
BGNN: Detection of BGP Anomalies Using Graph
Neural Networks

Kevin Hoarau
Université de La Réunion, LIM, France

kevin.hoarau@univ-reunion.fr

Pierre Ugo Tournoux
Université de La Réunion, LIM, France

pierre.tournoux@univ-reunion.fr

Tahiry Razafindralambo
Université de La Réunion, LIM, France
tahiry.razafindralambo@univ-reunion.fr

Abstract—The Border Gateway Protocol (BGP) builds the
communication routes at the Internet scale. Anomalies in BGP
have several causes and can impact the Internet stability. BGP
data traces are complex and require specific methods such as
machine learning to be processed for anomaly detection. Two
types of features are used to study large scale events with machine
learning models: graph features or statistical features. Despite the
recent interest for the concept of Graph Neural Network (GNN),
there is no proposal that adapts GNN for BGP anomaly detection
directly from the BGP graph. In this paper, we propose BGNN,
a GNN model which detects if a node is involved in a large scale
BGP anomaly. Our results show a maximum accuracy of 96%
and the model can detect an anomaly after 6 minutes with 90%
accuracy. These results are promising and suggest GNN for BGP
anomaly detection are worth investigating.

Index Terms—BGP Anomaly, Graph Neural Networks, GNN

information in comparison to the original graph representation
which motivates the development of graph based end-to-end
models for the detection of BGP anomalies. By leveraging
all the information embedded in a graph representation of the
data, this type of model could further improve the performance
of BGP anomaly detection tools. Goyal et al. [12], introduce
a graph embedding algorithm designed to generate stable
embeddings of dynamic graphs. They showed that changes in
the embedding are correlated with anomalies in the underlying
context.

The recent breakthroughs in the field of Graph Neural
Network (GNN) [17] have enabled the emergence of new
neural networks models that can consume graph data as input.
In this work, we propose a GNN based model for the detection
of BGP anomalies. This model takes as input a sequence of
BGP graph and predicts whether or not this sequence contains
an anomaly. Therefore, this approach avoids the extraction of
ad-hoc features and can leverage the graph representation of
the BGP network which is most accurate and embed more
information. To the best of our knowledge, this is the first work
to propose GNN based model for BGP anomaly detection.

In this paper we show that, i) a GNN based model can effec-
tively be used to detect BGP anomaly as our model achieved
an accuracy score of 96%. ii) The model can generalize over
a long period of time as our dataset contains events ranging
from 2004 to 2021. iii) The approach can be used to detect
anomalies in real-time with a response of 6 minutes for a 90%
accuracy. We hope that this work will motivate the use of GNN
based model for anomaly detection, and more specifically
for online BGP anomaly detection. Moreover, we expect that
GNN based model will also be used for small scale anomaly
detection such as path hijacking or origin hijacking.

The remaining of this paper is organized as follows. In
section II we provide a background on BGP, BGP anomalies
and Graph Neural Networks. In section III we describe the
dataset used in the paper. Section IV describes our GNN
model architecture and the performance metrics used for the
evaluation while section V is focused on the evaluation of the
performance of our model and its analysis. We conclude the
paper in section VI.

II. BACKGROUND AND RELATED WORK

The Internet consists of Autonomous Systems (ASs) in-
terconnected by the Border Gateway Protocol (BGP). Most

I. INTRODUCTION

The Border Gateway Protocol (BGP) is a routing protocol 
that builds the backbone of the Internet. A failure of the BGP 
protocol could impact any service relying on the Internet. 
These BGP anomalies happen for several reasons such as 
hardware failures, malicious attacks or mis-configurations [1]. 
Detection of BGP anomalies are studied using data collected 
from BGP projects as described in [20], [23]. This work 
studies BGP anomalies classified a s l arge s cale d ue t o their 
major impact on both BGP protocol behavior and Internet 
services. Large scale BGP anomalies [4] come mostly from 
configuration e rrors [19], malicious worm spread [26], power 
outage [7] or hardware failure [5].

