5, 40] (13)

and maximum parameter variation rate Ω = 3.

4. INTEGRATED DRIVER-VEHICLE CONTROL
ORIENTED MODEL

To tackle the design of the ADAS controller, the control-
oriented model cannot be the lateral dynamics of the
vehicle alone, as the steering applied by the driver is of
critical importance to the stability of the overall system.
So the driver must be taken into account.

To incorporate the driver in the control loop, the nominal
DM (2) is considered. As in Medero et al. (2021), for
control design, the DM is modified by considering the
relationship:

kpath =
ψ̇ref
vx

(14)

This results in the inputs to the DM modified as:

ud =
[
ye ψ̇ref

]T
, (15)

and in the feedforward gain given as Kv/vx.

On the other hand, for modelling the lateral dynamics
of the vehicle it is used the well-known bicycle model
with steering angle and generated yaw moment as control
inputs.



[
ÿ

ψ̈

]
=

 −
Cαf + Cαr

mvx
−vx −

Cαf lf − Cαrlr

mvx

−
Cαf lf − Cαrlr

Izvx
−
Cαf l

2
f

+ Cαrl
2
r

Izvx

[ ẏ
ψ̇

]
+

[
Cαf

m
0

Cαf lf

Iz

1

Iz

][
δ

Mz

] (16)

The generated yaw moment Mz is produced by means of
differential braking, with braking torques Tbrl and Tbrr
for the left and right rear wheels respectively, computed
according to the following relations:

Tbrl =

{
R ·Mz

tf
, if Mz ≥ 0

0, otherwise
, Tbrr =

{−R ·Mz

tf
, if Mz < 0

0, otherwise

(17)

R is the radius of the wheel and tf is the distance
from the wheel to the center-line of the car. Finally, the
interconnection of the driver-vehicle open-loop system can
be seen in Fig. 4

Fig. 4. Integrated Driver-Vehicle Control Model

5. ROBUST LPV ADAS STRATEGY

5.1 Integrated LPV ADAS Strategy

The proposed strategy for the ADAS system is presented
in Fig. 5. In the first place, the human driver is steering
the vehicle, whose real dynamics and driving ability are
unknown. From the PI Observer presented in Sect. 3, we
can estimate how much the real driver is moving away from
the virtual nominal driver steering actions through the

estimated f̂(k). This estimation is used as input of both
scheduling functions, ρ1 and ρ2, modifying the behaviour
of the ADAS controller. As detailed below, ρ1 affects
the magnitude of the steering command δk and ρ2 the
magnitude of the differential yaw moment command Mz.

The LPV ADAS controller K(vx, ρ1, ρ2) acts in parallel to
the human driver. The objective of the scheduling signals
ρ1, ρ2 are to penalize the ADAS controller commands in
nominal situations while allowing greater control authority
in the case of poor driver performance.

Notice the presence in the scheme of external signals ye,
kpath and ψ̇ref . In the proposed ADAS strategy, these
signals are supposed to be generated by some planner at
the high-level guidance stage, which is outside the scope
of this paper.

5.2 Fault Dependent Scheduling Functions

As in Medero et al. (2021), the estimation fault is not
directly used, but the relative fault instead:

f̄(k) =
f̂(k)

f0
, (18)

Fig. 5. Combined Driver Error Detection / ADAS Con-
troller Scheme
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Fig. 6. Driver Error Based Scheduling Functions

where f0 is a threshold value defining the maximum
additive fault estimation not considered as an actual fault.

The scheduling functions ρi(f̄(k)), i = 1, 2, shapes are
given in 6. These shapes have been selected so that for low
/ medium levels of |f̄(k)|, the function ρ2 will drop to zero.
Meanwhile the function ρ1 will drop only when very large
values of driver error are being estimated, corresponding
to more dangerous situations. The effect of this choice is
that the use of yaw moment command Mz would be given
priority over the steering command δk, which is reserved
for critical scenarios only. Note that it is desired not to
interfere with the driver steering unless it is ultimately
required.

5.3 LPV / H∞ ADAS Controller

The control problem is here formulated as an LPV / H∞
problem where the objective is to minimize the induced
L2 norm of the LPV closed-loop from exogenous inputs w
to exogenous outputs z:

∥z∥2 ≤ γ∞∥w∥2 (19)

More specifically, the general plant P for the induced
L2 norm problem including the State-Feedback ADAS
controller is given in Fig. 7.

