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Abstract: Hyperspectral imaging is a major tool in modern science, which relies on a8

compromise between spatial resolution, spectral resolution, and imaging speed. Inspired by9

single-pixel imaging, we propose a versatile system that enables the fast acquisition of high-10

spectral-resolution hypercubes. Our computational hyperspectral imaging device is composed of11

a compact fiber spectrometer and a digital micromirror device (DMD). By uploading a set of12

Hadamard patterns onto the DMD, our system acquires 64 × 64 × 2048 pixel hypercubes with a13

spectral resolution of 2.3 nm in less that 2 s. We show that this time can be further reduced by14

reconstructing hypercubes from accelerated acquisitions that exploit only a few DMD patterns. In15

particular, we demonstrate that a deep expectation maximization network (EM-Net) can solve this16

inverse problem for several acceleration factors. 8-fold acceleration enables the achievement of17

reconstructions with moderate spatial degradation for low frequency images. Our system allows18

a high degree of flexibility in the choice of spatial resolution and imaging speed, which can be19

easily adapted to the target application. To foster research in this field, we have made our image20

reconstruction algorithms, acquisition software, and several raw datasets publicly available.21

1. Introduction23

Spectral imaging is a major tool of modern science, with applications in astronomy, environmental24

monitoring, food processing, agriculture, and biomedical imaging. Approaches for spectral25

imaging are usually categorized as pushbroom, filter-based, or snapshot [1, 2]. The pushbroom26

and filter-based methods are scanning techniques that require multiple measurements to acquire27

a full (𝑥, 𝑦, 𝜆) hypercube. Pushbroom methods acquire one (𝑦, 𝜆) slice at a time and require28

scanning along the 𝑥-axis [3]. Filter-based setups acquire an (𝑥, 𝑦) image for one spectral band,29

with the full hypercube obtained from a sequence of measurements by rotating a filter wheel or30

monitoring electronically tunable filters [4]. Both pushbroom and filter-based approaches suffer31

from low throughput as only a small region of the hypercube is measured at a time. Moreover,32

the spatial (e.g., for pushbroom) or spectral (e.g., for filters) resolutions are linear in proportion to33

the number of measurements, and hence they are either slow or low resolution. These limitations34

have led to snapshot methods, which we categorize into hardware and computational methods.35

Hardware snapshot methods are remapping strategies where the three-dimensional (3D)36

hypercube is mapped onto a 2D sensor. Different mapping strategies have led to variants, which37

include the use of mirror arrays, fiber bundles, and lenslet arrays (see review [5]). Hardware38

snapshot methods are widespread in astronomy and remote sensing [6] and have recently been39

introduced in biomedical imaging [7]. While the first generations of hyperspectral imagers were40

hardware-driven, the most recent snapshot imagers are computational, i.e., they rely on algorithms41

that reconstruct a hypercube from a few raw measurements. The field of computational imaging42

has been very active over the past 10 years [8]. Coded aperture snapshot spectral imagers and43

their different variants exploit a diffractive element with a programmable mask, such that each raw44

measurement gives access to an oblique projection of the hypercube [9]. Miniature ultra-spectral45
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imaging uses a liquid crystal phase retarder to multiplex the spectral domain [10]. The spectral46

DiffuserCam is a multispectral filter array where the optics are replaced by a diffuser, such that47

each pixel on the sensor can ‘see’ the whole field of view [11]. The coupling of a compressive48

spectrometer with a confocal microscope allows for high-sensitivity Raman imaging [12].49

However, snapshot imagers suffer from an inherent trade-off between the spatial and the50

spectral dimensions. Computational snapshot imagers also require reconstruction algorithms51

that may have long computation times (e.g., several tens of seconds or minutes depending on the52

dimension of the hypercube).53

Hyperspectral single-pixel imaging is a generalization of single-pixel imaging that allows54

high-spectral-resolution hypercubes to be obtained [13, 14]. From a set of spectra obtained using55

a set of spatial light patterns, the hypercube is recovered by a reconstruction algorithm [15,16].56

