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PUNCTURED TUBULAR NEIGHBORHOODS AND STABLE HOMOTOPY AT INFINITY

ADRIEN DUBOULOZ, FRÉDÉRIC DÉGLISE, AND PAUL ARNE ØSTVÆR

ABSTRACT. We initiate a study of punctured tubular neighborhoods and homotopy theory at infinity in
motivic settings. We use the six functors formalism to give an intrinsic definition of the stable motivic
homotopy type at infinity of an algebraic variety. Our main computational tools include cdh-descent
for normal crossing divisors, Euler classes, Gysin maps, and homotopy purity. Under `-adic realization,
the motive at infinity recovers a formula for vanishing cycles due to Rapoport-Zink; similar results hold
for Steenbrink’s limiting Hodge structures and Wildeshaus’ boundary motives. Under the topological
Betti realization, the stable motivic homotopy type at infinity of an algebraic variety recovers the sin-
gular complex at infinity of the corresponding topological space. We coin the notion of homotopically
smooth morphisms with respect to a motivic∞-category and use it to show a generalization to virtual
vector bundles of Morel-Voevodsky’s purity theorem, which yields an escalated form of Atiyah duality
with compact support. Further, we study a quadratic refinement of intersection degrees, taking values
in motivic cohomotopy groups. For relative surfaces, we show the stable motivic homotopy type at in-
finity witnesses a quadratic version of Mumford’s plumbing construction for smooth complex algebraic
surfaces. Our construction and computation of stable motivic links of Du Val singularities on normal
surfaces is expressed entirely in terms of Dynkin diagrams. In characteristic p > 0, this improves Artin’s
analysis on Du Val singularities through étale local fundamental groups. The main results in the paper
are also valid for `-adic sheaves, mixed Hodge modules, and more generally motivic∞-categories.
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1. INTRODUCTION

1.1. Context and motivation. Topology at infinity is essentially the study of topological properties
that persistently occur in complements of compact sets. A space is intuitively simply connected at
infinity if one can collapse loops far away from any small subspace. Euclidean space Rn, n ≥ 3, is
the unique open contractible n-manifold that is simply connected at infinity. For example, the White-
head manifold is not simply connected at infinity and therefore not homeomorphic to R3. This article
describes our first attempt at finding a unified theory of punctured tubular neighborhoods and homo-
topy at infinity for open manifolds and smooth varieties. Our overriding goal is to develop a study
of intrinsic motivic invariants which can distinguish between A1-contractible varieties. For back-
ground on motivic homotopy theory and A1-contractible varieties, we refer to the survey [7]. The
quest for finding invariants that can help classify smooth varieties over fields up to A1-homotopy can
be traced back to work by Asok-Morel [6]. Their ideas on A1-h-cobordisms and A1-surgery theory,
with applications towards vector bundles over projective spaces in Asok-Kebekus-Wendt [5], have
inspired our search for motivic invariants with a pronounced geometric topological flavor. Another
great source of inspiration is Zariski’s cancellation problem [50], which remains difficult because of
the lack of computable invariants available to distinguish non-isomorphic A1-contractible smooth
affine varieties such as the Koras-Russell cubic threefold and A3 (see [40], [54]).

Our approach makes extensive use of the six-functor formalism in stable motivic homotopy the-
ory, as developed in [9, 27]; we review and complement this material in Section 4. Let S be a qcqs
(quasi-compact quasi-separated) base scheme. Its stable motivic homotopy category SH(S) is a closed
symmetric monoidal∞-category, see, e.g., [42, 52, 59, 77]. To any separated S-scheme of finite type
f : X → S we define Π∞S (X), the stable motivic homotopy type at infinity of X , by the homotopy exact
sequence

(1.1.0.a) Π∞S (X)→ f!f
!(1S)

αX−−→ f∗f
!(1S)

Here 1S is the motivic sphere spectrum over S, f!f
!(1S) = ΠS(X) is the stable homotopy type of

X and f∗f
!(1S) = Πc

S(X) is the properly supported stable homotopy type of X . The canonical
morphism αX is obtained from the six-functor formalism for the stable motivic homotopy category
SH(S), which implies the following fundamental properties.

• If X/S is smooth, then f!f
!(1S) = Σ∞X+ is the motivic suspension spectrum of X

• If X/S is proper, then αX is an isomorphism
• The morphism αX is covariant with respect to proper morphisms and contravariant with

respect to étale morphisms
With the intrinsic definition of Π∞S (X) in (1.1.0.a) we deduce a number of novel properties in the

spirit of proper homotopy theory. Let us fix a compactification X̄ of X over S and denote by ∂X
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its reduced boundary. Then the induced immersions j : X → X̄ , i : ∂X → X form a diagram of
S-schemes

(1.1.0.b) X �
� j //

f %%

X̄

��

∂X? _
ioo

gxx
S

We observe the stable homotopy type at infinity of X is determined by the data in (1.1.0.b) via a
canonical equivalence

(1.1.0.c) Π∞S (X) ' g∗i∗j∗f !(1S)

This shows that Π∞S (X) is independent of the chosen compactification and that our construction
has properties analogous to Deligne’s vanishing cycle functor for étale sheaves, see [37]. We may
reformulate (1.1.0.c) by means of the canonically induced homotopy exact sequence

(1.1.0.d) Π∞S (X)→ ΠS(∂X)⊕ΠS(X)
i∗+j∗−−−→ ΠS(X̄)

In the notation in (1.1.0.b), let us assume X̄ , ∂X are smooth S-schemes, and writeN for the normal
bundle of ∂X in X̄ . In Section 4.4 we use the Euler class e(N) in SH(S) to deduce the homotopy exact
sequence

(1.1.0.e) Π∞S (X)→ ΠS(∂X)
e(N)−−−→ Σ∞ThS(N)

It is helpful to think of the passage from (1.1.0.a) to (1.1.0.e) in the language of problem-solving. Our
“problem” is to understand Π∞S (X) and the “solution” in the smooth case is the Euler class for the
normal bundle of the closed immersion ∂X 6↪→ X̄ .

In the following, we further assume X̄ is a smooth proper S-scheme and ∂X is a normal crossing
divisor on X̄ . We may write ∂X = ∪i∈I∂iX as the union of its irreducible components ∂iX , so there
is a canonical closed immersion νi : ∂iX → X̄ . For any subset J ⊂ I , we equip ∂JX := ∩j∈J∂jX with
its reduced subscheme structure, where ∩ is suggestive notation for fiber products over the boundary
∂X . If J ⊂ K, there is a canonical proper morphism νJK : ∂KX → ∂JX . By means of descent for the
cdh-covering

ti∈I∂iX → ∂X

we identify ΠS(∂X) with the colimit1 of the naturally induced diagram in SH(S)

(1.1.0.f) ΠS(∂IX) −→
⊕

]J=]I−1

ΠS(∂JX)
−→
···
−→

⊕
]J=]I−2

ΠS(∂JX)
−→
···
−→ · · ·

−→
···
−→

⊕
i∈I

ΠS(∂iX)

The face map on the summand ΠS(∂KX) is defined by the pushforward maps∑
J⊂K,]J=]K−1

(νJK)∗

Similarly, we identify Σ∞ThS(N) with the limit of the naturally induced diagram in SH(S)

(1.1.0.g)
⊕
i∈I

Σ∞ThS(Ni)
−→
···
−→

⊕
]J=2

Σ∞ThS(NJ)
−→
···
−→

⊕
]J=3

Σ∞ThS(NJ)
−→
···
−→ · · · −→ Σ∞ThS(NI)

Here, NJ is the normal bundle of ∂JX in X̄ , and the coface map on the summand Σ∞ThS(NK) is
defined by the Gysin maps ∑

J⊂K,]J=]K−1

(νJK)!

1Limits and colimits in this paper are taken in the sense of∞-categories.
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Our general computations culminate in Theorem 4.2.1, where we identify Π∞S (X) with the homotopy
fiber of the map

colimn∈(∆inj)op

 ⊕
J⊂I,]J=n+1

ΠS(∂JX)

 µ−→ lim
n∈∆inj

 ⊕
J⊂I,]J=m+1

Σ∞ThS(NJ)


induced by

(µi,j)i,j∈I :
⊕
i∈I

ΠS(∂iX) −→
⊕
j∈I

Σ∞ThS(Nj)

More precisely, µi,j is shorthand for the composite map

ΠS(∂iX)
νi∗−−→ ΠS(X̄)→ Σ∞

(
X̄

X̄ − ∂jX

)
'−→ Σ∞ThS(Nj)

To refine these techniques, we develop a theory of duality with compact support. We generalize
the homotopy purity theorem and give new examples of rigid objects in the process. Our approach is
based on the notion of a homotopically smooth morphism. If f : X → S is a smoothable lci morphism
with virtual bundle τf overX , we say that f is homotopically smooth (h-smooth) if the naturally induced
morphism

pf : Th(τf )→ f !(1S)

is an isomorphism (see Definition 2.3.8 for more details). Any closed immersion between smooth
varieties over a field is h-smooth. When f is h-smooth and i : Z → X is a closed immersion with
Z/S h-smooth, Theorem 2.4.3 shows the relative purity isomorphism

ΠS(X/X − Z, v) ' ΠS(Z, i∗v +Ni)

Here, v is a virtual vector bundle over X and Ni is the (necessarily regular) normal bundle of i : Z →
X . Under the additional assumption that ΠS(X, v) is rigid, we show in Section 3.4 the duality with
compact support isomorphism

ΠS(X, v)∨ ' Πc
S(X,−v − τf )

This duality isomorphism can be seen as a motivic analog of classical topological results due to Atiyah
[8, §3], Milnor-Spanier [69, Lemma 2]. As an application, we identify the stable motivic homotopy
type at infinity of hyperplane arrangements in Section 3.5.

We define the punctured tubular neighborhood TN×S (X,Z) of a closed immersion i : Z → X in
Section 4. For points on hypersurfaces in affine space, this key invariant specializes in links consid-
ered successfully in topology by Milnor and Mumford (see [68], [71]). It turns out that TN×S (X,Z)
is a local invariant in the sense that it only depends on a Nisnevich neighborhood of Z in X , and,
moreover, it satisfies a cdh-excision property (see Corollary 4.1.8). The geometric content of our con-
struction is transparently visible in examples, e.g., for an ordinary double point on a threefold (see
Example 4.1.10). We invite the interested reader to compare with Levine’s notion of motivic punc-
tured tubular neighborhoods in [66].

In the situation with the compactification of a separated morphism of finite type f : X → S, see
(1.1.0.b), Proposition 4.4.2 shows there exists a canonical isomorphism

Π∞S (X) ' TN×S (X̄, ∂X)

which is natural in (X̄,X, ∂X), covariantly functorial for proper maps, and contravariantly functo-
rial for étale maps. Via this isomorphism, we can study stable motivic homotopy types at infinity
through the geometric construction of punctured tubular neighborhoods. This perspective helps us
clarify a few simple and unifying principles across motivic∞-categories. For example, we generalize
Wildeshaus’ analytic invariance theorem for boundary motives [87, Theorem 5.1]: A closed pair of S-
schemes (X,Z) means a closed immersion Z 6↪→ X of S-schemes, and a morphism φ : (Y, T )→ (X,Z)
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is an S-morphism φ : Y → X such that φ−1(Z) = T . Suppose f : T → Z is an isomorphism that ex-
tends to an isomorphism of the respective formal completions f : ŶT → X̂Z . If S is an excellent
scheme, Theorem 4.1.14 shows that there exists a canonical isomorphism

f∗ : TN×S (Y, T )
'−→ TN×S (X,Z)

In particular, the stable motivic homotopy type at infinity functor satisfies analytical invariance.

In Section 5, we employ punctured tubular neighborhoods to study a theory of motivic plumbing
on surfaces; this constitutes a refinement and extension of Mumford’s seminal work in [71]. It is also
a successful transportation of a construction from surgery theory into motivic homotopy, extending
the ideas of [6]. The setting is a closed pair (X,D), where X/S has relative dimension two and is
smooth in a neighborhood of D. We assume D is a divisor on X which is proper and with smooth
reduced crossings over S, see Definition 3.3.2. As in [71] we assume the components (Di)i∈I of D are
rational curves. It turns out that ΠS(D) is a sum of an Artin object D2 depending on the intersections
of the (Di)’s and the “geometric” part

⊕
i∈I 1S(1)[2]. Theorem 5.2.7 identifies the punctured tubular

neighborhood TN×S (X,D), or equivalently Π∞S (X−D) whenX/S is proper, with the homotopy fiber
of a naturally induced map(

a b′

b µ

)
: D ⊕

⊕
i∈I

1S(1)[2]→ D∨(2)[4]⊕
⊕
j∈I

1S(1)[2]

We refer to µ = (µij) :
⊕

i∈I 1S(1)[2] →
⊕

j∈I 1S(1)[2] as the “quadratic Mumford matrix” since,
over the complex numbers, the above specializes to computations carried out in [71]. Its coefficients
take values in the endomorphism ring of the sphere or unit 1S . When S = Spec(O) is a semi-local
essentially smooth scheme over a field, or 2-integers such as Z[1

2 ] in a 2-regular number field [16], we
interpret µij as the class of a quadratic form (∂iX, ∂jX)quad ∈ GW(O) in the Grothendieck-Witt ring
called the quadratic degree of the intersections of the divisors ∂iX and ∂jX . The close connection with
quadratic forms arises since elements of the ith Chow-Witt group are represented by formal sums of
subvarieties Z of codimenison i equipped with an element of GW(k(Z)). Moreover, the rank of the
quadratic degree equals the corresponding Mumford degree.

Further, we specialize our results to motives. When S is a finite field, a global field, or a number
ring, we have the motivic t-structure on rational Artin-Tate motives at our disposal (see [65] for
the case of fields, and [80] for number rings). We let DMAT(K,Q) be the triangulated category of
(constructible) rational Artin-Tate motives. From [65] it follows that DMAT(K,Q) admits a motivic
t-structure, whose heart is the Tannakian category MMAT(K,Q) of Artin-Tate motives. In particular,
one gets a homological and monoidal functor

H0 : DMAT(K,Q)→ MMAT(K,Q)

We define the Artin-Tate motive

Hi(TN×(X,D)) := H0(TN×(X,D)[−i])

as the i-th (motivic) homology of the punctured tubular neighborhood of (X,D). When X is in
addition proper over K, this is the homology of the boundary motive of (X −D) (see Example 4.3.3
and Proposition 4.4.2), or the motivic homology at infinity

H∞i (X −D) = Hi(TN×(X,D))

2By analogy with the case of motives, it is the smallest ∞-category containing ΠS(V ) for V/S finite étale, and stable
under suspensions, homotopy (co)fibers.
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In Proposition 5.3.2 we show the homology motive Hi(X) vanishes for i 6∈ [0, 3] and there is an exact
sequence in the Tannakian category MMAT(S,Q) of Artin-Tate motives

0→H3(TN×(X,D))→
⊕
i∈I

1S(2)

∑
i<j p

i!
ij−p

j!
ij−−−−−−−−→
⊕
i<j

MS(Dij)(2)

→ H2(TN×(X,D))→
⊕
i∈I

1S(1)
µ−−→
⊕
j∈I

1S(1)

→ H1(TN×(X,D))→
⊕
i<j

MS(Dij)

∑
i<j p

i
ij∗−p

j
ij∗−−−−−−−−−→

⊕
i∈I

1S → H0(TN×(X,D))→ 0

Here µ is the quadratic Mumford matrix and MS(Dij) is the mixed Artin-Tate motive of Dij = Di×X
Dj . In the above, H0(TN×(X,D)) and H3(TN×(X,D)) are pure of respective weights 0 and −4,
while H1(TN×(X,D)) and H2(TN×(X,D)) are mixed of weights {0,−2} and {−2,−4}, respectively
(see [58] for the notion of weights). The above applies also in the category of Artin-Tate-Nori motives
MMAT(K,Q). Similarly to Artin-Tate motives, this involves constructing a homological functor from
Voevodsky’s category of geometric motives DMgm(K,Q) to the Tannakian category M(K) of Nori
motives over K. We study the example of Ramanujam’s surface Σ [74]. Over the complex numbers, it
is a topologically contractible affine algebraic surface which is not homeomorphic to the affine plane.
Working over a field k of characteristic different from 2, Example 5.3.4 identifies Σ’s integral motive
at infinity M∞(Σ) with 1k ⊕ 1k(2)[3].