Note that performance weights are included to tackle the
different objectives. The weightWe is a first-order transfer
function used for regulation purposes, with the yaw rate
error eψ̇ as input. To shape the response of the control
actions, each of the control inputs is weighted by a LPV
bandpass filter Wui(ρi), i = 1, 2:

Wui(ρi) = ρiWui (20)



Fig. 7. LPV / H∞ Generalized Plant P for the State-
Feedback Problem

with Wui
as in Doumiati et al. (2013). The objectives of

this filter is to constrain the controller actuator i to act
in a narrow frequency range. Concerning the additional
steering command δk, the weight Wδ is constrained to the
frequencies fa = 1 and fb = 10 Hz. In this range, the
additional steering can affect the dynamics of the vehicle
without being felt invasive to the driver, who is mainly
sensitive to steady-state frequencies (≤ 1Hz) and high
frequencies (≥ 10Hz) affecting the steering wheel. Also,
in the spirit of reduced interference, the maximum gain of
the filter has been selected to bound the additive steering
command δk to the range [-2,2] degrees. Meanwhile, the
weight WMz is bounded by the frequencies fa = 1 and
fb = 50 Hz, where fb is the bandwidth of the brakes and
fa, as before, has been selected to avoid constant control
actions that would feel intrusive to the driver.

Notice that control performance weights change according
to the scheduling signals ρi. Therefore, when the schedul-
ing functions are at their maximum value they penalize the
corresponding control action, meanwhile when they are at
the lowest values, the corresponding control command is
given control authority. This achieves the interconnection
between driver error estimation and controller activation
/ deactivation in an LPV manner.

5.4 LPV / H∞ State-Feedback Synthesis

From the discretized nominal DM/lateral dynamics model
with performance weights, Fig. 7, define the open-loop
generalized plant P as:{
xP (k + 1) = A(θ) · xP (k) +Bu(θ) · u(k) +Bw(θ) · w(k)
z(k) = C(θ) · xP (k) +Du(θ) · u(k) +Dw(θ) · w(k)

(21)
where xP ∈ R8 are the states of P , u ∈ R2 are the control
inputs, w ∈ R2 are the exogenous inputs and z ∈ R3 are
the exogenous outputs.

The synthesis of the LPV / H∞ State-Feedback controller
consists in applying the Bounded Real Lemma (BRL) over
(21). In order to reduce such a problem to a finite dimen-
sion the grid based approach is used. Considering a PDLM
X(θ(k)), with the vectors of varying parameters defined
as θ(k) = [vx(k), ρ1(k), ρ2(k)] ∈ R3. The existence of

the Parameter Dependent LPV State-Feedback controller
K(θ) is given in the following theorem.

Theorem 2. Given a discrete-time open-loop LPV System
(21), gridded at N grid points for M varying parameters,
the State-Feedback controller K(θ) exists if there exists
a PDLM X(θ) ∈ R8, X(θ) = X(θ)T > 0 such that the
following LMI optimization problem is feasible:

minλ s.t.

X(θi) > 0, X(θji ) > 0 (22)

NT
Wi

(
AiX(θji )A

T
i −X(θi) AiX(θji )Ci Bwi
∗ CiX(θji )Ci − λI Dwi
∗ ∗ −I

)
NWi ≤ 0

(23)

∀(i = 1, 2, ..., N ; j = 1, 2, ..., 2M ) combinations

with
NWi = null

(
[BTui, D

T
ui, 0]

)
(24)

where the sub index i indicates that the element has been
frozen at the i grid point of the LPV system, and for each
frozen grid point i, then the upper index j corresponds to
a vertex of the bounding box for θi(k+1). Then, the upper
bound of the induced L2 norm of the LPV system is given
by γ∞ =

√
λ.

Sketch-of-Proof : Theorem 2 is based on standard results
for the discrete-time H∞ control synthesis based on LMIs,
as presented by Gahinet and Apkarian (1994). It is here
extended to the LPV PDLM X(θ(k)) case and applied to
the State-Feedback problem.

Note that, in the BRL LMI of the Parameter Dependent
Lyapunov function approach for discrete-time systems,
both X(θ(k)) and X(θ(k + 1)) do appear. If a grid-
based approach is considered, then for a frozen value θi
of the parameter grid, the PDLM can be evaluated as
X(θi). Then, if the maximum variation rate Ω of the
varying parameter is known, the varying parameter can
be bounded as follows:

θi(k + 1) ∈ [θi − Ts · Ω, θi + Ts · Ω], (25)

The PDLM X(θ(k + 1)) evaluated at each vertex due to

parameter bounding is here written as X(θji ).

Following this approach, the BRL applied to closed-loop
interconnection does not lead to an LMI due to multiplica-
tion of X(θ) and K(θ). However, applying the Projection
Lemma the controller block can be eliminated. Followed
by a Schur Lemma over −X(θji )

−1, the LMI conditions
(22)-(23) are recovered. ■

If there exists a feasible PDLM X(θ), the parameter
dependent state-feedback controller u(k) = K(θ) · xP (k)
can then be computed using the BRL LMI over the closed-
loop interconnection of (21).