Compared to snapshot imagers, this approach requires more measurements; however, it leads57

to an excellent spectral resolution, as the spectral dimension is not multiplexed. Recently, fast58

single-pixel imaging has been demonstrated at several tens of frames in the visible range [17]59

and terahertz range [18]. Single-pixel imaging also benefits from deep reconstruction methods60

that enable fast reconstruction while outperforming handcrafted prior-based methods [19–21].61

However, these systems have no spectral resolution.62

Here, we propose and evaluate a fast hyperspectral imaging device, which relies on a digital63

micromirror device (DMD) and a compact spectrometer. The DMD displays a sequence of64

patterns taken from a Hadamard basis and a spectrum is acquired for each pattern. The hypercube65

is recovered from the set of raw spectra. Our system typically operates at up to 0.1 Hz for66

2,048 channels. However, accelerated acquisitions, that display a reduced number of patterns67

on the DMD, can image at up to 0.7 Hz. To the best of our knowledge, this represents an68

unprecedented speed for this spectral resolution. Following the recent trend of physics-informed69

deep learning [22], we consider an explainable reconstruction method based on deep learning.70

Our deep reconstruction allows for fast reconstructions (e.g., hundreds of milliseconds). Upon71

acceptance, our reconstruction method will be made available in the Python toolbox SPyRiT [23].72

We will also make our experimental datasets and acquisition software publicly available.73

2. Methods74

The proposed computational framework is depicted in Fig. 1. To acquire a 3D hypercube using a75

2D sensor, we acquire multiple pixels at the same time by shaping the light with a DMD. After a76

sequence of spectra has been taken by using different DMD patterns, we feed the raw spectra into77

a deep reconstruction algorithm that recovers the hypercube.78

2.1. Image formation model79

Let �̂� ∈ R2𝐾×Λ represent the raw measurements, where 2𝐾 is the number of DMD patterns
and Λ the number of spectral channels provided by the spectrometer. Let 𝑷 ∈ R2𝐾×𝑁 be
the matrix that contains the DMD patterns, where 𝑁 is the number of (spatial) pixels in each
pattern and 𝑭 ∈ R𝑁×Λ represents the 3D hypercube. We model the acquisition process as linear
measurements corrupted by Poissonian-Gaussian noise [24]

�̂� ∼ 𝑔 P(𝑷𝑭) + N (𝜇dark, 𝜎
2
dark) (1)

where P and N are the Poisson and Gaussian distributions, 𝑔 represents the system gain (in80

counts/electron), 𝜇dark is the dark current (in counts), and 𝜎dark is the dark noise (in counts).81

The light patterns are taken from a Hadamard basis and split into positive and negative parts82

to be uploaded onto the DMD [25]. In notations, we have 𝑷 =

[
𝑷+
𝑷−

]
where 𝑷+ ∈ R𝐾×𝑁

+ and83

𝑷− ∈ R𝐾×𝑁
+ are the positive and negative part of Hadamard patterns, i.e., 𝑷+ − 𝑷− = 𝑺𝑯, where84



Fig. 1. Hyperspectral single-pixel imaging principle. The hypercube 𝑭 ∈ R𝑁×Λ is sent
to a compact spectrophotometer via a digital micromirror device (DMD). A sequence of
2𝐾 light patterns 𝑷 ∈ R2𝐾×𝑁 is uploaded onto the DMD, leading to the measurement
of the 2𝐾 raw spectra �̂� ∈ R2𝐾×Λ. A deep reconstruction method is then used to
reconstruct the hypercube in the case 𝐾 < 𝑁 .

𝑯 ∈ R𝑁×𝑁 is the Walsh-Hadamard basis and 𝑺 ∈ {0, 1}𝐾×𝑁 is a subsampling matrix that retains85

some of the rows of 𝑯. In the following, we denote the retained Hadamard patterns by 𝑯↓ = 𝑺𝑯.86

We finally preprocess the raw measurements �̂� =

[
�̂�+
�̂�−

]
to compensate for splitting

𝑴 = �̂�+ − �̂�− (2)

where 𝑴+ ∈ R𝐾×𝑁 and 𝑴− ∈ R𝐾×𝑁 correspond to the measurements obtained with the positive87

and negative patterns, respectively. Therefore, the preprocessed measurements 𝑴 are Hadamard88

coefficients, in the sense that E (𝑴) = 𝑯↓𝑭, where E denotes the expectation. Note that the89

problem is separable across the spectral dimension, i.e., E (𝒎𝜆) = 𝑯↓ 𝒇𝜆, 1 ≤ 𝜆 ≤ Λ, where90