Our setup provides universal formulas in the various realizations of motives, e.g., `-adic, rigid,
syntomic, Galois representations, etc. For example, the computation (3.3.13.a) specializes under `-
adic realization to the Rapoport-Zink formula for vanishing cycles [75, Lemma 2.5], and similarly for
Steenbrink’s limit Hodge structures [83]. We expect that Proposition 3.3.12 yields an explicit formula
for Ayoub’s nearby cycles in the semi-stable case, cf. [11].

We illustrate the general with concrete examples of A1-equivalent smooth affine surfaces with
non-isomorphic stable motivic homotopy types at infinity. For any integer n > 0, the Danielewski
surface Dn is the closed subscheme of A3 cut out by the equation xnz = y(y − 1), see [29]. We note
that D1 is the Jouanolou device over P1; in fact, Dn is A1-equivalent to P1 [7, §3.4]. Over any field
k, one can distinguish between Π∞k (Dm) and Π∞k (Dn) for m 6= n by viewing Danielewski surfaces as
affine modifications of A2. We refer to Section 5.4 for precise statements and further examples, [41]
for background on A1-contractibility of affine modifications, and [48] for first homology at infinity of
Danielewski surfaces over the complex numbers. The affine modifications give an affirmative answer
to Problem 3.4.5 in [7].

At this stage, we should come clean on some technical points concerning fundamental classes
and orientations. First, our setup gives a quadratic generalization of Mumford’s plumbing construc-
tion [71] using Chow-Witt groups. While Mumford uses orientations on the normal bundles of the
branches, which are copies of the projective line, much of the subtleties in our setting come from
working with twisted Milnor-Witt K-theory sheaves. The latter is needed to compute the quadratic
degree maps of the intersections of the branches taking values in the Grothendieck-Witt ring. On the
one hand, we develop the idea of parallelization to compute ”the fundamental class of the diagonal”
in terms of motivic fundamental classes [35]. In another direction closely related to differential geom-
etry and quadratic enumerative geometry, we discuss the foundations for orientations of algebraic
vector bundles via quadratic isomorphisms. Making clever choices of orientations is a key point in
our computations of quadratic Mumford matrices. In this way, we can compute stable motivic in-
variants without appealing to SL-orientations (owing to Proposition 6.1.10 and Proposition 6.1.16).
Section 6 explains this material, where we also introduce and show some fundamental properties of
quadratic Picard groupoids.
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Punctured tubular neighborhoods can also be applied to the study of isolated singularities of sur-
faces, in particular rational double points, also known as Du Val singularities. In characteristic p > 0,
Artin [3] showed that the étale local fundamental group of such a singularities cannot always distin-
guish between double and regular points. We show that, with the exception of E8-type singularity,
the stable motivic link TN×(Γ) of a Du Val singularity is different from the stable motivic link of
TN×(A2

k, {0}) = 1k ⊕ 1k(2)[3]. In particular, TN×(Γ) distinguishes Du Val singularities other than E8

from regular points. For E8 and the complex numbers, the identification TN×(E8) ' TN×(A2
k, {0})

reflects the fact that the topological link of E8 is the Poincaré homology 3-sphere Σ(2, 3, 5) [73], a
compact topological 3-manifold with the same singular homology groups as S3, whose fundamental
group is isomorphic to the binary dodecahedral group. We refer to Table 1 for a summary of our
computation of stable motivic links of Du Val singularities.

A final comment is that defining the stable homotopy type at infinity Π∞S is the first step towards
a refined invariant in unstable motivic homotopy theory. The problem of defining unstable motivic
homotopy types at infinity witness the tension between unstable and stable motivic homotopy theory.
For example, the six functor formalism is not available in the unstable setting. To remedy this, one
can take into account all possible smooth compactifications. Nonetheless, some of the techniques
developed in this paper will carry over to unstable motivic homotopy categories, e.g., the calculations
in Section 3.3 hold in the cdh-topology, and one can expect more developments along these lines.

Remark 1.1.1. This paper’s results hold more generally for any motivic∞-category such as triangu-
lated and abelian mixed motives, Artin-Tate motives, étale motives, torsion and `-adic categories,
mixed Hodge modules,... in place of SH. If there exists a realization functor that commutes with the
six operations, e.g., the Betti or `-adic realizations, then this follows from the universality of SH.

Conventions. Our results are couched in the axiomatic setting of [27], [62] which complements [9]. We
fix a motivic∞-category ([27, Definition 2.4.45]) T over the category of qcqs schemes, i.e., a monoidal
stable homotopy functor according to [9]. Our primary example is the motivic stable homotopy category
SH. In the language of presentable stable monoidal ∞-categories [62], SH is the initial motivic ∞-
category. Thus there is a unique morphism of motivic∞-categories SH → T . To maintain intuition,
we shall refer to the objects of T (S) as T -spectra over S. For more details, see Section 1.2.

Acknowledgements. The authors are grateful to Aravind Asok, Jean Fasel, Fangzhou Jin, Marc Levine,
and Kirsten Wickelgren for collaborations, discussions, and encouragements on some of the topics in
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“Investissements d’Avenir” project ISITE-BFC (ANR-15-IDEX-0008), the French ANR project “HQ-
Diag” (ANR-21-CE40-0015), and the RCN Frontier Research Group Project no. 250399 “Motivic Hopf
Equations” and no. 312472 “Equations in Motivic Homotopy.” Østvær acknowledges the generous
support from Alexander von Humboldt Foundation and The Radboud Excellence Initiative.

1.2. The motivic formalism. Throughout the paper, all schemes are quasi-coherent and quasi-compact,
qcqs, and all separated and smooth maps are assumed to be of finite type. The natural framework
for this paper is Morel-Voevodsky’s stable homotopy category SH(S) of the base scheme S. Owing
to the works [9, 10], [27], for varying S, these categories satisfy Grothendieck’s six functors formalism
which we will use extensively. The elimination of the noetherian hypothesis was achieved in [52,
Appendix C]. Most of the results in this paper, however, can be stated in the general formalism of
Grothendieck’s six functors, as axiomatized in [27]. We will freely use the language, constructions,
and notations from loc. cit., together with its natural ∞-categorical enhancement of [63, 39] (which
applies to premotivic model categories). Let us fix a motivic triangulated category T , see [27, Defini-
tion 2.4.45], which also admits an∞-categorical enhancement (e.g., it arises from a premotivic model
category). We note that T satisfies Grothendieck’s six functors formalism, summarized for example
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in [27, 2.4.50]. The added generality of [63] verifies that the pair of adjoint functors (f∗, f∗), (p!, p
!) for

p separated, and (⊗,Hom) are in fact adjunctions of∞-categories. The above applies to the following
examples.

• SH – the stable motivic homotopy category, see e.g., [9, 63].
• DMQ – rational mixed motives, see [27, Part IV].
• DM – motives defined as modules over Spitzweck’s motivic cohomology ring spectrum rela-

tive to Z, see [82].3

• D̃M – Milnor-Witt motives defined as modules over Milnor-Witt motivic cohomology, if one
restricts to base schemes defined over some field k of characteristic not 2; see [15], [14], [43].
• DMét = DAét – étale mixed motives, see [13, 25].
• D(−ét,Z`) – `-adic étale sheaves on Z[1/`]-schemes, ` a prime number, see [19], [25, 7.2.18],

and on excellent schemes, also its subcategory Db
c(−ét,Z`) of bounded complexes with con-

structible cohomology.
• Dσ

B – analytical sheaves on k-schemes for a complex embedding σ : k → C, Dσ
B (X) is the

derived category of sheaves on the analytical site Xσ(C). This is classical, see also [12]. More
generally, given any mixed Weil theory E over a base field k, by restricting to k-schemes, one
has the category DE of modules over the ring spectrum associated with E. See [27, §17.2] for
details.
• Dm

Hdg – the category of motivic Hodge modules, which corresponds to complexes of Saito’s
mixed Hodge modules of geometric origin (obtained by the realization of mixed motives), see
[38].

These examples are naturally related via premotivic adjunctions subject to our conventions above:

Dσ
B

SH
M̃ // D̃M

π // DM
aét
// DMét

ρ` //

ρB
77

ρHdg &&

D(−ét,Z`)

Dm
Hdg

(1.2.0.a)

• By our definitions of D̃M and DM, the first two functors are induced by taking free modules.
See [27, §7.2], [79] for accounts using model categories.4

• The functor aét changes the topology, see [44], taking into account the Dold-Kan correspon-
dence and the E∞-ring spectra representing motivic cohomology and étale motivic cohomol-
ogy.
• The functor ρB is defined in [12] (see [27] for mixed Weil theories).
• The functors ρ` and ρHdg are defined in [25] and [38], respectively.

Formally, being part of a premotivic adjunction, each of the functors in (1.2.0.a) admits a natural right
adjoint. Thus, by construction, they commute with f∗, p!, ⊗. Moreover, when restricting to (quasi-
)excellent schemes they also commute with the other three operations in Grothendieck’s six functors
formalism, see the indicated references. With rational coefficients, both M̃ and aét are equivalences
(see [33] and [27], respectively). Furthermore, SHQ → DMQ is split with complementary factor Morel’s
minus part of SH by [27, 16.2]. The reader should feel free to keep in mind a general T , or specialize
to SH and one of the realization functors in (1.2.0.a).

3This viewpoint was advocated in [78, 79]. If one restricts to schemes over a prime field k and inverts the characteristic
exponent of k, one can employ cdh-motives as defined in [26] (using cdh-sheaves with transfers).

4The construction can be carried out more easily using (monoidal)∞-categories developed in [67].
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1.3. Conventions on vector bundles and virtual vector bundles. We will follow the following con-
vention for the correspondence between coherent locally free sheaves and vector bundles: the vector
bundle E = V(E) associated with a coherent locally free sheaf ofOX -modules E on a scheme X is the
relative spectrum of the symmetric algebra Sym(E). For a vector bundle p : V → X , we denote by
V × the complement of the zero section.

Concerning locally free sheaves and corresponding vector bundles associated with differential
properties for morphisms of schemes, we adopt the following conventions:

• Given a smooth morphism f : X → S, let Ωf = ΩX/S be the sheaf of relative Kähler differen-
tials of f and call it the cotangent sheaf of f . Its associated vector bundle, the relative spectrum
of the symmetric algebra of Ωf , is the tangent bundle Tf = TX/S of f .
• Given a regular closed immersion i : Z → X , with corresponding ideal sheaf IZ ⊂ OX , its

conormal sheaf is theOZ-module Ci = CZ/X = IZ/I2
Z . Its associated vector bundle is the normal

bundle NZ/X of Z in X .
• We denote by E ⊗F the tensor product of OX -modules and by E∨ := HomX(E ,OX) the dual.

Given any morphism of f : X → S, we let Lf = LX/S be its associated cotangent complex. In
general, this is a complex of OX -modules. When f is a local complete intersection morphism (lci for
short), Lf is a perfect complex. Moreover, when f : X → S is lci smoothable, say f = p◦i : X → Y →
S where i : X → Y is a regular closed immersion and p : Y → S is smooth, we have Lf = (Ci → i∗Ωp)
where i∗Ωp and Ci are in homological degree 0 and 1, respectively.

We will use Deligne’s category K(X) of virtual coherent locally free sheaves of OX -modules on a
scheme X (see [36]). Given a locally free sheaf E on X , we denote by 〈E〉 its image in K(X). The
correspondence between coherent locally free sheaves and vector bundles extends using the same
convention as above to a correspondence between virtual locally free sheaves V and their associated
virtual vector bundles v = “V(V)”. Henceforth, we will switch freely between (virtual) locally free
sheaves and (virtual) vector bundles without frequent mention.

Recall also that K(X) can be described using Thomason’s K-theory space K(X) (the infinite loop
space associated with Thomason’s K-theory spectrum, [84, 3.1]) as follows: we view the simplicial
set K(X) as an ∞-category and consider its associated ∞-groupoid K(X)' (the sub-∞-category
generated by 1-morphisms that are equivalences). Then K(X) is the homotopy category associated
with K(X)' — according to [36, 4.12, end of 4.4] and [84, 3.1.1]. This presentation has the advantage
of giving an explicit functor

Dperf (X)→ K(X),K 7→ 〈K〉
by associating to a perfect complex K of OX -modules the corresponding 0-simplex of K(X), which
follows from the very construction of Thomason using complicial biWaldhausen categories.

Recall Deligne’s (rank-)determinant functor of Picard categories

K(X)
(rk,det)−−−−→ ZX × Pic(X),V 7→ (rkV,detV)

where Pic(X) denote Deligne’s Picard category of invertible sheaves on X [36], and for a virtual
locally free sheaf V , detV is the determinant of V and rkV is its virtual rank.

Given an lci morphism f : X → S, the virtual tangent bundle τf = τX/S of X/S is the virtual vector
bundle on X associated to 〈Lf 〉. The canonical sheaf ωf = ωX/S of X/S is the determinant det〈Lf 〉 of
〈Lf 〉. For a morphism of schemes f : X → Y and a (virtual) locally free sheaf V on Y , we denote by
f−1V the pullback of V to X .

2. COMPLEMENTS ON SIX FUNCTORS

2.1. Thom spaces.

2.1.1. The Thom space of a vector bundle p : V → X with zero section s : X → V is the object

Th(V ) = ThX(V ) := p]s∗(1X) ∈ T (X)
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Here p] is the left adjoint of p∗. For a coherent locally free sheaf of OX -modules E , we use also
sometimes use the notation Th(E) as a short hand for Th(V(E)). The Tate twist is a particular case of
this notation, namely, we have 1X(n) = Th(OnX)[−2n] = Th(An

X)[−2n]. According to the stability
property of T ([27, 2.4.4, 2.4.14]), the object Th(V ) is ⊗-invertible in T (X) with ⊗-inverse ([27, 2.4.1,
2.4.12])

Th(−V ) := s!p∗(1X) = s!(1V )

The construction of Thom spaces is functorial in V and, as a consequence of the localization prop-
erty of T ([27, 2.4.6, 2.4.10]), it uniquely extends to a monoidal functor (cf. [27, 2.4.15] and [9, 1.5.18])

Th : K(X)→ T (X)

from Deligne’s category K(X) of virtual locally free sheaves on X . For an arbitrary (resp. separated)
morphism of schemes f : Y → X and a virtual vector bundle v over X , the projection formula and
the ⊗-invertibility of Th(V ) imply the exchange isomorphism

(2.1.1.a) f∗Th(v)
'−→ Th(f−1v) (resp. Th(f−1v)⊗ f !(1X)

'−→ f ! Th(v))

To comply with Morel-Voevodsky’s definition, we introduce the following.