The considered PDLM X(θ(k)) for the ADAS controller
problem is chosen as:

X(θ(k)) = X0 + vxX1 +
1

vx
X2 + ρ1X3 + ρ2X4 (26)

With considered grid points for each varying parameter:

vxi = [25, 27.5, 30, 32.5, 35, 37.5, 40] (27)

ρ1i = [1, 10, 100] (28)



ρ2i = [1, 10, 100] (29)

And the vector of maximum variation rates of the param-
eters as Ω = [3, 600, 600].

6. RESULTS

To test the performance of the proposed lateral ADAS
control some simulations have been performed. The con-
sidered vehicle is a full car model of a Renault Megane
presented in Fergani et al. (2016). The parameters of the
nominal DM, used both for controller synthesis and the
driver-error estimator PI Observer, can be found in Tab.
2. Two simulation scenarios are tested:

• In the first scenario the driver must perform a DLC
emergency maneuver without ADAS assistance.

• In the second scenario the same driver must perform
the same maneuver, this time with ADAS assistance.

For both scenarios, ten randomly generated drivers profiles
have been considered. To simulate a real driver, the
parameters of these randomized DM are values close to
a real human. The range in which the randomized faulty
parameters can lie are given in Tab. 2. The profile of the
longitudinal speed vx the vehicle experience is shown in
Fig. 8.

Table 2. DM Parameters

Parameter Nominal Faulty Range

TL 0.3 [0.2, 0.3]

TN 0.1 [0.14, 0.25]

τ 0.1 [0.15, 0.22]

Kv 1.4 [1.1, 1.5]

Kff 0.85 [0.75, 0.85]
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Fig. 8. Longitudinal Speed Profile of the Vehicle During
Simulations

The simulation results for both scenarios are shown in
Fig. 9. In this figure it can be seen at the top, data from
the scenario without assistance, with the vehicle trajectory
at the top-left and the vehicle lateral acceleration at the
top-right. At the bottom, data for the case when ADAS
assistance is active are shown, the vehicle trajectory at
the bottom-left and the vehicle lateral acceleration at the
top-right.

From the data it can be seen that in the case without
ADAS, the performances of the generated drivers are very
different. Some have very poor performances, which in a
real scenario would lead to an accident if such maneuver
is carried, while others can accomplish the DLC in a safer
manner, although some oscillations are still present in their
trajectory. In the scenario where the ADAS controller
is used, it can be seen that the performances are quite
homogeneous in between all ten drivers, both in terms

of the vehicle trajectory and lateral acceleration. When
the proposed ADAS is used, the trajectories during the
DLC can be seen to be smoother, and once finished
the DLC, the oscillations in the trajectories are greatly
reduced. Moreover, in the scenario with ADAS, the lateral
acceleration the vehicle experiences are less than half the
ones of the case without ADAS. This is significant as high
values of lateral acceleration at high-speeds can cause the
vehicle to oversteer.

0 100 200 300

0

2

4

0 100 200 300

-10

0

10

0 100 200 300

0

2

4

0 100 200 300

-10

0

10

Fig. 9. Driving Comparison with and w/o ADAS During
DLC Maneuver

Information regarding the controller scheduling and con-
troller commands for the second scenario can be found
in Fig. 10 and Fig. 11. For the sake of clarity of presen-
tation, each figure represents data from a single driver,
Fig. 10 and Fig. 11 corresponding to the worst and best
performers respectively out of the ten generated drivers.
In both figures it is shown in top the scheduling signals
used to modulate the magnitude of the controller actions,
it is shown in the top-left ρ1 (affects the additive steering
command) and at the top-right ρ2 (affects the differential
torque Mz command). On the bottom, it is shown the
control inputs themselves, on the bottom-left the steering
command δk and on the bottom-right the braking torque
command for the left (Tbrl) and right (Tbrr) rear wheels.

For the worst case driver, Fig 10, it can be seen that
an important driver error is being estimated, as both
scheduling functions reach low values. Therefore, the LPV
reconfiguration needs to activate the additive steering
control input to assist the driver successfully. For the best
driver in Fig. 11, however, the magnitude of driver error
estimated is less, and then the commanded braking torques
are half in magnitude than those of the previous case. It
is worth noting that in this case the steering command is
not activated, as it is desired to be only used for the most
critical scenarios.

7. CONCLUSION

In this study, a lateral control strategy for ADAS has been
presented. The main contributions of the strategy are the
detection of drivers performances with the use of an LPV
PI Observer and the employment of these estimations of
driver’s performances to schedule the LPV lateral vehicle



controller. As seen in the simulation results, the proposed
LPV driver error estimation / ADAS controller strategy
achieves the paper’s objective: to minimize the ADAS in-
trusiveness in the driver experience without compromising
on safety when required, all while being robust to a broad
range of driver behaviours and changes in vehicle velocity.

Future studies will concern testing the strategy in more
realistic simulation scenarios and possibly in simulators
with real human drivers. Additionally it will be consid-
ered the usage of more sophisticated scheduling strategies
for the LPV lateral vehicle controller based on learning
approaches rather than the hyperbolic functions used in
this work.
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