𝒎𝜆 ∈ R𝐾 and 𝒇𝜆 ∈ R𝑁 are the 𝜆-th column of 𝑴 and 𝑷, respectively. Therefore, the spectral91

resolution of the hypercube is given directly by the spectral resolution of the spectrometer, while92

its spatial resolution depends only on the light patterns and our ability to recover 𝒇𝜆 from 𝒎𝜆.93

2.2. Image reconstruction94

In the case 𝐾 = 𝑁 , the hypercube can be reconstructed in the least squares sense as

𝑭 =
1
𝑁
𝑯⊤𝑴 (3)

However, when only a few patterns are considered to limit the acquisition time, i.e., when
𝐾 < 𝑁 , we propose to reconstruct each 𝜆-slice of the hypercube independently by computing the
maximum a-posteriori solution

argmax
𝒇𝜆

log 𝜋(𝒎𝜆 | 𝒇𝜆) + log 𝜋( 𝒇𝜆) (4)

where the conditional probability function 𝜋(𝒎𝜆 | 𝒇𝜆) is given by the noise model (1) and the
probability function 𝜋( 𝒇𝜆) represents a prior knowledge about the 𝜆-slice 𝒇𝜆. To solve (4) for
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Fig. 2. Acquisition system. Light source (L), sample (S), telecentric lens (TL), digital
micromirror device (DMD), bi-convex lens (CL), achromatic lens pair (LP), objective
lens (OL), optical fiber (OF), spectrometer (SP), and instrumentation computer (PC).
The green arrows indicate the communication workflow between the computer, the
DMD, and the spectrometer. The blue arrows indicate the light path.

unknown 𝜋( 𝒇𝜆), we adopt the deep expectation-maximization network (EM-Net) [21]. Setting
the number of iterations to 𝐼, the EM-Net G (𝐼)

𝜃
(𝒎𝜆) computes recursively for 0 ≤ 𝑖 ≤ 𝐼 − 1

𝒇 (𝑖)
𝜆

= 𝒇 (𝑖)
𝜆

+ Gdc (𝒎𝜆 − 𝑯↓ 𝒇
(𝑖)
𝜆

) (5a)

𝒇 (𝑖+1)
𝜆

= D𝜃 ( 𝒇 (𝑖)𝜆 ) (5b)

where Gdc represents Gaussian denoised completion and D𝜃 represents a convolutional neural
network with parameters 𝜃. The Gaussian denoised completion corresponds to the solution of (4)
under Gaussian assumptions. It can be computed analytically as

Gdc (𝒎) = 1
𝑁
𝑯⊤

↓

[
𝑰𝑀

𝜮21𝜮
−1
1

]
𝜮1 (𝚺 + 𝜮1)−1𝒎 (6)

where 𝚺1 and 𝜮21 are blocks of the covariance matrix of 𝑯 𝒇 and 𝜮 is the noise covariance,
which can be estimated as detailed in [20]. We optimize the parameters of the convolutional
neural network in a supervised manner

argmin
𝜽

∑︁
ℓ

∥ 𝒇 (ℓ) − G (𝐼)
𝜃

(𝒎 (ℓ) )∥2 (7)

where { 𝒇 (ℓ) ∈ R𝑁 }1≤ℓ≤𝐿 is an image database and {𝒎 (ℓ) ∈ R𝐾 }1≤ℓ≤𝐿 are the associated95

measurements computed according to (1) and (2).96

2.3. Experimental setup97

Our setup, depicted in Fig. 2, is composed of an illumination arm, a DMD, and a light collection98

arm. The illumination arm is composed of a white LED lamp (Thorlabs LIUCWHA) and99

a bi-telecentric lens system (Edmund Optics TECHSPEC® Large Format Telecentric 62902,100

magnification 0.9x) that forms the image of the object in the active plane of a DMD (ViALUX101