Definition 2.1.2. Let f : X → S be a smooth morphism and let v a virtual vector bundle over X . The
Thom space of v relative to S is the object

ThS(v) = f](Th(v)) ∈ T (S)

Beware that when f is not the identity, the functor ThS is not monoidal.
In the sequel, when we do not indicate the base of a Thom space, we consider it over the same base

scheme as the virtual bundle.

Example 2.1.3. (1) If T = SH and v = 〈V 〉 for a vector bundle V/X , then by homotopy purity
ThS(v) ' Σ∞(V/V ×).

(2) If T = D̃M, the Thom space ThS(v) depends only on the rank and determinant of v (see [33,
§7] for a more precise statement).

(3) If T is oriented in the sense of [27, 2.4.38], e.g., any category under D̃M in (1.2.0.a), then
for every virtual vector bundle v of virtual rank n on a smooth S-scheme p : X → S, there
is a canonical Thom isomorphism ThS(v)

'−→ 1S(n)[2n] compatible with pullbacks and the ⊗-
structure on the functor Th. Since Thom spaces are always reduced to Tate twists for oriented
theories, this is mainly interesting for generalized theories such as Chow-Witt groups, hermit-
ian K-theory, and stable (co)homotopy.

2.2. Internal theories and functoriality. The six functors formalism encodes the axioms of four
(co)homology theories; see e.g., [20] for the combination of cohomology and Borel-Moore homology.
Next, we give a systematic definition from the motivic point of view.

Definition 2.2.1. Let f : X → S be a separated morphism and let v a virtual vector bundle over X .
One associates to X/S and v the following objects of T (S):

• Homotopy: ΠS(X, v) = f!(Th(v)⊗ f !(1S))
• Cohomotopy: HS(X, v) = f∗(Th(v)⊗ f∗(1S)) ' f∗(Th(v))
• Borel-Moore (or properly supported) homotopy: Πc

S(X, v) = f∗(Th(v)⊗ f !(1S))
• Properly supported cohomotopy: Hc

S(X, v) = f!(Th(v)⊗ f∗(1S)) ' f!(Th(v))

When v = 0, we simply write ΠS(X), HS(X), Πc
S(X), Hc

S(X).
The natural transformation αf : f! → f∗ yields canonical maps:

αX/S : ΠS(X, v)→ Πc
S(X, v)(2.2.1.a)

α′X/S : Hc
S(X, v)→ HS(X, v) (“forgetting proper support”)(2.2.1.b)

Both αX/S and α′X/S are isomorphisms whenever X/S is proper.
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Remark 2.2.2. If X/S is smooth separated, ΠS(X) is called the premotive of X/S in [27]. For all T ,
with the exception ofDb

c(−,Z`), the objects ΠS(X)(n) forX/S smooth generate T (X) under colimits.

Example 2.2.3. Here is a summary comparing our notations with more familiar ones.
(1) T = SH and X/S smooth: ΠS(X) = Σ∞X+ and for a vector bundle V on X , we have

ΠS(X, 〈V 〉) = Σ∞Th(V ).
(2) T = DM and X/S smooth: ΠS(X) is Voevodsky’s motive MS(X) of X/S. When X/S is

proper and X is regular, HS(X) =: hS(X) is the relative Chow-motive of X/S. It is a pure
motive of weight 0 in the sense of Bondarko. See [60] for the comparison of these objects with
Corti-Hanamura’s definition.

(3) T = DM, k a perfect field, X/k smooth separated: Πk(X) = M(X) = C∗L(X), where, with
the notations of [86, chap. 5], C∗ is the Suslin complex functor, and L(X) is the sheaf with
transfers represented by X . If k is of characteristic 0, or one works with DM[1/p] if k has
characteristic p > 0, then Πc

k(X) = M c(X) = C∗L
c(X) where Lc(X) the sheaf of quasi-finite

correspondences (see [86, chap. 5] in characteristic 0 and [25, 8.10] in general).
(4) T = Db

c(−ét,Z`) and f : X → S any morphism: HS(X) = Rf∗(Z`) is the complex computing
étale cohomology of X in Db

c(Sét,Z`). In particular, if S = Spec(k), the complex compute
absolute étale cohomology of X after forgetting the action of the absolute Galois group of k.
Similarly, Hc

S(X) computes cohomology with compact support.
(5) T = DMh: using the model category of [25], for a smooth S-scheme X , ΠS(X) is obtained as

the infinite suspension of the h-sheaf represented by X .

Remark 2.2.4. As explained in Section 1.2, the comparison functors from SH to the other motivic cat-
egories T considered in loc. cit. commute with the six operations provided that one restricts to
excellent base schemes. In particular, the four internal theories considered in SH realize the corre-
sponding theories in T – of course, this universal property of SH was at the heart of Voevodsky’s
theory since the beginning. See [39] for a complete account incorporating the six functors. Practically
any assertion concerning these internal theories proved in SH is equally valid in T .

2.2.5. Natural functoriality: For a morphism f : Y → X between separated S-schemes, we have the
following naturally induced maps (which explain our choice of terminology):

• f∗ : ΠS(Y, f−1v)→ ΠS(X, v)
• f∗ : HS(X, v)→ HS(Y, f−1v)
• f∗ : Πc

S(Y, f−1v)→ Πc
S(X, v), when f is proper

• f∗ : Hc
S(X, v)→ Hc

S(Y, f−1v), when f is proper
In addition, when f is proper then the comparison maps αX/S and α′X/S (see (2.2.1.a) and (2.2.1.b) )
are compatible with f∗ and f∗.

Remark 2.2.6. Homotopy twisted by some virtual bundle w on Y , with or without compact support,
is not covariant functorial unless w is the pullback of some virtual bundle on X .

Example 2.2.7. Suppose X/S is a separated S-scheme, and let ν : X0 → X be the immersion on
the underlying reduced subscheme (in fact any nil-immersion will work). The localization property
for T implies that (ν∗, ν∗) is an equivalence of categories ([27, 2.3.6]). As ν∗ = ν! it follows that
ν∗ = ν!. For any virtual vector bundle v on X and v0 = ν∗(v), one deduces the naturally induced
isomorphisms

ν∗ : ΠS(X0, v0)
'−→ ΠS(X, v), ν∗ : Πc

S(X0, v0)
'−→ Πc

S(X, v)

ν∗ : HS(X, v)
'−→ HS(X0, v0), ν∗ : Hc

S(X, v)
'−→ Hc

S(X0, v0)

In particular, with v = 0, we get

ΠX(X0) ' Πc
X(X0) ' HX(X0) ' Hc

X(X0) ' 1X
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2.2.8. A smooth separated S-scheme f : X → S is said to be stably A1-contractible over S if the induced
map f∗ : ΠS(X) → 1S is an isomorphism. Note that due to the existence of the conservative family
(s∗)s∈S of [27, Prop. 4.3.17], this property is equivalent to ask that for every point s ∈ S, the fiber Xs

is stably A1-contractible over κ(s).

Lemma 2.2.9. Let S be a regular scheme and suppose f : X → S is stably A1-contractible over S. Then every
virtual bundle v over X is constant relative to S, i.e., v = f∗v0 for some virtual vector bundle v0 over S.

Moreover, let T be the tangent bundle of X/S and let v0 be the virtual vector bundle over S such that
〈T 〉 = f∗v0. Then there is a naturally induced isomorphism

f∗f
!(−) ' ThS(v0)⊗−

Proof. The first assertion is a consequence of the representability of K0 in SH(S). To prove the asser-
tion, one considers for every object E of T (S) the composite of exchange isomorphisms

f∗f
!(E)

(a)
' f∗(Th(T )⊗ f∗(E)) = f∗(Th(f∗v0)⊗ f∗(E))

(b)
' Th(v0)⊗ f∗f∗(E)

(c)
' Th(v0)⊗ E

Here (a) is an instance of the relative purity isomorphism, (b) follows from the fact that Th(v0) is
⊗-invertible, and (c) holds because f is a stable A1-weak equivalence and since f is smooth, one has:
f∗f
∗(E) ' Hom(ΠS(X),E).5 �

Definition 2.2.10. Let f : Y → X be a morphism of separated S-schemes and let v be a virtual vector
bundle v over X . We denote the homotopy cofiber of f∗ : ΠS(Y, f−1v)→ ΠS(X, v) by ΠS(X/Y, v) so
that there is an homotopy exact sequence

ΠS(Y, f−1v)→ ΠS(X, v)→ ΠS(X/Y, v)

2.3. Virtual fundamental classes, homotopical smoothness and purity.

2.3.1. Exceptional functoriality (Gysin maps): Due to the existence of the fundamental classes introduced
in [35] the four theories in Definition 2.2.1 satisfy exceptional functoriality (see [35, 4.3.4] for the
general case of a triangulated motivic category).

Let f : Y → X be a smoothable lci morphism, i.e., f factors as a regular closed immersion fol-
lowed by a smooth morphism, with cotangent complex Lf and associated virtual tangent bundle τf .
One deduces, from the system of fundamental classes in [35, Theorem 3.3.2], the canonical natural
transformation

(2.3.1.a) pf (−) : Th(τf )⊗ f∗ → f !

By adjunction, one deduces trace and cotrace maps (see §4.3.4 in loc. cit.)

trf : f!(Th(τf )⊗ f∗)→ Id and cotrf : Id→ f∗(Th(−τf )⊗ f !)

The latter maps induce the Gysin maps:
• f ! : ΠS(X, v)→ ΠS(Y, f−1v − τf ), when f is proper
• f! : HS(Y, f−1v + τf )→ HS(X, v), when f is proper
• f ! : Πc

S(X, v)→ Πc
S(Y, f−1v − τf )

• f! : Hc
S(Y, f−1v + τf )→ Hc

S(X, v)

Again, assuming f is proper, the comparison maps αX/S and α′X/S are compatible with the above
Gysin morphisms in the obvious sense.

2.3.2. Fundamental classes. Characteristic classes are cohomology classes used for classification and
computations. It is also possible to define these invariants as cohomotopy classes. Recall also that
fundamental classes extend to bivariant homotopy (suitably twisted), see [35] as already mentioned
in 2.3.1.

5Recall the last isomorphism follows from the axioms of premotivic categories: indeed by the smooth projection formula,
f]f
∗(−) = ΠS(X)⊗− and we conclude as f∗f∗ is right adjoint to f]f∗.
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Example 2.3.3. Euler exact sequence and Euler classes. Let f : X → S be a smooth S-scheme and let V be
a vector bundle of rank r on X . From the localization triangle associated with the zero section s of V
and the homotopy property ΠS(V ) ' ΠS(X), one derives the homotopy exact sequence

ThS(V )[−1]→ ΠS(V ×)→ ΠS(X)
s!−→ ThS(V )

Note that, by definition, when X = S, then s! : 1X → Th(V ) is the realization in T (X) of V ’s Euler
class e(V ) ∈ SH(X) defined in [35, Definition 3.1.2]. When f : X → S is not the identity, then s! is
the image of the realization of e(V ) by f!. This justifies our notation eS(V,T ) = s!. In particular, note
that eS(V,T ) is zero whenever V contains the trivial line bundle A1

X as a direct summand (loc. cit.,
Corollary 3.1.8).

In the case S is the spectrum of a field, we have the following:
(1) When T = DM or, more generally, when T is oriented, the motivic Euler class

e(V ) : 1X → Th(V ) ' 1X(n)[2n]

corresponds to the top Chern class cn(V ) under the isomorphism H2n,n
M (X) ' CHn(X).

(2) As a map in D̃M(X), the realization of the stable homotopy Euler class e(V ) corresponds to
Barge-Morel-Fasel’s Euler class in the Chow-Witt group C̃H

n
(X,detV ) of X twisted by the

determinant of V .

For a smoothable lci morphism f : X → S with virtual tangent bundle τf one has the canonical
class

ηf : Th(τf )→ f !(1S)

which we will consider as a homotopy class in

HT
0 (X/S, τf ) := [Th(τf ), f !(1S)] = [f!(Th(τf )),1S ]

for the bivariant homology theory (with respect to T ) ofX/S and twist τf . In fact, this bivariant class
is a cohomotopy class; that is, an element of the abelian group

Hn
T (X, τf ) := [1X ,Th(τf )[n]]

We impose the following assumptions.
(1) f is proper.
(2) there exists a virtual bundle v over S and an isomorphism ε : τf ' f−1(v). The couple (ε, v),

or simply ε when v is clear, will be called an f -parallelization of τf .
In this case, we can consider the composite map

H0
T (X)

ε∗−→ H0
T (X, τf − f−1v)

f!−→ H0
T (S,−v)

Here, the choice of ε yields the first map, and the second one is the Gysin map in cohomotopy (see op.
cit.). The image of the unit element 1 in cohomotopy H0

T (X) can be deduced from the fundamental
class ηf via the composite

Th(v)
adf−−→ f∗f

∗(Th(v)) ' f!(Th(f−1v))
ε∗−→ f!(Th(τf ))

ηf−→ 1S

Definition 2.3.4. Let f : X → S be a proper smoothable lci map with an f -parallelization (ε, v) of its
virtual tangent bundle. The associated twisted fundamental class is given by

ηεf = f!ε∗(1) ∈ H0
T (S,−v)

When f = i : Z → X is a regular closed immersion, and we consider an f -parallelization (ε, v) of its
normal bundle Ni, corresponnding to an f -parallelization ε′ : τi = −〈Ni〉 → −v, we also define the
twisted fundamental class of (Z, ε) in X as

[Z]εX = f!ε
′
∗(1) ∈ H0

T (X, v)
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Example 2.3.5. In our definition, the reader might be surprised by the cohomotopical index 0. The
”true” degree is hidden in the twist. In particular, for T = DM (resp. D̃M), and a rank d virtual
bundle v over a smooth k-scheme X , we have

H0
DM(X, v) ' CHd(X), (resp. H0

D̃M
(X, v) ' C̃Hd(X,det v))

The Chow (resp. Chow-Witt) group of X (resp. twisted by the invertible sheaf det(v)). For T =

SH, there is also a canonical isomorphism H0
SH(X, v) ' C̃H

d (
X,det(v)

)
, see Proposition 6.2.2 in the

Appendix. In the motivic case or any of the oriented triangulated motivic categories of (1.2.0.a),
the motivic fundamental class of a closed immersion i : Z → X and f -parallelization (ε, v) is the
usual cycle class of Z in CHd(X) (resp. in the relevant cohomology in degree 2d and twist d). It
is independent of the chosen f -parallelization. This is not the case in the category of Milnor-Witt
motives and in SH, as modifying the twist L in C̃Hd(X,L) can change the group.