Collected BGP data traces are complex, massive and require 
specific m ethods s uch a s m achine l earning t o b e processed 
for anomaly detection. BGP data traces are analyzed and 
transformed into statistical features (e.g. counting the number 
of announcements, prefixes) or into graph features, i.e. metrics 
derived from the BGP graph. Machine learning models for 
BGP anomaly detection can be fed using graph features or 
statistical features extracted from BGP data traces.

The literature shows that both graph and statistical features 
provide excellent and similar performances on large scale 
BGP anomalies [15]. While graph features offer a performance 
increase compared to statistical features on small scale anoma-
lies [15], graph features extraction leads to an important loss of

This project has received funding from the Région Réunion and the 
European Union - European Regional Development Fund (ERDF) as part 
of the INTERREG V - 2014-2020 program.



of the ASes are Internet Service Providers (identified by an
ASN - AS Number) that own IP prefixes [10]. ISPs operate
BGP routers that maintain TCP connections with a set of
BGP neighbors to exchange routing information with other
ASes. Traffic is sent through routes learned by BGP. BGP
incrementally updates its set of routes. A BGP route to an IP
prefix is identified by the set of ASes (namely the AS-PATH)
that participate in the traffic forwarding which avoids routing
loops [28].

A. BGP Anomalies

BGP anomalies are the result of failures or malfunctions of
the routing protocol, protocol vulnerabilities [2], configuration
errors [19], external events such as hardware failures [5] or
worm spreads [26]. Some of these anomalies may lead to
invalid network topologies [10] resulting in the unreachability
of some prefixes. They can also cause instability or overload
on the BGP routers and impact the data plan performances.

B. BGP anomaly detection using Machine Learning

The collection of BGP routing information is the corner-
stone for any analysis of the BGP protocol. RouteViews
[23] and RIPE RIS [20] projects have been collecting and
archiving BGP data from different collectors distributed across
the world since 2000. Each of these collectors receives and
saves BGP updates from all its neighboring routers and updates
its Routing Information Base (RIB) accordingly.

1) Statistical features: The ML models for BGP anomaly
detection do not consume raw BGP data from RouteViews and
RIPE RIS. They are transformed into statistical features which
can be classified as i) volume features, such as the number
of announcements and withdrawals, which aim to capture
changes in the stability of BGP; ii) AS-PATH features, such
as average AS-PATH length and the maximum edit distance,
which aim to capture topological changes.

Various ML algorithms have been used to process these
features e.g. SVM [8], [6], Naive Bayes classifiers [8], [6],
decision trees [6], [18] and more recently deep learning [8],
[3], [18], [4]. These works achieved good performance on
the detection of large-scale anomalies such as worm spreads,
massive route leaks or large-scale power outages.

2) Graph features: More recently, new works leveraged
the underlying graph structure of BGP instead of statistical
features [25], [12]. These dynamic graphs reflect the evolution
of the BGP topology where ASes are the graph’s nodes and
routes are the graph’s edges. In [25], the authors fed their
ML model with features derived from graph theory such as
centrality metrics.

In [15], the authors compared the suitability of graph and
statistical features on large scale events, small scale origin and
path hijacking. They found out that both graph and statistical
features achieve satisfying and similar performances on large
scale anomalies. However, while none of these provide satis-
fying performance on small scale anomalies, SVM on graph
features improved the accuracy by 15%.

C. Graph Neural Networks

Conventional machine learning algorithms and neural net-
works are designed for tabular data and consequently cannot
leverage all the information embedded in a graph representa-
tion of the data. Recently, the field of Graph Neural Networks
(GNN) has emerged to overcome this issue by proposing
neural networks designed to take graph representation as input.
Various GNN architectures have been proposed [27] and most
of them have been unified under the message passing scheme
[11]. In this scheme, each node is given a value named the
embedding of the node. In a GNN block, the embedding of
each node is updated using the aggregation of its neighbors’
embeddings. By applying multiple layers of such operation,
information can be propagated over the graph’s edges by one
hop per layer. Moreover, in the same layer, multiple GNN
blocks can be used to produce a multidimensional embedding
value. Finally, the last GNN block gives the embedding value
for each node of the graph.