GmbH DLP V-700, 1024 x 768 micromirrors, 13.7 µm pitch). The DMD is made of a matrix102



of microscopic mirrors that can be individually tilted to either +24◦ (ON state) or −24◦ (OFF103

state) according to spatial light patterns. The light collection arm, placed at +24◦ with respect104

to illumination arm, holds a 35 mm focal length bi-convex lens, a MAP104040-B Matched105

Achromatic Lens Pair (both focal lengths are 40 mm), and an objective lens (x20, NA=0.35) that106

focuses light at the entrance of an optical fiber (1500 µm core diameter, NA = 0.39, FT1500107

UMT) connected to a compact spectrometer (Avantes AvaSpec-ULS2048CL-EVO, Λ = 2048108

spectral channels, 515–750 nm, entrance slit of 200 µm, 1200 lines/mm grating). The setup,109

which is supported by a cage system, is lightweight and transportable.110

2.4. Acquisition software111

After initialization of the DMD and the spectrometer, a sequence of patterns is uploaded into
DMD memory, the acquisition is based on the external trigger signal provided by the DMD
(see the execution diagrams of Figure 3). Each pattern is displayed on the DMD during a given
illumination time and the external trigger is sent to the spectrometer for synchronization. The
integration time of the spectrometer is chosen as equal to the illumination time. A dead time of
44 µs, referred to as dark phase, is necessary for the DMD to get the micromirrors tilted according
to the next pattern. Another dead time of 356 µs is necessary for the spectrometer to flush its
buffer and prepare a new acquisition. This leads to an acquisition time per pattern equal to the
spectrometer integration time plus its dead time. The total time for the acquisition of a hypercube
is

𝑇 = 2𝐾 (Δ𝑡 + 𝛿𝑡) (8)

where Δ𝑡 represents the integration time and 𝛿𝑡 represents the dead time of the spectrometer.112

While the integration time can be chosen by the user, the dead time is imposed by the spectrometer.113

Note that the dead time of the spectrometer is much longer that the smallest illumination time114

allowed by the DMD which cannot be operated at its maximum frequency (22 kHz corresponding115

to 45 µs).116

Our acquisitions are typically made with an integration time of 1 ms. Therefore, the fully117

sampled acquisition of an image of 𝑁 = 64 × 64 pixels requires 2𝐾 = 2𝑁 = 8,192 patterns × 1.4118

ms ≈ 11.5 s. During acquisition, the spectra are stored in the spectrometer’s internal memory119

and are transferred to the computer via a callback function, which allows other tasks such as120

image reconstruction to be run in parallel. The acquisition workflow is implemented as an open121

source Python package named Single-Pixel Acquisition Software (SPAS) [26], which requires122

the ALP4lib package [27] for DMD control and MSL-Equipment [28] for spectrometer control.123

3. Experiments124

3.1. Experimental data125

We image four objects illuminated in transmission mode with the LIUCWHA LED lamp: a cat126

image from the STL-10 test set printed on a plastic sheet, on which we superimpose a linear127

variable filter (Ocean Optics, LVF-HL, see Fig. 4); the Siemens star resolution target (Thorlabs,128

R1L1S2P, see Fig. 5); the USAF resolution target (Edmund, USAF 1951 38256, see Fig. 5); and129

a tomato slice (see Fig. 8). We also image a Mercury-Argon spectral calibration lamp (Ocean130

Optics HG-1 with characteristic peaks at 546, 577, 579, 697, 707, 727, and 738 nm) directly, i.e.,131

with no object. Whatever the imaging configuration, we acquire all the patterns of a 64 × 64132

Hadamard basis, resulting in a total of 𝑀 = 𝑁 = 4,096 Hadamard patterns split into 8,192133

positive and negative patterns. We also consider accelerated acquisition for which only 𝑀 <134

4,096 patterns are taken. The fully sampled datasets can be downsampled a posteriori to simulate135

an accelerated acquisition with different acceleration factors.136



Fig. 3. Synchronization between the digital micromirror device (DMD) and the
spectrometer. The external trigger is generated by the DMD (master) and exploited by
the spectrometer (slave).