Example 2.3.6. Given a regular closed immersion i : Z → X , a way to obtain an i-parallelization of
the normal bundleNi is to consider an lci morphism p : X → Z ′ such that p◦ i is étale. Indeed, in that
case, if τp denotes the virtual tangent bundle of p, we get a canonical isomorphism ε : 〈Ni〉 ' i−1τp as
the tangent bundle of p ◦ i is trivial.

An important example for us comes from the diagonal immersion δ : X → X ×S X of a smooth
S-scheme X . It admits two smooth retractions given by the projections pj , for j = 1, 2. We denote the
corresponding twisted fundamental classes by

[∆X/S ]jX×X ∈ H
0
T (X ×S X, p−1

j 〈TX/S〉)

2.3.7. Homotopical smoothness and purity.

Definition 2.3.8. (See also [35, Definition 4.3.7]). Let f : X → S be a smoothable lci morphism with
virtual tangent bundle τf . We say that f is homotopically smooth (h-smooth) with respect to the motivic
∞-category T if the natural transformation

pf (−) : Th(τf )⊗ f∗ → f !

(see (2.3.1.a)) evaluated at the sphere spectrum 1S is an isomorphism pf : Th(τf )→ f !(1S).

2.3.9. One gets the following basic properties of h-smoothness: considering composable lci smooth-
able morphisms f , g, h = f ◦ g (which is also lci smoothable), if f and g (resp. f and h) are h-smooth,
then so is h (resp. g). Moreover, if g! is conservative, g and h being h-smooth implies that f is h-
smooth. On the other hand, h-smoothness is not stable under base change.

Example 2.3.10. Here are some examples of h-smooth maps f : X → S.

• f is smooth
• X , S are smooth over some base B and f is a morphism of B-schemes
• X , S are regular over a field k and T is continuous, see [33, Appendix A] (all our examples

are continuous in this sense)
• (Absolute purity) X and S are regular and T = SHQ,DMQ,DMét, D(−ét,Z`)

In particular, a closed immersion between smooth varieties over a field is h-smooth. On the other
hand, not all regular closed immersions are h-smooth:

Example 2.3.11. Consider the regular closed immersion

i : Z = Z1 ∪{o} Z2 → X = A2

of the union of coordinate axes Zj ' A1, j = 1, 2 in the affine plane A2 over a field k. We claim that i
is not h-smooth (see Corollary 3.3.7 and Example 3.3.8 for more context).
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The normal bundleNZ/X is the trivial line bundle of rank 1. Let i0 : {o} → Z be the induced closed
immersion and note that the composite immersion i ◦ i0 : {o} → X is h-smooth, with trivial nor-
mal bundle N{o}/X of rank 2. Now apply cdh-descent to the canonically induced cdh-distinguished
square of closed immersions

{o}
i0

!!

i0,1 //

i0,2
��

Z1

i1��
Z2

i2 // Z

We obtain the homotopy exact sequence

1Z → i1∗1Z1 ⊕ i2∗1Z2 → i0∗1{o}

Applying i!0 to this sequence and using the base change isomorphisms i!0ij,∗(1Zj ) ' i!0,j(1Zj ) and the
purity isomorphisms i!0,j(1Zj ) ' Th{o}(−N{o}/Zj ) ' 1k(−1)[−2] for the h-smooth closed immersions
i0,j : {o} → Zj we get the homotopy exact sequence

i!0(1Z)→ 1k(−1)[−2]⊕ 1k(−1)[−2]→ 1k

The second map in the above sequence is given by a pair of elements in π2r,r(k) for some r < 0.
Hence it is trivial, and we obtain the isomorphism (see Corollary 3.3.7 for a generalization)

i!0(1Z) ' 1k(−1)[−2]⊕ 1k(−1)[−2]⊕ 1k[−1]

On the other hand, if i was h-smooth, we would have i!(1X) ' ThZ(−NZ/X). Hence, by applying i!0
and using (2.1.1.a) and the ⊗-invertibility of Th{o}(i

−1
0 NZ/X), we would obtain isomorphisms

i!0(1Z) ' i!0i!(1X)⊗ Th{o}(i
−1
0 NZ/X) ' Th{o}(−N{o}/X)⊗ Th{o}(i

−1
0 NZ/X) ' 1k(−1)[−2]

The h-smoothness property allows one to compare the four different theories in Definition 2.2.1
and generalizes the smooth case. More precisely, the “associativity formula” for fundamental classes
in [35, Theorem 3.3.2] implies the next result.

Proposition 2.3.12. Let f : X → S be an h-smooth morphism with virtual tangent bundle τf . Then the
purity isomorphism pf : Th(τf )→ f !(1S) induces isomorphisms

ΠS(X, v) = f!

(
Th(v)⊗ f !(1S)

) p−1
f−−→ f!

(
Th(v)⊗ Th(τf )

)
= Hc

S(X, v + τf )

Πc
S(X, v) = f∗

(
Th(v)⊗ f !(1S)

) p−1
f−−→ f∗

(
Th(v)⊗ Th(τf )

)
= HS(X, v + τf )

Moreover, these isomorphisms transform the natural functoriality (resp. Gysin map) in the source to the Gysin
map (resp. natural functoriality) on the target.

2.4. Closed pairs. A closed S-pair is a pair (X,Z) consisting of a separated S-scheme f : X → Z and
a closed subscheme i : Z ↪→ X ofX . For such a pair we denote by j : X−Z → X the complementary
open immersion, so that we have a commutative diagram

(2.4.0.a) Z �
� i //

p ))

X
f��

X − Z? _
joo

qttS

A morphism (Φ, ϕ) : (Y, T ) → (X,Z) of closed S-pairs is a topologically cartesian commutative
diagram

(2.4.0.b) T
ϕ ��

// Y

Φ��
Z // X
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Here, the horizontal maps are closed immersions. Note that ΠS(X/X−Z) is functorial for morphisms
of closed S-pairs. A morphism of closed S-pairs (Φ, ϕ) is said to be cartesian if (2.4.0.b) is cartesian. It
is said to be Nisnevich-excisive (resp. cdh-excisive) if (2.4.0.b) is Nisnevich-distinguished (resp. cdh-
distinguished) in the sense of [85]. An excisive morphism of closed S-pairs induces an isomorphism
in T (S). Indeed, this follows from Nisnevich excision, which is implied by the localization property
in [27, 3.3.4].

Definition 2.4.1. A closed S-pair (X,Z) is weakly smooth (resp. weakly h-smooth) if there exists a Nis-
nevich neighborhood V of Z inX such that V and Z are smooth (resp. h-smooth, see Definition 2.3.8)
over S.

We note that for closed S-pairs as in Definition 2.4.1, the closed immersion i : Z → X is necessarily
regular with normal bundle NZ/X .

2.4.2. Suppose (X,Z) is a closed S-pair with the property that X is h-smooth over S in some Nis-
nevich neighborhood of its closed subscheme Z. Then, although the cotangent complex LX/S might
not be a perfect complex onX , it restricts by assumption to a perfect complex on a suitable Nisnevich
neighborhood of Z inX . Thus, one can canonically define i−1τX/S as a virtual vector bundle on Z (by
choosing an appropriate Nisnevich neighborhood and showing that it is independent of the choice).

We extend the Morel-Voevodsky homotopy purity theorem as follows, see also Theorem 3.4.3 for
a refinement when Z has smooth crossing singularities.

Theorem 2.4.3. Let (X,Z) be a closed S-pair and let v be virtual vector bundle on X . Then the following
hold:

(1) If X is h-smooth over S in a Nisnevich neighbordhood of Z, then there are canonical purity isomor-
phisms

(2.4.3.a)
ΠS(X/X − Z, v) ' Hc

S(Z, i−1v + i−1τX/S)
HS(X/X − Z, v) ' Πc

S(Z, i−1v − i−1τX/S)

(2) If moreover (X,Z) is weakly h-smooth, then there are canonical purity isomorphisms

(2.4.3.b)
ΠS(X/X − Z, v) ' ΠS(Z, i−1v + 〈NZ/X〉)
HS(X/X − Z, v) ' HS(Z, i−1v − 〈NZ/X〉)

which are natural for morphisms of weakly h-smooth closed S-pairs.

Proof. By Nisnevich excision for closed S-pairs, we are reduced to the case where f : X → S is h-
smooth, with virtual tangent bundle τf . The fact that the two isomorphisms do not depend on the
choice of a Nisnevich neighborhood follows by the functoriality of the excision isomorphism. With
the notation (2.4.0.a), by inserting Th(v)⊗ f !(1S) in the localization exact homotopy sequence

j!j
! → Id→ i∗i

∗

and applying f! we get the exact homotopy

ΠS(X − Z, j−1v)→ ΠS(X, v)→ p!

(
Th(i−1v)⊗ i∗f !(1S)

)
Here we used the identifications

f!j!j
!
(

Th(v)⊗ f !(1S)
)
' q!

(
Th(j−1v)⊗ q!(1S)

)
= ΠS(X − Z, j−1v)

f!i∗i
∗(Th(v)⊗ f !(1S)

)
' f!i!

(
Th(i−1v)⊗ i∗f !(1S)

)
= p!

(
Th(i−1v)⊗ i∗f !(1S)

)
In particular, there is an isomorphism

ΠS(X/X − Z, v) ' p!

(
Th(i−1v)⊗ i∗f !(1S)

)
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The purity isomorphism then yields the desired isomorphism

ΠS(X/X − Z, v) ' p!

(
Th(i−1v)⊗ i∗f !(1S)

) p−1
f−−→ p!

(
Th(i−1v)⊗ i∗(Th(τf )⊗ f∗(1S))

)
= p!

(
Th(i−1v + i−1τf )

)
= Hc

S(Z, i−1v + i−1τf )

In the case where Z/S is h-smooth, with virtual tangent bundle τp, the purity isomorphism pp in
Proposition 2.3.12 yields in turn an isomorphism

Hc
S(Z, i−1v + i−1τf ) ∼= ΠS(Z, i−1v + i−1τf − τp) = ΠS(Z, i−1v + 〈NZ/X〉)

The second isomorphism in Theorem 2.4.3 is now a direct consequence of the h-smoothness property
of Z/S.

The dual statements for HS(X/X − Z, v) follow from similar arguments applied to the dual local-
ization homotopy exact sequence i!i! → Id→ j∗j

∗. �

2.5. Computations of weak duals.

2.5.1. Recall [30, 5.2] that an objectM of a monoidal category with unit 1 is said to be rigid (or strongly
dualizable) with dual M∨ if there exists pairing and co-pairing maps

µ : M ⊗M∨ → 1, ε : 1→M∨ ⊗M

satisfying relations that express the functors M ⊗ − and − ⊗M∨ as both left and right adjoints. In
a general symmetric monoidal category, if an object M is rigid, then Hom(M,1) is a (strong) dual of
M , and the duality pairing is given by the evaluation map M ⊗ Hom(M,1) → 1. This justifies the
terminology weak dual of M for the object Hom(M,1). Next, we highlight some weaker results which
will be useful in the remaining. We first pin down a notion that appears to be missing in previous
works on the six functors formalism.

Definition 2.5.2. A separated morphism f : X → S is called pre-T -dualizing if the map

(2.5.2.a) 1X → Hom
(
f !(1S), f !(1S)

)
obtained by adjunction from the identity of f !(1S) is an isomorphism in T (X).

Example 2.5.3. According to Definition 2.3.8, any h-smooth morphism is pre-dualizing.

Remark 2.5.4. The notion of a pre-dualizing morphism is closely linked with Grothendieck-Verdier
duality, as shown in [27, 4.4.11]. In fact, if f !(1S) is a dualizing object ([27, Definition 4.4.4]), then f is
pre-dualizing. Thus, it follows from [9] that f is pre-SH-dualizing as soon as its target is smooth over
a field of characteristic 0. In many cases, if the target of f is regular, then f is pre-dualizing: see [57]
for D(−ét,Z`), [27] for DM, [26] for DMét, and [33] for SHQ.

The following proposition provides formulas for some weak duals, hence for potential strong duals
when they exist.

Proposition 2.5.5. Let f : X → S be a separated S-scheme and let v be a virtual vector bundle over X . Then
the following hold:

(1) There exists a canonical isomorphism

Hom(Hc
S(X, v),1S)

'−→ Πc
S(X,−v)

which is functorial in X , for both the natural functoriality for proper maps (2.2.5) and for the Gysin
morphisms for smoothable lci morphisms (2.3.1).

(2) If moreover f is pre-dualizing, then there exists an isomorphism

Hom(ΠS(X, v),1S)
'−→ HS(X,−v)

which is again functorial for the natural functorialities and Gysin maps.
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(3) If moreover f is h-smooth, with virtual tangent bundle τf , then the purity isomorphism pf induces
canonical isomorphisms

Hom
(
ΠS(X, v),1S

)
' Πc

S(X,−v − τf ) and Hom
(
Hc
S(X, v),1S

)
' HS(X,−v + τf )

which are natural with respect to the natural functorialities and the Gysin maps, both restricted to
proper morphisms.

Proof. To prove the isomorphism in (1) we use

Hom(Hc
S(X, v),1S) = Hom(f!(Th(v)),1S)

(a)−−→ f∗Hom
(

Th(v), f !(1S)
)

(b)
' f∗

(
Th(−v)⊗ f !(1S)

)
= Πc

S(X,−v)

Here, (a) (resp. (b)) follows from the internal interpretation of the fact that f ! is right adjoint to f!

(resp. that Th(v) is ⊗-invertible).
To deduce (2), we consider the isomorphisms

Hom(ΠS(X, v),1S) = Hom
(
f!

(
Th(v)⊗ f !(1S)

)
,1S
) (a)−−→ f∗Hom

(
Th(v)⊗ f !(1S), f !(1S)

)
(b)
' f∗

(
Th(−v)⊗Hom

(
f !(1S), f !(1S)

))
(c)
' f∗

(
Th(−v)⊗ 1X

)
= HS(X,−v)

Here, (a) and (b) are justified as before in (1), and (c) follows from the assumption that f is pre-
dualizing. The isomorphisms in (3) are a combination of (1) and (2), and the isomorphisms of Propo-
sition 2.3.12.

Each functoriality statement is clear by construction. �

Example 2.5.6. Here are known examples to which Proposition 2.5.5 applies to give formulas for
strong duals:

(1) For T = SH(k), where k is a field of characteristic 0, according to [76, Theorem 1.4] any con-
structible spectrum is rigid. It follows from [10] that the six operations preserve constructibil-
ity for morphisms of k-schemes finite type.

(a) In particular, Hc
k(X, v) and Πc

k(X, v) are both rigid, and the point (1) above shows that
Πc
k(X, v) is dual to Hc

k(X,−v) (and reciprocally).
(b) Similarly, Πk(X, v) and Hk(X, v) are constructible, and thus rigid. As Remark 2.5.4

shows that X/k is pre-dualizing, point (2) of the above proposition shows that Πk(X, v) is
dual to Hk(X,−v). See Proposition 3.4.1 for a generalization.

(c) Finally, if X is smooth, point (3) shows that Πk(X, v) is dual to Πc
k(X,−v − 〈TX/k〉),

which is the expected generalization of Poincaré duality. This result will be extended in The-
orem 3.4.2.

(2) Using [22, Theorem 2.4.9] (see also [53, Theorem 5.8]), the same results hold in SH(k)[1/p] if k
has positive characteristic p.