In this work, we propose a GNN based model that takes as
input a sequence of BGP graphs and predicts if this sequence
contains an anomaly. A major advantage of this approach over
the literature is that it avoids the extraction of ad-hoc features.
It can also leverage the graph representation of the BGP
network which is most accurate and embed more information
than ad-hoc features. To the best of our knowledge, this paper
is the first to propose a GNN based model for the detection
of BGP anomaly.

III. DATASET

Our dataset includes 14 samples with 7 positive and 7
negative samples. The positive samples are extracted during
the occurrences of a large scale anomaly. We arbitrarily
collected the negative samples 24h before the positive sample.
There is no known anomaly during the negative samples. Each
of these samples is extracted from 1 hour of BGP data where
the BGP graph is extracted every two minutes. It results that
for each sample in our dataset we have a sequence of BGP
graphs G = G1, ..., G30. The remaining of this section details
the events included in our dataset, the data collection process
and the BGP graph extraction.

A. BGP anomaly events

The anomaly events that we included in our dataset range
from 2004 to 2021. First, we included 4 older events (TTNet,
IndoSat, TM and AWS) for their use in previous research [25].
Second, we choose to add more recent events that reflect the
modern BGP topology. The table I summaries all the events
included in our dataset. For each events, we also identify the
AS which is the origin of the anomaly.

B. Data collection

For both data collection and graph extraction we use
BML [14]. For all the positive samples, we collect data half
an hour before and after the estimated start of the event. For
the negative samples, we collect data one day before each
event for one hour. Therefore, for each sample, we use 1 hour



of BGP data. The data are collected from the rrc04 and
rrc05 collectors which were chosen for their intensive use
in previous research [3], [4], [25]. BGP being an incremental
protocol, the BGP updates received during the hour of data
collection contain only a minor fraction of the Internet’s
routes. This leads us to collect data during a priming period
before the sample time window. Every 8 hours, Ripe RIS
collectors include RIB dumps that contain all Internet prefixes
reachable through the peers of the collectors. So we used a
priming period of 10 hours to ensure that at least one RIB
dump is collected which allows us to have a complete view
of the routes available on a collector. The update messages
received between the RIB dump and the observation window
are used to update the routes. Thankfully, all this work is
automatically carried out by BML [14].

C. Graph extraction

We denote by G = (V,E) a BGP graph where V is a
set of nodes corresponding to the BGP ASes and E is a set
of undirected edges representing the relationship between a
pair of ASes. Given a set of BGP routes, the nodes of the
graph correspond to all the ASes observed in the routes. There
exists an edge between two ASes (nodes) if the two ASes
are adjacent in at least one of the BGP routes. Each node is
weighted by the count of prefixes originated by the AS. For
all the events in our dataset, we use BML to extract a snapshot
of the BGP routes every 2 minutes and generate a BGP graph.
The one-hour samples result in sequences of 30 graphs.

Anomaly Date AS Number
TTNet Dec. 24, 2004 (9:20 UTC) 9121
IndoSat April 2, 2014 (18:25 UTC) 4761

TM June 12, 2015 (8:43 UTC) 4788
AWS April 22, 2016 (17:10 UTC) 200759

Google August 25, 2017 (3:22 UTC) 15169
ChinaTelecom June 6, 2019 (9:57 UTC) 21217

India April 16, 2021 (13:48 UTC) 55410

TABLE I
ANOMALY EVENTS INCLUDED IN THE DATASET

IV. GNN MODEL

The input of our model is a sequence of BGP graphs G =
G1, ..., G30 from which it aims to output Y = 1 if an anomaly
is detected and Y = 0 otherwise.

The architecture of our model is depicted in the figure 1.
First, each graph Gi is given to a network composed of k GNN
layers where each layer contains 8 GNN blocks. The impact
of the hyperparameter k will be discussed in section V. The
GNN block is a Graph Convolutional Networks [17]. For each
graph Gi, an embedding of dimension 1 × 8 is produced for
each node (8 being the number of GNN blocks). However, we
only keep the embedding of the node that is the source of the
anomaly (see table I). From the entire graph sequence, this
extraction results in a node embedding matrix of dimension
30 × 8. This matrix is then flattened to obtain a vector of

G1

G2

G30

...