Table 1. Integration times for the different zooms and samples. Times are given in
ms/patterns; ‘n.a.’ indicates that a dataset is not available.

zoom ×1 ×2 ×3 ×4 ×6 ×12
pixel size (µm) 182.4 91.2 60.8 45.6 30.4 15.2

STL-10 cat 1 4 9 16 36 144
Siemens star 1 4 9 16 36 144
USAF 1 4 9 16 36 144
Hg-Ar lamp 17 n.a. n.a. n.a. n.a. n.a.
Tomato slice 1 4 9 16 36 144

Typically, the 64 × 64 Hadamard patterns are resized to fill the largest square region possible137

on the DMD, which corresponds to 768 × 768 micromirrors. In this case, each pixel of the138

Hadamard patterns corresponds to 12 × 12 micromirrors. However, it is also possible to display139

the patterns on smaller fields of view, which acts as a hardware zoom that is independent of the140

optical components of the acquisition setup. We consider six DMD-based hardware zooms: ×1,141

×2, ×3, ×4, ×6, and ×12, which correspond to patterns with a pixel size of 12, 6, 4, 3, 2, and142

1 micromirrors, respectively. The higher the zoom factor, the lower the photon counts. To get143

measurements with similar signal-to-noise ratios, we chose the integration time depending on the144

zoom, as indicated in Table 1. For the ×1 zoom, we set the integration time to 1 ms/pattern for145

the STL-10 cat and 17 ms/pattern for the spectral calibration source. For the Siemens star and146

USAF targets that we image at zooms ×1, ×2, ×4, ×6, and ×12, we choose integration times of 1,147

4, 16, 36, and 144 ms/pattern, respectively. For the tomato slice, we choose 4 ms/pattern for ×2148

zoom and 144 ms/pattern for the ×12 zoom.149

Following the procedure described in [24], we estimate the noise parameters as follows:150

𝜇dark = 739 counts, 𝑔 = 0.77 counts/electron, and 𝜎dark = 17 counts.151

3.2. Training of the EM-Net152

We train our network with measurements that we simulate using the STL-10 database [29], with153

𝐿 = 105, 000 images that correspond to the ‘unlabeled’ and ‘train’ subsets. The original 96 × 96154

pixel images are resized to 64×64 pixels using a bicubic transform and are normalized between155

−1 and 1. As in [20, 21], we choose the light patterns 𝑷 as 2D Walsh Hadamard functions,156



Fig. 4. STL-10 cat hypercube acquisition with a linear variable filter. The full hypercube
is binned spectrally for display (7 bins in the range 544–670 nm, bin widths ∼19 nm,
central wavelengths: 553.7, 572.6, 591.1, 609.3, 627.1, 644.5, and 661.5 nm). The
colorbars show intensities in counts/pixel. The image on the bottom right is an RGB
representation of the full hypercube. Acquisition: 𝐾 = 𝑁 = 4,906 patterns, ×1 zoom,
integration time of 1 ms/pattern; reconstruction by means of (3).

which we undersample by retaining the patterns that lead to the coefficients with the largest157

variance [30]. We implement the EM-Net using Pytorch [31] (version 1.10.1; cuda V11.5.50).158

The image domain denoiser D𝜃 has four convolutional layers, with each layer separated by a159

ReLU and batch normalization layer. The first has a kernel size of 9 and a depth of 64, the second160

has a kernel size of 1 and a depth of 64, the third has a kernel size of 3 and a depth of 64, and161

the final one has a kernel size of 5 and a depth of 1. We initialize our EM-Net using 𝒇 (0)
𝜆

= 0162

and train it by solving (7) using the ADAM optimizer [32], with an initial learning rate of 10−3,163

which is halved every 10 epochs, for a maximum of 100 epochs. The training phase took about164

320 minutes on a Tesla V100-SXM2 in the case 𝐾 = 512 and was stopped early at 22 iterations165

after it had reached convergence.166

4. Results167

4.1. An acquisition example168

To show the spatial and spectral capabilities of our hyperspectral camera, we first consider the cat169

object with a linear variable filter. The integration time was set at 1 ms/pattern leading to a total170

acquisition time of 11.5 s. Figure 4 shows the full hypercube to which we apply spectral binning to171

facilitate its display. We compute 7 bins within the 544–670 nm range with a bin width of ∼19 nm172