Over a base scheme S of positive dimension, the situation is more complicated. When X/S is
smooth and proper, Example 2.5.7 shows that ΠS(X, v) = Πc

S(X, v) is rigid for any virtual vector
bundle v. Theorems 3.4.1, 3.4.3 and Corollary 3.5.4 below give several new examples of rigid relative
spectra and motives. In general, neither properness nor smoothness alone ensures rigidness, see
Example 2.5.8.

Example 2.5.7. Poincaré duality (see [30, 5.4]). Let f : X → S be a smooth proper S-scheme with
tangent bundle T . Then, for any virtual bundle v over X , ΠS(X, v) is rigid with dual

ΠS(X,−〈T 〉 − v) = ThS(−v − 〈T 〉)
Note that the given expression of the dual corresponds to that in Proposition 2.5.5(2) via the purity
isomorphism ΠS(X,−v − 〈T 〉) ' Hc

S(X,−v) = HS(X,−v) of Proposition 2.3.12.
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Indeed, letting δ : X → X ×S X be the diagonal closed immersion, the pairing and co-pairing
maps are given by the composite maps

ΠS(X, v)⊗ΠS(X,−v − 〈T 〉)
(∗)
' ΠS(X ×S X,−〈p−1

1 Tf 〉)
δ!

−→ ΠS(X)
f∗−→ 1S

1S
f !

−→ ΠS(X,−〈T 〉) δ∗−→ ΠS(X ×S X,−〈p−1
1 T 〉)

(∗)
' ΠS(X,−v − 〈T 〉)⊗ΠS(X, v)

Here the labels (∗)’s are instances of the Künneth isomorphism (2.6.1.b) given in the next subsection.
The required identities follow from the base change formula for Gysin morphisms in [35, 3.3.2(iii)].

Example 2.5.8. Let i : Z → S be a h-smooth closed immersion (e.g., Z and S are smooth over a
field k) with nonempty open complement j : U → S. We claim that ΠS(U) = j!(1U ) is not rigid.
Indeed, assuming the contrary, according to Proposition 2.5.5 its dual would be isomorphic to j∗(1U ).
Since i∗ is monoidal, it would follow that i∗j!(1U ) is rigid with dual i∗j∗(1U ). The first spectrum is
trivial, whereas purity identifies the second one with an extension of 1Z by Th(NZ/S), which is thus
necessarily a nontrivial spectrum. An identical (dual) argument shows that ΠS(Z) is not rigid.

In a similar vein, [72, Remark 8.2] gives the following: let S = Spec(R) be the spectrum of a discrete
valuation R with quotient field K. Then ΠS(Spec(K)) is not rigid in SH(S).

2.6. Künneth isomorphisms. We collect here several variants of Künneth formulas (see also Propo-
sition 3.3.6).

Example 2.6.1. Künneth isomorphisms. Let X , Y be separated S-schemes and v, w be virtual vector
bundles over X , Y , respectively. Then one deduces from the projection and base change formulas a
canonical isomorphism (obtained from exchange isomorphisms, see [27])

(2.6.1.a) Hc
S(X, v)⊗Hc

S(Y,w) ' Hc
S(X ×S Y, p−1

1 v + p−1
2 w)

If X and Y are in addition smooth over S, then we have the more usual Künneth formula (see [27,
1.1.37])

(2.6.1.b) ΠS(X, v)⊗ΠS(Y,w) ' ΠS(X ×S Y, p−1
1 v + p−1

2 w)

One can also deduce (2.6.1.b) from the previous one by using the relative purity isomorphism. Ex-
ample 2.6.2 shows the second Künneth formula (2.6.1.b) fails in the non-smooth case.

Example 2.6.2. One can extend the Künneth formula (2.6.1.b) to the non smooth case (see below for
example) but one still needs assumptions. Indeed, one cannot replace in general smoothness by
h-smoothness. For example, for the zero section s : X → An

X = S, n ≥ 1, one has ΠS(X) =
s∗(1X)(n)[2n] and

ΠS(X)⊗S ΠS(X) = s∗(1X)(n)[2n]⊗ s∗(1X)(n)[2n] = s∗(1X)(2n)[4n]

The latter is different from ΠS(X ×S X) = ΠS(X) (in any of our motivic∞-categories).

2.6.3. In the following result, we give some new cases of Künneth formulas to compute stable homo-
topy at infinity (see Propositions 4.3.5 and 4.3.6). To a cartesian square of separated morphisms

X ×S Y
q
�� h

$$

p // Y
g
��

X
f
// S
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we associate the following commutative diagram of exchange transformations and the map α? for-
getting proper support

f!f
!(1)⊗ g!g

!(1)
∼ ��

αf⊗αg // f∗f
!(1)⊗ g∗g!(1)

(1)��
g!(g

∗f!f
!(1)⊗ g!(1))
∼ ��

αg(αf )
// g∗(g

∗f∗f
!(1)⊗ g!(1))

(2)��
g!(p!q

∗f !(1)⊗ g!(1))
∼ ��

αg(αp) // g∗(p∗q
∗f !(1)⊗ g!(1))

(3)��
h!(q

∗f !(1)⊗ p∗g!(1))
(4) ��

αh // h∗(q
∗f !(1)⊗ p∗g!(1))

(4)��
h!(h

!(1))
αh // h∗(h

!(1))

(2.6.3.a)

Here, αr denotes any map induced by the natural transformation r! → r∗.

Theorem 2.6.4. With the above notation, assume that one of the following conditions is satisfied:
i) Y is smooth and proper over S.

ii) S is the spectrum of a field k of characteristic exponent p and either T is Z[1/p]-linear or receives a
realization functor from DMét as in (1.2.0.a).

iii) Y is smooth and stably A1-contractible over S with stably constant tangent bundle Tg (see 2.2.8).
Then all the vertical maps in (2.6.3.a) are isomorphisms, and there is an induced commutative diagram

ΠS(X)⊗ΠS(Y )
αX⊗αY //

∼ ��

Πc
S(X)⊗Πc

S(Y )
∼��

ΠS(X ×S Y )
αXY // Πc

S(X ×S Y )

Proof. In each case, we have to prove that the morphisms (1) to (4) in (2.6.3.a) are isomorphisms. Case
i) is transparent. Next, we consider Case ii). If T is Z[1/p]-linear then all the isomorphisms follow
from [61, Theorem 2.4.6] with Y1 = Y2 = S, X1 = X , X = Y . More precisely, the composite of (1),
(2), and (3) is an isomorphism due to point (2) of 2.4.6, and (4) is an isomorphism by (3) of 2.4.6. If T
receives a functor from DMét, one can reduce to the latter case by appealing to [23, Sec. 3.1].

It remains to prove the assertion in Case iii). The isomorphism (4) follows from the fact that g
(resp. q) is smooth with tangent bundle Tg (resp. Tq = p∗Tg), and from the relative purity isomorphism

q∗f !(1S)⊗ p∗g!(1S) ' q∗f !(1S)⊗ p∗Th(Tg) ' q!f !(1S) = h!(1S)

Using Lemma 2.2.9 applied respectively to q and g, one deduces

h∗h
!(1S) = f∗q∗q

!f !(1S) ' f∗Th(f∗v0)⊗ f !(1S) = Th(v0)⊗ f∗f !(1S) ' f∗f !(1S)⊗ g∗g!(1S)

where v0 is the virtual vector bundle over S such that 〈Tg〉 = g∗v0.
It is now a formal, though lengthy, exercise to check that the preceding isomorphism is equal to

the composition of the maps (1)-(4). �

3. CANONICAL RESOLUTIONS OF CROSSING SINGULARITIES

3.1. Ordered Cech semi-simplicial scheme associated to a closed cover.

3.1.1. Let X be a noetherian scheme and consider a finite closed cover of X , i.e., a surjective map

p : X• = ti∈IXi → X

obtained from a finite collection of closed immersions νi : Xi → X , i ∈ I . We let ∩ = ×X be
a shorthand for the fiber product of closed X-schemes. For every nonempty subset J ⊂ I we set
XJ = ∩j∈JXj and denote by νJ : XJ → X the canonically induced closed immersion. For every pair
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of nonempty subsets J ⊂ K of I , we let νJK : XK → XJ be the canonically induced closed immersion
so that we have νK = νJ ◦ νJK .

The Čech simplicial X-scheme Š∗(X•/X) associated with p takes the form

(3.1.1.a) Šn(X•/X) :=
⊔

(i0,...,in)∈In+1

Xi0 ∩ . . . ∩Xin

with degeneracy morphisms δkn : Šn(X•)→ Šn−1(X•), k = 0, . . . , n, given by the sum of the canonical
immersions

Xi0 ∩ · · · ∩Xik ∩ · · · ∩Xin → Xi0 ∩ · · · ∩ X̂ik ∩ · · · ∩Xin

The choice of a total ordering on I induces a natural bijection between the set of subsets J ⊂ I of
cardinality ]J = n + 1 and the set of (n + 1)-tuples (i0, . . . , in) ∈ In+1 given by mapping a subset J
to the unique (n + 1)-tuple (i0, . . . , in) ∈ In+1 such that J = {i0, . . . , in} and i0 < · · · < in. In the
following we fix such a total ordering and we set

(3.1.1.b) Šord
n (X•/X) :=

⊔
(i0,...,in)∈In+1

i0<···<in

Xi0 ∩ · · · ∩Xin =
⊔

J⊂I, ]J=n+1

XJ

There is a canonical embedding Šord
∗ (X•/X) ⊂ Š∗(X•/X) of N-graded Z-schemes given in degree

n by mapping each Xj0 ∩ · · · ∩ Xjn to itself via the identity. The degeneracy morphisms δkn in the
simplicial structure on Š∗(X•/X) preserve Šord

∗ (X•/X) and induce degeneracy morphisms

δkn =
⊔

J={i0<...<îk<...<in}⊂K={i0<...<in}

νJK : Šord
n (X•/X)→ Šord

n−1(X•/X)

endowing Šord
∗ (X•/X) with the structure of a semi-simplicial X-scheme6. We refer to the latter as the

ordered Čech semi-simplicial X-scheme associated to the finite closed cover p : X• → X .

Remark 3.1.2. By construction, the ordered Čech semi-simplicial scheme Šord
∗ (X•/X) is bounded by

the cardinality ]I of the index set I in the sense that Šord
n (X•/X) = ∅ for all n > ]I . In particular, it is

much smaller than Š∗(X•/X).

3.2. Ordered hyperdescent for closed covers.

3.2.1. We now use the ∞-categorical enhancement of the motivic category T , and in particular the
adjunction of ∞-functors (f∗, f∗) and (f!, f

!). Let us fix a base scheme S and write SchS for the
category of separated S-schemes. To any object E of T (S), we associate the covariant∞-functor

ΠS(−;E) : SchS → T (S), (f : X → S) 7→ f!f
!(E)

and, dually, the contravariant∞-functor

HS(−;E) : SchopS → T (S), (f : X → S) 7→ f∗f
∗(E)

3.2.2. Back to the setup in 3.1.1, we assume in addition that f : X → S is a separated S-scheme.
For every nonempty subset J ⊂ I , we let fJ : XJ → S be the composite of the closed immersion
νJ : XJ → X with f : Z → S. To the ordered Čech semi-simplicial X-scheme Šord

n (X•/X) and any
object E of T (S), we associate the functors(

(∆inj)op → SchS
) ΠS(−;E)−−−−−→ T (S)(

∆inj → SchopS
) HS(−;E)−−−−−→ T (S)

6Recall that a semi-simplicial object in a category C is a contravariant functor from ∆inj → C , where ∆inj denotes the
category of finite ordered sets with injective maps as morphisms.
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By using the augmentation map to X , we obtain canonical maps involving the limit and colimit of
the preceding functors

ΠX•/X;E : colimn∈(∆inj)op

 ⊕
J⊂I,]J=n+1

ΠS(XJ ;E)

→ ΠS(X;E)(3.2.2.a)

HX•/X;E :HS(X;E)→ lim
n∈∆inj

 ⊕
J⊂I,]J=n+1

HS(XJ ;E)

(3.2.2.b)

The next theorem interprets the colimit (resp. limit) as the “standard” resolution of homology (resp. co-
homology) of X/S with E-coefficients.

Theorem 3.2.3. For every finite closed cover p : X• → X , the maps ΠX•/X;E and HX•/X;E are both isomor-
phisms in T (S).

Proof. Using Example 2.2.7, we can reduce to the case where X and each Xi are reduced.
Let us consider the case of ΠX•/S;E. For every nonempty subset J ⊂ I , there is an isomorphism

fJ !f
!
J ' f!νJ !ν

!
Jf

!. So by replacing E with f !(E), we are reduced to the case S = X . There is, see for
example [33, B.20], a conservative family of functors

i!z : T (X)→ T
(

Spec(κ(x))
)
, x ∈ X

Therefore, it suffices to show i!x
(
ΠX•/X;E

)
is an isomorphism for all x ∈ X . Given J ⊂ I , we consider

the following cartesian square

X ′J

ν′J
��

i′x // XJ

νJ

��
{x} ix // X

By proper base change for the proper map νJ , we have an isomorphism i!xνJ !ν
!
J ' ν ′J !i

′!
xν

!
J . Since, on

the other hand, we have ν ′J !i
′!
xν

!
J ' ν ′J !ν

′!
J i

!
x, and because the pullback of the ordered Čech complex

Šord
∗ (X•/X) along {x} → X corresponds to the ordered Čech complex Šord

∗ (X• ×X {x}/{x}), we
deduce the isomorphism

i!x
(
ΠX•/X;E

)
' ΠX•×X{x}/{x};i!xE

Since X is reduced, we may therefore assume X = {x} is the Zariski spectrum of a field. In this
case, the Xi’s are closed reduced subschemes of the reduced scheme {x}, and thus the closed cover
p′ : ti∈IX ′i → {x} is given by a sum of identity maps. To conclude, one can then observe, for example,
the existence of explicit homotopy contraction of the semi-simplicial augmented pointed X-scheme

Šord
∗ (X•/{x})+ → {x}+

The proof for the map HX•/X;E is entirely analogous, using the conservative family of functors

i∗x : T (X)→ T
(

Spec(κ(x))
)
, x ∈ X

of [27, Proposition 4.3.17]. �

Remark 3.2.4. In formulas (3.2.2.a) and (3.2.2.b), one can arbitrarily replace the closed subscheme XJ

of X by its reduction according to Example 2.2.7. In the followings, we will use that possibility
without further warning.

Remark 3.2.5. Theorem 3.2.3 does not extend to arbitrary cdh-covers. For instance, it does not work
for the proper cdh-cover P1

k → Spec k for apparent reasons: for such a connected cover, one needs
the whole Cech complex to get a resolution of the point. Similarly, the ordered Čech complex as-
sociated with a nontrivial finite étale cover does not yield a resolution in the étale topology. In the
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cdh-topology it is possible to generalize Theorem 3.2.3 by replacing closed covers p : X• → X by
proper cdh-covers such that there exists a stratification of X having the property that for every stra-
tum Y , there exists a member of the covering family Xi → X for which Xi ×X Y → Y is an isomor-
phism. The proof of Theorem 3.2.3 carries over to this setting by applying the proper base change
theorem, and this generalization allows in particular to incorporate the elementary cdh-covers. A
similar consideration applies to Nisnevich covers.