GNN

GNN

GNN

Flattening MLP Y

8

30

1

240...

Fig. 1. Architecture of our model

dimension 240. Finally, a multilayer perceptron (MLP) is used
to produce the output Y based on the 240× 1 vector.

For all our experiments, the model has been trained during
50 epochs with a learning rate of 0.001 using the Adam
optimizer [16]. The default initialization of the GNN layers
has been changed to Kaiming normal initialization [13] as we
observed better convergence using this technique.

A. Evaluation metrics

To evaluate the performance of our model we rely on the
following metrics:

Accuracy: The accuracy is used to evaluate the overall
performance of the classifier for both positive and negative
samples.

Accuracy =
TP + TN

TP + TN + FP + FN

Precision: The precision rates the number of true posi-
tives among all the samples classified as positive.

Precision =
TP

TP + FP

Recall: The recall rates the number of samples classified
as positive among all the positive samples.

Recall =
TP

TP + FN

F1 score: The F1 score is the harmonic mean of the
precision and recall.

F1 score = 2 ∗ Precision ∗Recall

Precision+Recall

where TP (True Positive), TN (True Negative), FP (False
Positive) and FN (False Negative) come from the confusion
matrix [24].

As the output of a neural network is not a binary value but
a value within the range [0, 1] a threshold must be applied
to obtain the final class. However, this threshold impacts
the metrics mentioned above. For example, a low threshold
will classify most of the samples as positive resulting in a
high recall value but low precision. The area under the curve
(AUC) which is a metric derived from the receiver operating
characteristic (ROC) curve evaluates the performance of a



model at various threshold settings. The AUC represents the
measure of separability of the output classes where a value of
1 indicates a perfect separability and a value of 0.5 or below
indicates no separability.

V. RESULTS

Our experiments are implemented using the PyTorch Ge-
ometric [9] and scikit-learn library. The implementations are
available online1. We evaluate the performance of our model
using a leave-one-out cross-validation scheme (LOOCV)
where each event is iteratively used as a test and the others
are used to train the model. When an event is used for testing
both the positive and the negative sample associated to this
event is used as the test set. The model then produces two
outputs. When the 7 events have been used for testing, an
output vector of dimension 14 is constructed by concatenating
all the outputs. Finally, the output vector is used to computed
the accuracy, f1 score and AUC metrics. The convergence of a
neural network can vary depending on the initialization of its
internal weights, it is important to evaluate the stability of the
model over multiple runs. We run the model multiple times
(at least 30 times with different seeds) to compute and reduce
the standard deviation of the measured performance metrics.

The table II shows the performance of the model for several
numbers of GNN layers varying from 1 to 16. We can see that
the best performance is achieved using 4 GNN layers with an
accuracy of 0.96, an f1 score of 0.96 and an AUC of 0.99.
Due to the difference in the dataset/events used we do not
thoroughly compare our results with the ones in the literature.
However, our model based on GNN outperforms classical ML
models using graph features and statistical features on large
scale events. Indeed, the performance obtained in the literature
is at most 0.95 accuracy and 0.95 f1 score [15], [25].

It is important to recall that the number of GNN layers
corresponds to the number of hops during the message passing
process. On the one hand, we can assume that with less
than 4 hops, not enough data is being aggregated from the
neighborhood of a node. On the other hand, values above 4
add noises to the process. With our best model, we can see
that the standard deviation of the metrics is lower than 0.06
after multiple runs which shows the stability of the model.

GNN
layers

Accuracy F1 score AUC

Mean Std
dev Mean Std

dev Mean Std
dev

1 0.89 0.05 0.88 0.05 0.86 0.03
2 0.90 0.03 0.89 0.04 0.87 0.05
4 0.96 0.05 0.96 0.05 0.99 0.03
8 0.91 0.08 0.91 0.05 0.91 0.08
16 0.78 0.11 0.72 0.20 0.79 0.09

TABLE II
PERFORMANCE METRICS ON THE TEST SETS

1https://github.com/KevinHoarau/BGNN

A. GNN embedding visualization

Once the model is trained, its GNN portion can be used to
produce embeddings of an input graph’s nodes. For each node,
this embedding is a vector in an 8-dimensional space. In this
section, we want to investigate how the successive embeddings
of a node are evolving with and without an anomaly on this
node. A common approach for analyzing embeddings is to
use a dimensionality reduction technique that projects vectors
from a high-dimension space to a lower dimension space. The
principal component analysis (PCA) is widely used to this end
by keeping only the first n principal components (PC) from the
data. Here, we keep only the first PC to obtain a 1d projection
of the embeddings. The results is a time-series representing
the evolution of a node’s embedding.