(central wavelengths: 553.7, 572.6, 591.1, 609.3, 627.1, 644.5, and 661.5 nm). We also provide173

an RGB representation of the full hypercube by application of CIE (International Commission on174

Illumination 1931) color matching functions. These functions model the chromatic response of175

the three types of cone cells in the human eye [33].176

Each bin displays a different band pass window that is selected by the linear filter. As expected,177

the band pass window translates diagonally within the field of view, from the top left corner to178

the bottom right corner, as the central wavelength increases. This is also visible on the RGB179

representation that displays the color palette starting with the green color in the top left corner to180

the red color in the bottom right corner. The STL-10 cat is visible in the background.181



Fig. 5. Resolution targets acquired with different zooms. Top row: Siemens star; bottom
row: USAF. Zoom increases from left to right: ×1, ×3, ×6, and ×12; 𝐾 = 𝑁 = 4,096
patterns; the integration time increases with the zoom: 1, 9, 36, and 144 ms/pattern,
from left to right. All hypercubes are reconstructed using (3). The displayed images
are obtained by summing the hypercubes in the 550-590 nm range.

4.2. Spatial resolution and DMD-based zoom182

We evaluate the spatial resolution of our system by imaging two calibrated resolution targets: the183

Siemens star and the USAF target. The Siemens star is composed of 36 black bars distributed184

around 360◦. The USAF target is composed of bar groups with decreasing bar spacing and length.185

In Fig. 5, we display the images obtained for both targets at four different zooms (×1, ×3, ×6,186

and ×12), after summation in the 550–590 nm range. The integration time was set at 1, 9, 36,187

and 144 ms/pattern respectively leading to a total acquisition time of 11.5, 77, 298.2, and 1,183 s188

respectively.189

For both targets, we first establish the spatial resolution in pixels. Then, we convert it to190

line pairs per millimeter (lp/mm) to account for the optical magnification. For the Siemens191

star, we determine the system resolution as the smallest radius of a circular profile for which192

consecutive black bars appear to touch. For the USAF, we determine the system resolution as the193

smallest distinguishable bar group vertically and horizontally [34]. We also report the theoretical194

spatial resolution computed as 1/(2Δ𝑥), where Δ𝑥 is the image pixel size in millimeters. The195

image pixel size depends linearly on the zoom, given the DMD pixel size and the telecentric lens196

magnification. We obtain 182.4, 91.2, 60.8, 45.6, 30.4, and 15.2 µm for ×1, ×2, ×3, ×4, ×6, and197

×12 zooms, respectively.198

In Fig. 6, we plot the spatial resolution as a function of the zoom, considering six different199

zooms that correspond to six independent acquisitions. We observe that spatial resolutions200

obtained from both the USAF and Siemens star targets are in good agreement with theoretical201

values computed from the pixel size only. This indicates that our system is limited only by the202

pixel size and that the DMD-based hardware zoom is not associated with undesirable blur.203

4.3. Spectral resolution at different locations204

We evaluate the spectral resolution by imaging a spectral calibration lamp positioned in the object205

plane. We place the lamp at three different positions to create light spots at different locations in206

the field of view and acquire a hypercube for each spot. Figure 7 shows the superposition of the207



Fig. 6. Spatial resolution as a function of the zoom. The red line is the theoretical
resolution calculated from the pixel size; the green dots represent the resolution
measured from the USAF target; the black stars represent the resolution measured from
the Siemens star target. The spatial resolution is given in line pairs/millimeters (lp/mm)
and evaluated from the images displayed in Fig. 5.
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Fig. 7. Spectral resolution at different spatial locations in the field of view. (a) Image
of a three-spot calibration source. (b) Spectra of each of the light spots indicated in
(a). Acquisition time: 17.4 ms/pattern. The image in (a) is obtained by summing the
hypercube along the spectral dimension. The spectra in (b) are obtained by summing all
pixels within the red rectangles displayed in (a). These results confirm that the spectral
resolution of our device is directly given by the spectral resolution of the spectrometer
and that the spectral response of our system is spatially invariant.



three lamp spots (2𝐾 = 8,192 patterns per acquisition, integration time Δ𝑡 = 17.4 ms/pattern).208