3.3. Schemes and subschemes with crossing singularities.

Notations 3.3.1. Let Z be a separated S-scheme with finitely many irreducible components Z ′i, i ∈ I .
For every nonempty subset J ⊂ I , we let Z ′J = (∩j∈JZ ′j) and ZJ = (Z ′J)red. We denote by νJ the
canonically induced closed immersion of ZJ in Z. For every pair of nonempty subsets J ⊂ K of I ,
we denote by νJK : ZK → ZJ the naturally induced closed immersion. For a virtual vector bundle v
on Z and a nonempty subset J ⊂ I , we let vJ = ν−1

J v.
For a closed S-pair (X,Z) corresponding to a closed subscheme i : Z → X with irreducible com-

ponents Z ′i, i ∈ I , we extend the above notation by setting

ν̄J = i ◦ νJ : ZJ → Z → X

For a virtual vector bundle v on X , we let vJ denote the pullback of v to ZJ by ν̄J .
We fix the following terminology on normal crossing singularities in the rest of this paper.

Definition 3.3.2. With the notation above, we say that Z has smooth (resp. regular, h-smooth) reduced
crossing over S if, for any non-empty J ⊂ I , ZJ is a smooth (resp. regular, h-smooth) S-scheme.

With our conventions, the intersection of the irreducible components of Z is allowed to have non-
trivial multiplicity. Note that h-smoothness is insensible to reduction; we will simply write h-smooth
crossing.

Proposition 3.3.3. Let Z/S be an h-smooth crossing scheme and let v is a virtual vector bundle on Z. Then
ΠS(Z, v) is isomorphic to the colimit in the underlying∞-category of T (S) of the diagram

(3.3.3.a) ΠS(ZI , vI) ⇒
⊕

K⊂I,]K=]I−1

ΠS(ZK , vK) ⇒ . . .
⊕

J⊂I,]J=2

ΠS(ZJ , vJ) ⇒
⊕
i∈I

ΠS(Zi, vi)

with degeneracy maps

(δkn)∗ =
∑

J={i0<...<îk<...<in}⊂K={i0<...<in}

(νJK)∗

and with augmentation map ∑
i∈I

νi∗ :
⊕
i∈I

ΠS(Zi, vi)→ ΠS(Z, v)

Dually, HS(Z, v) is isomorphic to the limit of the diagram

(3.3.3.b)
⊕
i∈I

HS(Zi, vi) ⇒
⊕

J⊂I,]J=2

HS(ZJ , vJ) ⇒ · · ·
⊕

K⊂I,]K=]I−1

HS(ZK , vK) ⇒ HS(ZI , vI)

with co-degeneracy maps

(δkn)∗ =
∑

J={i0<...<îk<...<in}⊂K={i0<...<in}

(νJK)∗

and with co-augmentation map ∑
i∈I

ν∗i : HS(Z, v)→
⊕
i∈I

HS(Zi, vi)
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Proof. Consider the closed cover Z• =
⊔
Z ′i → Z of Z by its irreducible components. Noting that

by Example 2.2.7 we have, for every J ⊂ I , canonical isomorphisms ΠS(Z ′J , v
′
J) ' ΠS(ZJ , vJ) and

H(Z ′J , v
′
J) ' H(ZJ , vJ), the assertion follows by appealing to Theorem 3.2.3 with S = X = Z, X• =

Z• and E = Th(v) ⊗ f !(1S) (resp. E = Th(v)) and then applying f! (resp. f∗) to the obtained
resolution. �

Example 3.3.4. In the case T = SH, the S-scheme Z in Proposition 3.3.3 defines a sheaf of sets Z
on SmS . We claim the preceding computation yields an isomorphism ΠS(Z) ' Σ∞Z+ in SH(S). A
proof uses the P1-stable A1-homotopy category SHcdh(S) over S for the big cdh site; i.e., the site of
finite type S-schemes endowed with the cdh-topology in the style of [27, §6.1]. Theorem 3.2.3 holds
in SHcdh(S) due to cdh-descent, so the comparison reduces to the smooth case, which holds by the
general properties of an enlargement.

Example 3.3.5. In the cases T = DMét,DMQ, Proposition 3.3.3 takes a simpler form for motives.
Indeed, one considers the complex of representable h-sheaves

(3.3.5.a) Zh
S(Z ′I)

dc−2−−−→ . . .
d1−−→

⊕
J⊂I,]J=2

Zh
S(Z ′J)

d0−−→
⊕
i∈I

Zh
S(Z ′i)

with differentials given by the alternating sums di =
∑n

k=0(−1)k(δkn)∗. This complex defines an
object K of DMeff

h (S), which computes the homotopy colimit of (3.3.3.a) Proposition 3.3.3 can thus
be formulated by saying that the infinite suspension of the complex K is isomorphic to MS(Z). As in
the preceding example, one can compute the motive MS(Z) as the infinite suspension of the h-sheaf
Zh
S(Z) represented by Z. This formula is a motivic relative version of the classical computation of the

homology of a normal crossing scheme. It actually gives back the known formulas by realization of
motives (Betti, étale, etc...).

A dual formula holds for computing the relative Chow motive hS(Z) = f∗f
∗(1S). To that end,

we consider the isomorphism h(Z•/Z,1S) of Theorem 3.2.3: hS(Z) is quasi-isomorphic to the image
of the complex (3.3.5.a) under the (derived) internal Hom functor RHom(−,1S), see also Proposi-
tion 3.4.1.

Next, we show a Künneth formula for smooth crossings schemes.

Proposition 3.3.6. Suppose Z, T are smooth crossings S-schemes, and v, w are virtual bundles over Z and
T , respectively. Then the canonical map (2.6.3.a) is an isomorphism

ΠS(Z,w)⊗ΠS(T,w)
'−→ ΠS(Z ×S T, v ×S w)

Proof. The case where Z/S is smooth and T/S is smooth crossing follows from Proposition 3.3.3 and
the fact ⊗ commutes with homotopy colimits (as a left adjoint). To treat the case where Z/S has
smooth crossings, we can therefore argue by induction on the number of irreducible components of
Z. Let Z ′ be an irreducible component of Z and Z ′′ the union of the other irreducible components.
The cdh-distinguished homotopy exact sequence associated with the cdh-cover (Z ′, Z ′′) of Z takes
the form

(3.3.6.a) ΠS(Z ′ ×Z Z ′′)→ ΠS(Z ′)⊕ΠS(Z ′′)→ ΠS(Z)

By induction, the result holds for Z ′ (resp. Z ′′ and Z ′×ZZ ′′) and T . We conclude by tensoring (3.3.6.a)
with ΠS(T ) and applying descent for the cdh-cover (Z ′ ×S T,Z ′′ ×S T ) of Z ×S T . �

As another corollary, the following computation explains the defect of absolute purity.

Corollary 3.3.7. Let i : Z → X be a closed immersion such that Z/X has h-smooth crossings. Then i!(1X)
is isomorphic to the homotopy colimit of the diagram

ThZ(NI) ⇒
⊕

K⊂I,]K=]I−1

ThZ(−NK) ⇒ . . .
⊕

J⊂I,]J=2

ThZ(−NJ) ⇒
⊕
i∈I

ThZ(−Ni)
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Here NJ is the normal bundle of ZJ in Z, ThZ(−NJ) is the associated Thom space (of the opposite), seen over
Z. For any J ⊂ K, we have the Gysin map

(νJK)! : ThZ(−NJ) = HZ(ZJ , 〈−NJ〉)→ HZ(ZK , 〈−NK〉) = ThZ(−NK)

and the degeneracy maps

(δkn)∗ =
∑

J={i0<...<îk<...<in}⊂K={i0<...<in}

(νJK)!

Proof. Applying Proposition 3.3.3 to Z/X , v = 0, yields a computation of ΠX(Z) = i!i
!(1X) as a

colimit. We conclude by applying i∗ and noticing that ν!
J(1X) = Th(−NJ) since νJ : ZJ → X is

h-smooth by assumption (see Definition 2.3.8). �

Example 3.3.8. Applying Corollary 3.3.7 to a strict normal crossing divisor in a regular scheme, we
obtain a homotopy extension of a fundamental computation in étale cohomology. It also explains the
failure of absolute purity for snc divisors and, more generally, for regular closed immersions that are
h-smooth. The augmentation map

(3.3.8.a) εi :
⊕
i∈I

ThZ(−Ni)→ i!(1X)

coming form the above corollary can be seen as the ”best” approximation of the fundamental class
associated with i, in the spirit of [35].

3.3.9. Consider a closed S-pair (X,Z) such that Z has h-smooth crossings over S and such that for
every nonempty subset J ⊂ I , νJ : ZJ → X is an h-smooth closed immersion (see Notations 3.3.1).
This holds, for instance, when X is h-smooth in a Nisnevich neighborhood of Z. In such circum-
stances, ν̄J is, in particular, a regular immersion. We denote its associated normal bundle by NJ .
Denote by j : X − Z → X the complementary open immersion.

Proposition 3.3.10. Let (X,Z) be a closed S-pair such that Z has h-smooth crossings over S and such that
X is h-smooth over S in a Nisnevich neighbordhood of Z. Let v be a virtual vector bundle on X .

Then the object ΠS(X − Z, j−1v) is isomorphic to the limit of the diagram

(3.3.10.a) ΠS(X, v)
ε−→
⊕
i∈I

ΠS(Zi, vi+〈Ni〉) ⇒
⊕

J⊂I,]J=2

ΠS(ZJ , vJ +〈NJ〉) ⇒ · · ·⇒ ΠS(ZI , vI +〈NI〉)

given by the sums of Gysin maps

ε =
∑
i∈I

ν̄!
i (δnk )! =

∑
J={i0<...<îk<...<in}⊂K={i0<...<in}

(νJK)!

associated to the closed immersions ν̄i : Zi → X and νJK : ZK → ZJ .
Dually, the object HS(X − Z, j−1v) is isomorphic to the colimit of the diagram

(3.3.10.b) HS(ZI , vI−〈NI〉) ⇒ · · ·⇒
⊕

J⊂I,]J=2

HS(ZJ , vJ−〈NJ〉) ⇒
⊕
i∈I

HS(Zi, vi−〈Ni〉)
ε′−→ HS(X, v)

given by sums of Gysin maps

ε′ =
∑
i∈I

ν̄j! (δnk )! =
∑

J={i0<...<îk<...<in}⊂K={i0<...<in}

(νJK)!

Proof. With reference to (2.4.0.a), inserting E = Th(v) ⊗ f !(1S) in the localization homotopy exact
sequence j!j! → Id→ i∗i

∗ and applying f! yields the homotopy exact sequence

ΠS(X − Z, j−1v) = f!j!j
!(E)→ ΠS(X, ) = f!(E)→ f!i∗i

∗(E)
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By applying Theorem 3.2.3 to the closed cover
⊔
Z ′i → Z of Z by its irreducible components, and

then applying f! and arguing as in the proof of Proposition 3.3.3, we obtain the isomorphism

f!i∗i
∗(E) ' lim

n∈∆inj

 ⊕
J⊂I,]J=n+1

f!ν̄J∗ν̄
∗
J(E)


The object f!ν̄J∗ν̄

∗
J(E) of T (S) depends only on a Nisnevich neighborhood of Z in X . Thus, under

our hypotheses, we may replace X by an h-smooth Nisnevich neighborhood of Z in X and assume
that f : X → S itself is h-smooth, say with virtual relative tangent bundle τf . We then have the
purity isomorphism E ' Th(v) ⊗ Th(τf ). Furthermore, under our assumptions, for every J ⊂ I ,
ν̄J : ZJ → X and fJ = f ◦ ν̄J : ZJ → S are h-smooth morphisms. Since ν̄−1

J τf = τfJ + 〈NJ〉, where
τfJ is the virtual tangent bundle of the h-smooth morphism fJ and Th(τfJ ) ' f !

J(1S) by purity, we
obtain the isomorphisms

f!ν̄J∗ν̄
∗
J(E) = fJ ! Th(ν̄−1

J τf )⊗ Th(vJ)) ' fJ !(Th(τfJ )⊗ Th(NJ)⊗ Th(vJ))

' fJ !((Th(vJ)⊗ f !
J(1S))⊗ Th(NJ))

= ΠS(ZJ , vJ + 〈NJ〉)

It is then straightforward to check that under these isomorphisms, the maps in the diagram corre-
spond to the announced Gysin maps.

The assertion for HS(X − Z, v) follows similarly by starting with the dual localization homotopy
exact sequence i!i! → Id→ j∗j

∗. We leave further details to the reader. �

Remark 3.3.11. Let us specialize the preceding result to the cases T = DM,DMét,DMQ, and more
specifically T = DMQ when considering Bondarko’s weight structure (see [21]). Under the assump-
tion and notations of Proposition 3.3.10, the motive MS(X − Z) is the limit of the augmented semi-
simplical diagram

(3.3.11.a) MS(X)
ε−→
⊕
i∈I

MS(Zi)〈1〉⇒
⊕

J⊂I,]J=2

MS(ZJ)〈2〉 . . .→MS(ZI)〈c〉

with the same formulas as in (3.3.10.a) for the augmentation ε and the coface maps δnk .
In the case where f : X → S is smooth and proper, and Z = D is a normal crossing divisor

with irreducible components Di, i ∈ I , the formula for the motive MS(X − D) of the complement
of a normal crossing divisor D of X/S is a relative motivic analog of the de Rham complex with
logarithmic poles that Deligne used to define mixed Hodge structures. The motive of the non-proper
S-schemeX−D is expressed as the “complex” (3.3.11.a) whose termsMS(DJ)〈]J〉 are pure of weight
0 for Bondarko’s motivic weight structure. In particular, it gives a canonical and functorial weight
filtration for the motive MS(X −D) (recall that a pure object of weight 0 shifted n times has weight
n). We view this as a motivic analog of the fact that the weight filtration of the mixed Hodge structure
on X−D over S = Spec(C) arises from the naive filtration of the De Rham complex with logarithmic
poles associated with (X,D).

Dually, we can identify the Chow motive hS(X −D) with the colimit of the diagram

(3.3.11.b) hS(DI)〈−c〉 → . . .
⊕

J⊂I,]J=2

hS(DJ)〈−2〉⇒
⊕
i∈I

hS(Di)〈−1〉 ε′−→ hS(X)

When S = Spec(C), it follows from the identification of the orientation of the motivic spectrum repre-
senting algebraic De Rham cohomology given in [32, Example 5.4.2(1)] that the De Rham realization
of (3.3.11.b), see [24, §3.1], can be canonically identified with the de Rham complex with logarithmic
poles associated with (X,D).

We finally derive the following generalization of a computation due to Rappoport and Zink, see
Remark 3.3.13 for details.
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Proposition 3.3.12. Let (X,Z) be a closed S-pair corresponding to a closed immersion i : Z → X such that
Z has h-smooth crossings over S and such that for every irreducible component Z ′i of Z, the induced closed
immersion ν̄i : Zi → X is h-smooth7. For every J ⊂ I , let NJ be the normal bundle of the induced regular
closed immersion ν̄J : ZJ → X .