The figure 2 shows the 1d projection of the events where
blue lines correspond to the 30 embeddings of the node in the
negative sample (one day before the anomaly) and the orange
lines to the 30 embeddings of the node in the positive sample
(during the anomaly). For all the events, we observed that the
embeddings drastically change when an anomaly occurs on a
node. We can also see that before the anomaly the embeddings
of the positive sample are close to the embeddings of the
negative sample. Thus, we assume that the embeddings do not
vary significantly in a 24 hours interval. In conclusion, these
results tend to show the stability of a node embedding under
normal circumstance and its perturbation during an anomaly.
This is a desired behavior as this signal can be leveraged by
the subsequent classifier.

B. Separability exploration

The classification process is supported by the MLP portion
of the model. As an input, this classifier receives a vector of
dimension 240 corresponding to the flattening of the sequence
of a node’s embeddings. For each sample in the dataset, this
vector in a 240-dimensional space is created by the GNN
portion of the model. Here, we want to analyze the separation
between the vectors corresponding to the negative samples and
the vectors corresponding to the positive samples in this 240-
dimensional space. As in the previous section, we used a PCA
to project these high-dimensional vectors in a 2d space by
keeping only the first 2 principal components (PC).

The figure 3 shows the 2d projection of the embedding
vectors where blue points correspond to negative samples and
orange points to positive samples. These vectors are obtained
using the model trained using all the events except India which
is used as the test set. We observed that it is possible to draw
a line that separates almost all the negative samples from the
positive ones. Thus, the two classes seem to be separable even
in this 2d projection.

To have an intuition about the shape of the decision bound-
ary captured by our classifier, we want to select a grid of
points in the 2d space and apply our classifier to these points
to know its output. By selecting a high number of points
we could establish a map of the decision boundary of our
model. However, our classifier cannot directly take as input
a point from this 2d space so we need to project this point



0 10 20 30 40 50 60

1
s
t 

P
C

TTNet

0 10 20 30 40 50 60

IndoSat

0 10 20 30 40 50 60

1
s
t 

P
C

TM

0 10 20 30 40 50 60

AWS

0 10 20 30 40 50 60

1
s
t 

P
C

Google

0 10 20 30 40 50 60

Time [Minutes]

ChinaTelecom

0 10 20 30 40 50 60

Time [Minutes]

1
s
t 

P
C

India

Label

0

1

Fig. 2. AS embeddings with and without anomaly

back into the original 240-dimensional space. This approach
for visualizing decision boundaries of high-dimensional space
is a separate topic of research [21] and is out of the scope of
this work. However, we can achieve a rough and yet imprecise
mapping of the decision boundary of our model by leveraging
the inverse operation of the PCA to project a 2d point back into
the original space. This approach has been used to colorize the
background of the figure 3. The white line in this background
is the decision boundary between the two classes learned by
our classifier. In this example, we can see that the classifier
correctly classifies 13 samples over 14.

C. Detection time

One critical features of an anomaly detection system is
its response time especially if it is to run online. However,
few work in the literature address this issue by providing
information about this characteristic of their model. We want
to fill this gap and define the response time as the interval
between the known start time of an anomaly and the time this