For all three acquisitions we observe a central bright spot corresponding to the position of the209

light source (Fig. 7(a)). For each spot, we sum the contributions of all pixels in the respective red210

rectangles, obtaining the spectra indicated in Fig. 7(b).211

For the three acquisitions, we recover a spectrum that consists of the emission lines of mercury212

(𝜆 < 650 nm) and argon (𝜆 > 650 nm). In the following, we consider the peaks at 546, 697,213

707, 727, and 738 nm. We measure the full width at half maximum of all peaks, for all spot214

locations positions, and obtain spectral resolutions between 2.15 nm and 2.30 nm. These spectral215

resolutions are in excellent agreement with the theoretical spectral resolution of the spectrometer216

that is 2.3 nm, confirming that the spectral resolution of our device is directly given by the217

spectral resolution of the spectrometer. We observe no spectral degradation that originates from218

components before the spectrometer (e.g., DMD or focusing optics). Note that the peak at 578219

nm results from the observation of the mercury emission doublet at 577 and 579 nm, which220

cannot be resolved. We also find that the amplitude of the different peaks, except the doublet,221

are the same for all spot locations, which indicates that the spectral response of our system is222

spatially invariant.223

4.4. Increase of imaging speed via subsampling224

We evaluate our ability to reconstruct images from accelerated acquisition considering three225

samples: the Siemens star target, the USAF target, and the tomato slice. The Siemens star and226

USAF targets are imaged using the ×12 zoom, while the tomato slice is imaged using both227

the ×2 and ×12 zooms. For each case, we consider three acceleration factors 1:2 (𝐾 = 2,048228

measurements), 1:4 (𝐾 = 1,024 measurements), and 1:8 (𝐾 = 512 measurements). We also229

reconstruct the hypercubes with no acceleration (𝐾 = 4,096 measurements). The images obtained230

at 𝜆 = 579 nm are displayed in Fig. 8. As expected, accelerated acquisitions lead to a loss of231

spatial resolution, which can be evaluated from the reconstructions of the resolution targets (see232

first and second row of Fig. 8). The higher the acceleration factor, the higher the loss. For the233

Siemens star, the degradation of the spatial resolution appears as a blurred region in the center of234

the target, where high spatial frequency structures are present. We also observe this effect in the235

tomato slice images (see third and fourth row of Fig. 8). However, as fewer high frequencies are236

present, the degradation appears relatively limited, even for acceleration factors as high as 1:4 or237

1:8.238

5. Discussion239

A key advantage of our computational design over previous work is to maintain a high spectral240

resolution. Moreover, its price is significantly lower than currently available hyperspectral241

cameras with the same spectral resolution. Our system acquires a 64 × 64 × 2048 hypercube242

with a spectral resolution of 2.3 nm, while the spatial resolution can be adjusted between 182 µm243

and 15 µm using a DMD-based hardware zoom that can achieve a ×12 magnification with no244

modification of the optical components. As for optical zoom, the higher the magnification, the245

lower the photon flux. To account for this effect, the images at higher zooms have been acquired246

for longer duration (see Fig. 5), with a scaling factor equivalent to the zoom squared.247

There are different strategies to limit the total time 𝑇 given by (8). The first strategy consists in248

reducing the acquisition time Δ𝑡. Setting Δ𝑡 to 9 µs/pattern, which corresponds to the shortest249

acquisition time allowed by the the spectrometer, we obtain a total acquisition time of 3 s.250

However, the spectrometer imposes a dead time 𝛿𝑡 of 356 µs during which no signal is acquired.251

For an integration time of 1 ms/pattern, this represents a waste of 356/(356 + 1000) ≈ 26%252

of the total acquisition time. For an integration time of 9 µs/pattern, the waste increases to253

356/(356 + 9) ≈ 97 %, i.e., most of the total acquisition time is lost. As a compromise, the254

shortest integration time that we consider is 1 ms/pattern, leading to a total time of 11.5 s. In the255