Then the object i∗j∗(1X−Z) of T (Z) is isomorphic to the colimit in the underlying ∞-category of the
augmented semi-simplicial diagram of length at most c+ 1

HZ(ZI , 〈−NI〉)→ . . .
⊕

J⊂I,]J=2

HZ(Zj , 〈−NJ〉) ⇒
⊕
i∈I

HZ(Zi, 〈−Ni〉)
ε−→ 1Z

where the degeneracy maps are given by the formula

(δkn)! =
∑

J={i0<...<îk<...<in}⊂K={i0<...<in}

(νJK)!

using the Gysin maps (see 2.3.1) associated to the regular closed immersions νJK : ZK → ZJ , J ⊂ K, and the
augmentation map ε is obtained by composing (3.3.8.a) with the canonical map i!(1X)→ i∗(1X) = 1Z .

Dually, the object i!j!(1X−Z) in T (Z) is isomorphic to the limit of the following augmented semi-cosimplicial
diagram of length at most c+ 1

1Z
ε′−→
⊕
i∈I

Hc
Z(Zi, 〈Ni〉) ⇒

⊕
J⊂I,]J=2

Hc
Z(ZJ , 〈NJ〉) . . .→ Hc

Z(ZI , 〈NI〉)

with degeneracy maps

(δkn)′ =
∑

J={i0<...<îk<...<in}⊂K={i0<...<in}

(νJK)!

Proof. The first assertion immediately follows by applying i∗ to the localization triangle

i!i
!(1X)→ 1X → j∗j

∗(1X) = j∗(1X−Z)

and using the computation of Corollary 3.3.7. The other assertion is obtained similarly, starting from
the dual localization triangle and applying. �

Remark 3.3.13. Let T be a motivic ∞-category with a realization functor from DMét as in (1.2.0.a).
Assume that X is regular and that Z = D is a normal crossing divisor in X with irreducible compo-
nents Di, i ∈ I . The above formula shows that the motive i∗j∗(1X−Z) is the colimit in the underlying
∞-category of the diagram

(3.3.13.a) νI∗(1DI )(c)[2c]
dc−2−−−→ . . .

d1−→
⊕

J⊂I,]J=2

νJ∗(1DJ )(2)[4]
d0−→
⊕
i∈I

νi∗(1Di)(1)[2]
ε−→ 1D

Here, dn =
∑

k(−1)k(δkn)! is the alternate sum of Gysin maps associated with the relevant closed
immersions (see 2.3.1, given that νJ∗(1DJ ) = HD(DJ)). The computation for (3.3.13.a) specializes
under `-adic realization to the Rapoport-Zink formula, used to compute vanishing cycles [75, Lemma
2.5]. A similar remark applies to Steenbrink’s limit Hodge structure [83], with the caveat that our
computation for motives does not account for the action of the monodromy operator.

3.4. Application to strong duality. Next, we deduce some applications of the computations of Sec-
tion 3.3 towards strong duality results.

Proposition 3.4.1. Let Z/S be a proper S-scheme with smooth crossings, and let v be a virtual bundle over
Z. Then ΠS(Z, v) is rigid with dual HS(Z,−v) isomorphic to limit of the diagram⊕

i∈I ΠS(Zi,−vi − 〈Ti〉) ////
⊕

J⊂I,]J=2 ΠS(ZJ ,−vJ − 〈TJ〉) // . . . // ΠS(ZI ,−vI − 〈TI〉)

where for every J ⊂ I , TJ denotes the tangent bundle of ZJ/S.
7This holds in particular when X is h-smooth in a Nisnevich neighborhood of Z.
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Proof. According to (3.3.3.a), ΠS(Z, v) is isomorphic to the colimit of the finite diagram

ΠS(ZI , vI) // . . . //
⊕

J⊂I,]J=2 ΠS(ZJ , vJ) ////
⊕

i∈I ΠS(Zi, vi)

whose components are spectra of smooth proper schemes, hence rigid spectra. This implies ΠS(Z, v)
is rigid. The fact that its dual is HS(Z,−v) follows from Proposition 2.5.5(2). On the other hand, by
(3.3.3.b), HS(Z,−v) isomorphic to the colimit of the diagram

HS(ZI ,−vI) // . . . //
⊕

J⊂I,]J=2 HS(ZJ ,−vJ) // //
⊕

i∈I HS(Zi, vi)

whose components are isomorphic to ΠS(ZJ ,−vJ − 〈TJ〉) by combining Example 2.5.7 and Proposi-
tion 2.5.5(2). �

Theorem 3.4.2. Let (X,Z) be a closed S-pair such that X/S is smooth and proper, with tangent bundle T ,
and such that Z/S has smooth crossings. Let v be a virtual vector bundle on X .

Then ΠS(X − Z, j−1v) and HS(X − Z, j−1v) are rigid with duals Πc
S(X − Z,−j−1(v + 〈T 〉)) and

Hc
S(X − Z,−j−1(v − 〈T 〉)), respectively.

Proof. One first appeals to Proposition 3.3.10 to conclude that ΠS(X−Z, j−1v) (resp. HS(X−Z, j−1v))
is rigid as a limit (resp. colimit) of a finite diagram whose components are rigid spectra due to the
assumption thatX , and hence all the ZJ , J ⊂ I , are smooth proper S-schemes. The given expressions
for the dual then follow from Proposition 2.5.5. �

Finally, we deduce an improvement of Theorem 2.4.3.

Theorem 3.4.3. Let (X,Z) be a closed S-pair such that Z/S is proper with smooth crossing over S and such
that X is smooth in a Nisnevich neighborhood of Z.

Then, for every virtual vector bundle v on X , ΠS(X/X − Z, v) and HS(X/X − Z, v) are rigid with duals
ΠS(Z,−i−1v − i−1τX/S) and HS(Z,−i−1v + i−1τX/S), respectively.

Proof. This is a direct combination of Theorem 2.4.3 and Proposition 3.4.1. �

3.5. Complements of stably contractible arrangements. To illustrate the preceding results, we de-
termine the stable homotopy types of complements of normal crossing S-schemes with stably A1-
contractible components.

3.5.1. A stably A1-contractible arrangement over S is a closed S-pair (X,Z) consisting of a smooth
stably A1-contractible S-scheme X and a closed subscheme Z ( X with smooth crossing over S that
satisfies the following assumptions (see Notations 3.3.1).

(1) For any J ⊂ I , every connected component of ZJ is stably A1-contractible over S.
(2) For any K ( J ⊂ I , ZK is nowhere dense in ZJ .

For a subset J ⊂ I , we set nJ = ]J , and for any generic point x ofZJ we let cx denote the codimension
of x in X .

Example 3.5.2. A basic example of a stably A1-contractible arrangement consists of an arrangement
of affine hyperplanes in affine space Ad

S over S.

Proposition 3.5.3. Let S be a smooth stably A1-contractible scheme over a field k and let (X,Z) be stably
A1-contractible arrangement over S. Then there exists a canonical isomorphism

ΠS(X − Z) '
⊕

J⊂I,x∈Z(0)
J

1S
(
cx
)[

2cx − nJ
]

In addition, if Z is a normal crossing subscheme of X , then the isomorphism takes the form

ΠS(X − Z) '
d⊕

n=0

m(n)1S(n)[n]
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Here d is the relative dimension ofX over S andm(n) denotes the sum of the number of connected components
of all codimension n subschemes ZJ of X .

Proof. According to Proposition 3.3.10 one obtains that ΠS(X − Z) is the homotopy limit of the aug-
mented semi-simplicial diagram

(3.5.3.a) ΠS(X)→
⊕
i∈I

ΠS(Zi, Ni) ⇒ · · ·⇒
⊕

J⊂I,]J=n

ΠS(ZJ , NJ) ⇒ · · ·

Let x is a generic point of ZJ , for J ⊂ I , and write ZJ(x) for the associated connected component.
By assumption, ZJ(x) is smooth and stably A1-contractible over S, hence over k. It follows from
Lemma 2.2.9 that the rank cx vector bundle NJ |ZJ (x) is stably trivial, and hence

ΠS(ZJ , NJ) '
⊕
x

ΠS(ZJ(x), NJ |ZJ (x)) '
⊕
x

1S(cx)[2cx]

To deduce the first assertion, it suffices to show that the morphisms in (3.5.3.a) are zero. Recall that
these maps are sums of Gysin morphisms (νJK)! for J,K ⊂ I , K = J ∪ {k}, νJK : ZK → ZJ . We are
reduced to consider maps of the form

(3.5.3.b) 1S(cx)[2cx]→ 1S(cy)[2cy]

Here, x (resp. y) is a generic point of ZJ (resp. ZK). Since ZK is nowhere dense in ZJ , all such maps
belong to some stable cohomotopy group π2r,r(S) for r > 0. The assumption that S is stably A1-
contractible over k implies π2r,r(S) ' π2r,r(k). Morel’s A1-connectivity theorem shows the latter
group is trivial. It follows that the map (3.5.3.b) is zero.

For the second assertion, it suffices to note that if Z is a normal crossing subscheme, then for any
J ⊂ I , ZJ has pure codimension nJ in X . �

Using Proposition 2.5.5(3), we obtain the following rigidity result.

Corollary 3.5.4. With the notation and assumptions of Proposition 3.5.3, ΠS(X − Z) is rigid with dual

Πc
S(X − Z)(−d)[−2d] '

⊕
K⊂I,x∈Z(0)

K

1S(−cx)[−2cx + nK ]

4. PUNCTURED TUBULAR NEIGHBORHOODS AND STABLE HOMOTOPY AT INFINITY

4.1. Punctured tubular neighborhoods.

Definition 4.1.1. Let (X,Z) be a closed S-pair and let v be a virtual vector bundle onX . The punctured
tubular T -neighborhood TN×S (X,Z, v) of Z in X relative to S twisted by v is the homotopy fiber in
T (S) of the composite

βX,Z : ΠS(Z, i−1v)→ ΠS(X, v)→ ΠS(X/X − Z, v)

Here the first map is induced by the immersion i : Z → X , and the second one is defined in Defini-
tion 2.2.10. In the case of a trivial twist, we use the notation TN×S (X,Z).

It is easy to check that TN×S (X,Z) is functorial for morphisms of closed pairs. Moreover, the
functor TN×S sends excisive morphisms to isomorphisms. In particular, the punctured tubular neigh-
borhood only depends on a Nisnevich neighborhood of Z in X . In Corollary 4.1.8 below, we will get
an even more useful cdh-excision property.

Remark 4.1.2. Our definition is motivated and inspired by the notion of the link of a point on a hy-
persurface due to Brauner, Zariski, Milnor, Mumford (see [68], [71]). Following Mumford, loc. cit.,
a suitable pointed tubular neighborhood can compute the link. More specifically, we formally view
βX,Z as a tubular neighborhood of Z in X , and its homotopy cofiber amounts to the pointed tubular
neighborhood by analogy with the Gysin exact sequence (see the next example).
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Pushing this analogy, one can show that the complex realization of our definition, when Z is a
point on a complex hypersurface in affine space, is precisely the link as discussed above. This fact
will be transparently visible in our examples.

Example 4.1.3. Let (V,X) be the closed S-pair corresponding to the zero section s : X → V of a vector
bundle V on a separated S-scheme X . Then, by definition, one obtains the homotopy exact sequence
(see 2.3.3 for notation)

TN×S (V,X)→ ΠS(X)
eS(V )−−−−→ ThS(V )

In particular, TN×S (V,X) = ΠS(V ×), where V × denotes the complement of the image of s. Hence
TN×S (V,X) is the extension of ΠS(X) by ThS(V )[−1] classified by the Euler class eS(V ). The vanish-
ing of eS(V ) is, by definition, equivalent to the existence of a splitting

TN×S (V,X) = ΠS(X)⊕ ThS(V )[−1]

Remark 4.1.4. Assume that S is the spectrum of a perfect field k of characteristic exponent p. Exam-
ple 4.1.3 implies that for the closed S-pair (V,X) corresponding to the zero section s : X → V of a
vector bundle V of rank r on a separated S-scheme X , TN×S (V,X) is a strictly finer invariant than its
motivic realization. Indeed, the realization in DM(k)[1/p] of TN×S (V,X) is the extension of M(X) by
M(X)(r)[2r − 1] classified by the map c̃r(V ) : M(X) → M(X)(r)[2r − 1] induced by multiplication
with the top Chern class cr(V ) ∈ CHr(X) ' Hom(M(X),1(r)[2r]). In particular, the sequence splits
if cr(V ) = 0.

However, the vanishing of the homotopy Euler class e(V ), which implies the vanishing of the
Euler class in Chow-Witt groups, is a strictly stronger condition than the vanishing of the top Chern
class c̃r(V ). For the smooth affine quadric 5-fold X : x1y1 + x2y2 + x3y3 = 1 in A6, the kernel of the
surjection (x1, x2, x3) : k[Q]3 → k[Q] defines a nontrivial and stably trivial vector bundle V of rank 2

on X . While V ’s Chern classes are trivial, V ’s Euler class in C̃H
2
(X) = KMW

−1 (k) equals η, see the case
n = 2 in [4, Lemma 3.5].

Example 4.1.3 admits the following generalization.

Proposition 4.1.5. Let (X,Z) be a weakly h-smooth closed S-pair (see Definition 2.4.1) with normal bundle
NZ/X . Then there exists a homotopy exact sequence

TN×S (X,Z) −→ ΠS(Z)
eS(NZ/X)
−−−−−−→ ThS(NZ/X)

In other words, TN×S (X,Z) = ΠS(N×Z/X). Moreover, if the Euler class of NZ/X vanishes, then

TN×S (X,Z) = ΠS(Z)⊕ ThS(NZ/X)[−1]

Proof. By excision, one can assume that both X and Z are h-smooth over S. By appealing to the
purity isomorphism of Theorem 2.4.3, one deduces the commutative diagram

ΠS(Z)

i∗ $$

βX,Z // ΠS(X/X − Z)
∼ //

(1)

ΠS(Z,NZ/X)

ΠS(X) i!

6677

Indeed, the commutativity of part (1) follows from the definitions of the Gysin map, the purity iso-
morphism, and the associativity formula for fundamental classes in [35, Theorem 3.3.2]. Then the
homotopy exact sequence follows from the excess intersection formula of [35, Proposition 3.3.4]. The
remaining assertions follow as in the previous example. �

The following result expresses a motivic version of a classical computation of topological punc-
tured tubular neighborhoods, which is a consequence of the octahedron axiom.
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Proposition 4.1.6. Let (X,Z) be a closed S-pair and let v be a virtual vector bundle on X . Then the columns
and rows of the following diagram are homotopy exact

(4.1.6.a) 0 //

��

ΠS(X − Z, j−1v)

j∗
��

(1)

ΠS(X − Z, j−1v)

αX,Z
��

ΠS(Z, i−1v)
i∗ //

(2)

ΠS(X, v)

��

// ΠS(X/Z, v)

��
ΠS(Z, i−1v)

βX,Z // ΠS(X/X − Z, v) // TN×S (X,Z, v)[1]

Proof. Indeed, the middle column (resp. row) follows from Definition 2.2.10, the commutativity of (1)
follows from the definition, and that of (2) from the definition of βX,Z . The lower-right corner of the
diagram is just the formulation of the octahedron axiom. �

Remark 4.1.7. In more classical terms for cohomology with coefficients in a ring spectrum E, one
obtains long exact sequences involving the punctured tubular neighborhood

. . .→ En,iZ (X)→ En,i(Z)→En,i(TN×S (X,Z))→ En+1,i
Z (X)→ . . .