1st PC

2
n
d
 P

C

India

Label

0

1

Fig. 3. Decision boundary of our classifier

anomaly can be detected. To evaluate the response time of our
model, we denoted as t0 the known start time of an anomaly
and we train and test the model using data collected within
the interval [t0 − 30, t0 + 2]. We gradually increase this time
window by 2 minutes. Therefore, the next run is done on the
interval [t0 − 30, t0 + 4] and the last one is [t0 − 30, t0 + 30]
which correspond to our initial model presented in the previous
sections. The figure 4 shows the result of this evaluation. We
see from these results that 4 minutes i.e. a sequence of 2 graphs
after the anomaly the detection accuracy, f1 score and AUC
values are above 0.85 these values reach 0.90 after 6 minutes
(i.e. a sequence of 3 graphs) and are around 0.96 after 18
minutes (i.e. a sequence of 9 graphs). These results are very
promising for an online BGP anomaly detection and further
investigations are left for future work.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Time [minutes]

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Va
lu

e

Metrics
Accuracy
F1 score
AUC

Fig. 4. Performance of the model depending on the time after the anomaly.

VI. CONCLUSION

Despite the sustained interest for the use of machine learn-
ing to detect BGP anomalies, the capabilities brought by Graph
Neural Network (GNN) have not been leveraged yet. Our
paper introduced BGNN which, to the best of our knowledge,
is the first proposal and evaluation of a Graph Neural net-
works for anomaly detection in BGP. BGNN consists of a
k-layer GNN from which we extract the embedding of a node
classified as normal or anomalous by a MLP.



We first evaluated the impact of the number of layers k
i.e. the number of hops for messages passing. It showed that
the accuracy increases with k. It reaches a maximum of 96%
for k = 4 and decreases for higher values. This suggest
that local interactions carries enough information to detect an
anomaly thus reducing the complexity. We then studied the
first principal component of the embedding which showed a
strong variation a few minutes around the expected start of
the anomaly. The analysis of the embedding space using a
2d projection revealed a simple decision boundary. Finally,
we evaluated how the length of the graph sequence affects
BGNN’s accuracy. We have shown that 6 minutes detection
time is enough to achieve an accuracy of 90% and 18 minutes
is enough to achieve an accuracy of 96%. Further increasing
the length if the graph sequence didn’t allow to further improve
BGNN’s accuracy.

We believe the performances achieved by such a simple
GNN model open perspectives for improvement. Depending
on the attributes embedded by each node of the graph (e.g.
number of routes forwarded, number of prefix, etc.), we may
be able to target different types of anomalies. More elaborated
GNN such as temporal TGN [22] or a combination of GNN
and LSTM might be more adapted than BGNN to integrate the
temporal component of the graph sequence. GNN might also
benefit to the context of smaller scale events where former
ML proposals haven’t been proven successful yet.

REFERENCES

[1] B. Al-Musawi, P. Branch, and G. Armitage, “BGP anomaly detection
techniques: A survey,” IEEE Communications Surveys & Tutorials,
vol. 19, no. 1, pp. 377–396, FebJan 2017. [Online]. Available:
http://dx.doi.org/10.1109/comst.2016.2622240

[2] K. Butler, T. R. Farley, P. McDaniel, and J. Rexford, “A survey of bgp
security issues and solutions,” Proceedings of the IEEE, vol. 98, no. 1,
pp. 100–122, 2009.

[3] M. Cheng, Q. Li, J. Lv, W. Liu, and J. Wang, “Multi-scale lstm model for
bgp anomaly classification,” IEEE Transactions on Services Computing,
2018.

[4] M. Cosovic, S. Obradovic, and E. Junuz, “Deep learning for detection
of bgp anomalies,” in International Work-Conference on Time Series
Analysis. Springer, 2017, pp. 95–113.

[5] J. H. Cowie, A. T. Ogielski, B. Premore, E. A. Smith, and T. Underwood,
“Impact of the 2003 blackouts on internet communications,” Preliminary
Report, Renesys Corporation (updated March 1, 2004), 2003.

[6] I. O. de Urbina Cazenave, E. Köşlük, and M. C. Ganiz, “An anomaly
detection framework for bgp,” in 2011 International Symposium on
Innovations in Intelligent Systems and Applications, June 2011, pp. 107–
111.

[7] S. Deshpande, T. Ho, M. Thottan, and B. Sikdar, “An online mecha-
nism for bgp instability detection and analysis,” IEEE Transactions on
Computers, vol. 58, no. 11, pp. 1470–1484, nov 2009.