Fig. 8. Accelerated acquisitions. First row: Siemens star ×12 zoom; second row:
USAF ×12 zoom; third row: tomato slice ×2 zoom; fourth row: tomato slice ×12
zoom. First column: no acceleration factor, 𝐾 = 4,096 measurements; second column:
acceleration factor 1:2, 𝐾 = 2,048 measurements; third column: acceleration factor
1:4, 𝐾 = 1,024 measurements; fourth column: acceleration factor 1:8, 𝐾 = 512
measurements. The fully sampled hypercubes 𝐾 = 𝑁 = 4,096 are reconstructed
using (3), while the accelerated acquisitions 𝐾 < 𝑁 are reconstructed using the deep
expectation-maximization network (EM-Net) defined by (5). All images correspond to
the spectral channel 𝜆 = 579 nm.



future, spectrometers with shorter dead times could mitigate this issue. Assuming negligible256

dead times, i.e., 𝛿𝑡 ≪ Δ𝑡, an acquisition with Δ𝑡 = 1 ms would drop from 11.5 s to 8.6 s, while257

the fastest acquisition with Δ𝑡 = 45 µs would drop from 3.3 s to 0.4 s. Another strategy to reduce258

the total acquisition time consists in limiting the number of patterns 2𝐾 uploaded onto the DMD.259

The total acquisition time of so-called accelerated acquisition depends directly on the acceleration260

factor (e.g., 11.5/2 ≈ 5.75 s considering only half of the patterns). This acceleration comes261

at the cost of spatial resolution reduction, as illustrated in Fig. 8. The acceptable acceleration262

factor depends on the frequency content of the scene. While a 2-fold acceleration may be already263

excessive for sharp or highly structured objects, an acceleration up to 8-fold may be acceptable264

for smoother objects. It is important to note that our algorithm reconstructs each 𝜆-slice of the265

hypercube independently; however, it could be beneficial to exploit the spatio-spectral redundancy266

in order to jointly reconstruct several 𝜆-slices (see for instance [35]). This could enable the same267

spatial resolution to be achieved with higher acceleration factors. Moreover, the determination268

of the best subset of patterns remains an open problem and the subject of an active research,269

including different fields such as magnetic resonance imaging.270

Another limitation of our imaging system is its spatial resolution. For applications where271

the imaging speed is not the limiting factor, this can be alleviated by increasing the number of272

patterns. However, the amount of DMD memory currently available does not allow more that273

43,690 binary patterns to be stored. Therefore, our setup can acquire hypercubes with 128 × 128274

pixels (32,768 patterns required) but not 256 × 256 pixels (131,072 patterns required). This issue275

can be mitigated by considering accelerated acquisitions (e.g., 3-fold acceleration for 256 × 256276

pixels). In the future, DMDs with more memory could remove this barrier.277

One challenge is to maximize the light throughput. There is an inherent trade-off between278

light collection by the optical fiber and by the spectrometer. Due to etendue conservation, more279

light can be focused at the entrance of large core diameter (e.g., 1500 µm) fibers. However, due280

to the finite size of the entrance slit of the spectrometer (e.g., 200 µm), increasing the size of281

the optical fiber, increases proportionally the number of rejected photons. We have chosen the282

optical components, distances, magnifications, and optical fiber in order to maximize the signal283

intensity measured by the spectrometer at ×1 zoom.284

6. Conclusion285

We propose a hyperspectral imager capable of acquiring a 64 × 64 × 2048 hypercube with a286

spectral resolution of 2.3 nm. The spatial resolution can be adjusted between 182.4 µm and 15.2287

µm using a digital zoom. Setting the integration time to 1 ms per pattern, the total acquisition288

time for a single hypercube is less that 12 s. The total acquisition time can be reduced to 2.6 s by289

reducing the integration time to 9 µs. Such small integration times should be reserved for high290

intensity signals as they lead to a 97 % loss due to dead times. While maintaining the integration291

time of 1 ms per pattern, the acquisition time can be accelerated by uploading fewer patterns292

onto the DMD. For several acceleration factors, we demonstrate that the slices of the hypercube293

can be reconstructed independently using a deep EM-Net. 8-fold acceleration leads to a 1.4 s294

acquisition and reconstructions with moderate degradation for low frequency images. In future295

work, we will consider coupling our hyperspectral imager with a standard camera to improve296

both the spatial resolution and imaging speed.297
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