[8] Q. Ding, Z. Li, P. Batta, and L. Trajković, “Detecting bgp anomalies
using machine learning techniques,” in 2016 IEEE International Confer-
ence on Systems, Man, and Cybernetics (SMC), Oct 2016, pp. 003 352–
003 355.

[9] M. Fey and J. E. Lenssen, “Fast graph representation learning with
PyTorch Geometric,” in ICLR Workshop on Representation Learning
on Graphs and Manifolds, 2019.

[10] L. Gao, “On inferring autonomous system relationships in the internet,”
IEEE/ACM Transactions on Networking, vol. 9, no. 6, pp. 733–745, Dec
2001.

[11] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” in Proceedings of the
34th International Conference on Machine Learning-Volume 70. JMLR.
org, 2017, pp. 1263–1272.

[12] P. Goyal, N. Kamra, X. He, and Y. Liu, “Dyngem: Deep embedding
method for dynamic graphs,” arXiv preprint arXiv:1805.11273, 2018.

[13] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
Proceedings of the IEEE international conference on computer vision,
2015, pp. 1026–1034.

[14] K. Hoarau, P.-U. Tournoux, and T. Razafindralambo, “BML: an efficient
and versatile tool for BGP dataset collection,” in WS22 IEEE ICC
2021 the 3rd International Workshop on Data Driven Intelligence for
Networks and Systems (WS22 ICC’21 Workshop - DDINS), Montreal,
Canada, Jun. 2021.

[15] ——, “Suitability of graph representation for bgp anomaly detection,” in
2021 IEEE 46th Conference on Local Computer Networks (LCN) (LCN
2021), Edmonton, Canada, Oct. 2021.

[16] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[17] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[18] Y. Li, H. J. Xing, Q. Hua, X. Z. Wang, P. Batta, S. Haeri, and
L. Trajković, “Classification of bgp anomalies using decision trees and
fuzzy rough sets,” in 2014 IEEE International Conference on Systems,
Man, and Cybernetics (SMC), Oct 2014, pp. 1312–1317.

[19] R. Mahajan, D. Wetherall, and T. Anderson, “Understanding bgp
misconfiguration,” ACM SIGCOMM Computer Communication Review,
vol. 32, no. 4, pp. 3–16, 2002.

[20] RIPE, “Routing information service (RIS).” [Online].
Available: https://www.ripe.net/analyse/internet-measurements/routing-
information-service-ris/routing-information-service-ris

[21] F. Rodrigues, M. Espadoto, R. Hirata, and A. C. Telea, “Constructing and
visualizing high-quality classifier decision boundary maps,” Information,
vol. 10, no. 9, p. 280, 2019.

[22] E. Rossi, B. Chamberlain, F. Frasca, D. Eynard, F. Monti, and M. Bron-
stein, “Temporal graph networks for deep learning on dynamic graphs,”
arXiv preprint arXiv:2006.10637, 2020.

[23] RouteViews, “Routeviews - university of oregon route views project.”
[Online]. Available: http://www.routeviews.org/routeviews/

[24] C. Sammut and G. I. Webb, Encyclopedia of machine learning. Springer
Science & Business Media, 2011.

[25] O. R. Sanchez, S. Ferlin, C. Pelsser, and R. Bush, “Comparing machine
learning algorithms for bgp anomaly detection using graph features,” in
Proceedings of the 3rd ACM CoNEXT Workshop on Big DAta, Machine
Learning and Artificial Intelligence for Data Communication Networks,
2019, pp. 35–41.

[26] L. Wang, X. Zhao, D. Pei, R. Bush, D. Massey, A. Mankin, S. F.
Wu, and L. Zhang, “Observation and analysis of bgp behavior under
stress,” in Proceedings of the 2nd ACM SIGCOMM Workshop on Internet
measurment, 2002, pp. 183–195.

[27] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A comprehen-
sive survey on graph neural networks,” arXiv preprint arXiv:1901.00596,
2019.

[28] S. H. Y. Rekhter, T. Li, “A border gateway protocol 4 (bgp-4),”
Network Working Group, IETF, RFC 4271, 2006. [Online]. Available:
https://tools.ietf.org/html/rfc4271