. . .→ En,i(X,Z)→ En,i(X − Z)→En,i(TN×S (X,Z))→ En+1,i(X,Z)→ . . .

Here E∗∗Z (X) (resp. E∗∗(X,Z)) is the cohomology with support (resp. relative cohomology).

One gets the following practical way of computing punctured tubular neighborhoods by using
resolution of singularities:

Corollary 4.1.8. Let f : (Y, T ) → (X,Z) be a cdh-excisive morphism of closed S-pairs and let v be a virtual
vector bundle on X . Then the induced map

TN×S (Y, T, f−1v)→ TN×S (X,Z, v)

is an isomorphism.

Proof. Indeed, according to Proposition 4.1.6, one obtains a commutative diagram whose rows are
homotopy exact sequences

TN×S (Y, T, f−1v) //

��

ΠS(Y − T, f−1(v)|Y−T ) //

��

ΠS(Y/T, f−1v)

��
TN×S (X,Z, v) // ΠS(X − Z, v|X−Z) // ΠS(X/Z, v)

By assumption, the middle vertical map, induced by the restriction of f , is an isomorphism. More-
over, the right-most vertical map is an equivalence according to the cdh-descent property of T (see
[27, 3.3.10]). �

In particular, one can use any suitable resolution of singularities of a pair (X,Z) to compute the
punctured tubular neighborhood of (X,Z). More precisely, if we can find a cdh-excisive morphism
(Y, T ) → (X,Z) such that (Y, T ) is smooth over the base S, then applying Proposition 4.1.5 and
Corollary 4.1.8, we get TN×S (X,Z) ' ΠS(N×T/Y ). We obtain several examples from singularity theory
in this way — S can be any base, the spectrum of a field k or even of Z.

Example 4.1.9. Let P = P1
S be the projective line andO(−1) = V(OP(1)) be its tautological line bundle.

Consider the relative quadratic coneX = V (xy−z2) in A3
S . Then by blowing-up the ordinary double

point at the origin oS , one gets a resolution Y → X whose exceptional divisor is P, with normal
bundle O(−2) = O(−1)⊗2. Therefore, we have

TN×S (V (xy − z2), 0S) ' ΠS(O(−2)×)
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For S = Spec(C), the underlying topological manifold of the complex realization of O(−2)× is ho-
motopy equivalent to the total space of unit tangent bundle UTS2 of the sphere S2 = CP1. As a
topological manifold, UTS2 is homeomorphic to RP3 ∼= SO(3). Our computation thus recovers the
stable homotopy type of the link of the germ of complex of hypersurface singularity

(V = {u2 + v2 − z2 = 0}, 0) ⊂ (C3, 0)

defined in [68, Chapter 2] as the intersection of V with a real 5-sphere S5
ε ⊂ C3 = R6 of sufficiently

small radius ε > 0 centered at origin. Our computation also accounts for the real case: the underlying
topological manifold of the real realization of O(−2)× is homotopy equivalent to the unit tangent
bundle of the circle S1 = RP1, hence to disjoint copies of S1. The latter equals the link of the real
germ of isolated singularity (V = {u2 − v2 − z2 = 0}, 0) ⊂ (R3, 0).

Example 4.1.10. Next we consider an ordinary double point in a 3-fold: say X = V (xt − yz) in A4
S ,

which is singular at the origin oS . A resolution of the singularity is given by the blow-up X̃ → X of
oS with exceptional divisor P × P, whose normal bundle is OP×P(−1,−1) = p1

∗O(−1) ⊗ p2
∗O(−1).

Another resolutionX− → X is given the blow-up ofX with center at the the Weil non-Cartier divisor
V (x, y). The exceptional locus of X− → X is isomorphic to P and its normal bundle in X− is equal
to OP(−1)⊕OP(−1). This yields two models of the punctured tubular neighborhood

TN×S (V (xt− yz), oS) ' ΠS([OP×P(−1,−1)]×) ' ΠS([OP(−1)⊕OP(−1)]×)

The S-schemes [OP×P(−1,−1)]× and [OP(−1)⊕OP(−1)]× are actually both isomorphic to V − {oS}.
For S = Spec(C) the underlying topological manifolds of the complex realizations of these schemes
are homotopy equivalent to the S1-bundle over S2 × S2 with Euler class (1, 1) ∈ H2(S2 × S2,Z) ∼=
Z2 and to the trivial S3-bundle over S2, respectively. Again, our descriptions recover the (stable)
homotopy of the link of the germ of complex of hypersurface singularity

(V = {x2
1 + x2

2 + x2
3 + x2

4 = 0}, 0) ⊂ (C4, 0),

this link being homotopy equivalent the unit tangent bundle UTS3 ∼= S2 × S3.

Remark 4.1.11. The reader will find in Theorem 4.2.1 a way of computing punctured tubular neigh-
borhoods when dealing with resolution of singularities whose exceptional locus is snc. This was our
main motivation for Section 3.

4.1.12. One can further interpret Proposition 4.1.6 in terms of the six functors formalism. For the
closed S-pair (X,Z), consider the commutative diagram

Z �
� i //

p ))

X
f��

X − Z? _
joo

qttS

of (2.4.0.a). By crossing the two classical localization triangles one gets, as a functorial enhancement
of (4.1.6.a), the following commutative diagram of natural transformations of T (X)

0 //

��

j!j
!

ad′
j!j

!
��

j!j
!

αj
��

i!i
! // Id

��

adj∗,j∗ // j∗j
∗

��
i!i

! βi // i∗i
∗ // i∗i

∗j∗j
∗

(4.1.12.a)

Each arrow in (4.1.12.a) is a unit or counit for one of the adjunctions (k∗, k∗) or (k!, k
!), k = i, j. The

second and third rows (resp. columns) are the classical localization triangle, expressed in terms of nat-
ural transformation. In particular, each row and column of (4.1.12.a) is exact homotopy (concretely:
gives a homotopy exact sequence in T (X) when evaluated at any object).
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Note, moreover, that αj is given by the map j! → j∗ ”forgetting the support” where the map βi cor-
responds to a natural transformation βi : i! → i∗ which is specific to the case of (closed) immersions.8

Note, finally, the classical identification of functors i!j! = i∗j∗[−1] obtained by applying the localiza-
tion triangles (middle row of the previous diagram) post-composed with j!j

! to get the homotopy
exact sequence

i!i
!j!j

! → j!j
! → j∗j

∗j!j
! = j∗j

∗

Since the last arrow identifies with αj , one gets i!i!j!j! = i∗i
∗j∗j

∗, which gives the result since i∗ = i!
(resp. j∗ = j!) is right invertible.

We thus obtain the following expression of the punctured tubular neighborhood.

Proposition 4.1.13. There is a canonical isomorphism

TN×S (X,Z) ' p!i
!j!q

!(1S) = p!i
∗j∗q

!(1S)[−1]

This relation explains the close connection between punctured tubular neighborhoods and nearby
cycles. In this line of thought, we extend [87, Theorem 5.1] and [32, 1.4.6] to our context.

Theorem 4.1.14. Let S be an excellent scheme, and let (X,Z), (Y, T ) be closed S-pairs. Assume that there
exists an isomorphism f : T → Z, which extends to an isomorphism of the respective formal completions
f : ŶT → X̂Z . Then there exists a canonical isomorphism

f∗ : TN×S (Y, T )
'−→ TN×S (X,Z)

which is compatible with composition in f.

Proof. We can assume that Z = T and that Z is reduced. It suffices to build an isomorphism

f̃∗ : TN×S (Y, T )→ TN×S (X,Z)

and a commutative diagram
ΠS(Y/Y − Z)

f̃∗��Z
22

,,
ΠS(X/X − Z)

We can apply the strategy of the proof of [32, Theorem 1.4.6] using Artin’s approximation theorem
at points of Z (here, we use the assumption that S is excellent) and Zariski hypercovers to globalize
the situation. Here we do not need to extend our motivic category to diagrams of base schemes. The
proof proceeds with the simplicial schemes corresponding to Zariski hypercoverings directly within
the∞-category T (S). �

4.2. Punctured tubular neighborhood of subschemes with crossing singularities. Based on Theo-
rem 3.2.3, we now state our main tool for computing punctured tubular neighborhoods of h-smooth
crossing subschemes (Definition 3.3.2). We adopt the notation of 3.3.1 and 3.3.9.

Theorem 4.2.1. Let (X,Z) be a closed S-pair such that Z/S has h-smooth crossings over S and X/S is
h-smooth in a Nisnevich neighborhood of Z and let v be a virtual vector bundle on X .

Then TN×S (X,Z, v) is canonically isomorphic to the homotopy fiber of the map

colimn∈(∆inj)op

 ⊕
J⊂I,]J=n+1

ΠS(ZJ , vJ)

 ∂−→ lim
n∈∆inj

 ⊕
J⊂I,]J=m+1

ΠS(ZJ , vJ + 〈NJ〉)


Here the direct images define the face maps

(δkn)∗ =
∑

K={i0<...<in},J={i0<...< 6ik<...<in}

(νJK)∗

8It can also be derived from the exchange transformation i!Id∗ → i∗Id!.
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in the source, and the Gysin maps define the coface maps

(δ̃ml )! =
∑

K={i0<...<im},J={i0<...< 6il<...<im}

(νJK)!

in the target. Moreover, ∂ is induced by the canonical map in degree zero

(4.2.1.a) (δij = ν̄!
j ν̄i∗)i,j∈I :

⊕
i∈I

ΠS(Zi, vi) −→
⊕
j∈I

ΠS(Zj , vj + 〈Nj〉)

Finally, using the Euler class e(Ni) : 1Zi → Th(Ni) (see paragraph 2.3.3) of the normal bundle Ni, one can
compute the diagonal coefficients of this matrix as

δii = pi!
(
e(Ni)⊗ Th(τi + vi)

)
where pi : Zi → S is the (h-smooth) projection, with virtual tangent bundle τi.

Proof. According to Definition 4.1.1, we have to compute the homotopy fiber of the map

βX,Z : ΠS(Z, v)→ ΠS(X/X − Z, v)

Proposition 3.3.3 identifies βX,Z ’s source with the desired colimit whereas Proposition 3.3.10 iden-
tifies its target with the desired limit. The computation of the (co)face maps and of ∂ follows from
these two propositions. The final remark follows from the definition of µ̃ii, the excess intersection
formula [35, Proposition 3.2.8], and p!

i(1S) ' Th(τi) since pi is h-smooth by assumption. �

One can suggestively summarize the computation in Theorem 4.2.1 with the diagram

⊕
i1<i2

ΠS(Zi1i2)

����⊕
i∈I ΠS(Zi)

∂ //
⊕

j∈I ΠS(Zj , 〈Nj〉)
����⊕

j1<j2
ΠS(Zj1j2 , 〈Nj1j2〉)


Typically, a punctured tubular neighborhood computation will consist of determining the homo-

topy colimit (resp. limit) of the left (resp. right) column and then determining the map ∂. For a closed
S-pair (X,Z) such that X is smooth over S in a Nisnevich neighborhood of Z, τX/S is a well-defined
virtual vector bundle on a suitable Nisnevich neighborhood of Z, and its restriction i−1τX/S to Z is a
well-defined virtual vector bundle on Z, see 2.4.2. Since the twisted punctured tubular neighborhood
of Z in X depends only on a Nisnevich neighborhood of Z in X , the object TN×S (X,Z,−v − τX/S) is
well-defined for every virtual vector bundle v on (a Nisnevich neighborhood of Z in) X . One derives
from Theorem 3.4.3 the following strong duality result.

Theorem 4.2.2. Let (X,Z) be a closed S-pair such that X is smooth in a Nisnevich neighbordhood of Z and
such Z/S is proper with smooth crossings over S. Then for every virtual vector bundle v on X , TN×S (X,Z, v)

is rigid with dual TN×S (X,Z,−v − τX/S)[−1].
In particular, under the stated hypothesis, the punctured tubular neighborhood TN×(X,Z) is auto-dual, up

to twist and shift.

4.3. Stable homotopy at infinity and boundary motives. As explained in the next examples, the fol-
lowing definition is rooted in both classical topology, see [56], and in Wildeshaus’ theory of boundary
motives [88].
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Definition 4.3.1. The homotopy at infinity of a separated S-scheme X/S is the homotopy fiber com-
puted in T (S) of the map αX/S : ΠS(X) → Πc

S(X) in (2.2.1.a) so that there is a homotopy exact
sequence

Π∞S (X) −→ ΠS(X)
αX/S−−−→ Πc

S(X)

Owing to (1.2.0.a), the main case is T = SH. We refer to the spectrum Π∞S (X) in SH(S) as the stable
homotopy at infinity of X relative to S.

Example 4.3.2. Let p : V → S be a vector bundle and consider the closed pair (V, S) given by the zero
section s : S → V . Then, using purity isomorphisms, one gets the commutative diagram

ΠS(V )
αV/S //

p∗
∼vv

can

��

Πc
S(V ) p∗p

!(1S)
pp∼ ��

1S

e(V ) ((

p∗(ThV (p−1V )) p∗p
∗(ThS(V ))

ΠS(V/V − Z)
pV,S

∼
// ThS(V )

adp

∼
44

The fact that p∗ and the unit adp are isomorphisms follows from A1-homotopy invariance. The purity
isomorphism pp exists since p is smooth, and pV,S is the (tautological) purity isomorphism. The right-
hand side commutes by applying [35, Lemma 3.3.1] to f = p, i = s, i′ = IdV , while commutativity of
the left-hand side follows by definition of the Euler class e(V ) (2.3.3). We deduce the homotopy exact
sequence

Π∞S (V )→ 1S
e(V )−−−→ Th(V )

In other words, Π∞S (V ) = ΠS(V ×) and, if e(V ) = 0 then Π∞S (V ) = 1S ⊕ Th(V )[−1]

It follows from the discussion in Section 1.2 that Π∞S (X) realizes to the analogous definition for the
other motivic∞-categories of (1.2.0.a).

Example 4.3.3. Motivic realization. Let S be the spectrum of a perfect field k of characteristic exponent
p and let X be a separated k-scheme. Then the motivic realization functor (see also [53], [79] in this
case)

(4.3.3.a) SH(k)→ DM(k)[1/p]

sends Πk(X) to Voevodsky’s homological motive M(X) of X ([25, §8.7]), and it sends Πc
k(X) to

M c(X), Voevodsky’s homological motive of X with compact support ([25, Proposition 8.10]). It
follows that the motivic realization functor sends Π∞k (X) to the boundary motive ∂M(X) of X (see
Wildeshaus [87]). In particular, the Betti or `-adic cohomology of Π∞k (X) coincides with the so-called
interior cohomology of X . We generalize the above discussion to arbitrary base schemes in Section 5.

Example 4.3.4. Betti realization. Let S be the spectrum of a field k which admits a complex embedding
σ, and consider the Betti realization functor (see Section 1.2)

(4.3.4.a) SH(k)→ Dσ
B (k) = D(Z)

Owing to Ayoub’s enhancement of (4.3.4.a) to an arbitrary base scheme using the technique of ana-
lytical sheaves [12], one derives that for any separated k-scheme X , the spectrum Πk(X) realizes to
the singular chain complex S∗(Xσ) of the analytification Xσ of X , and the spectrum Πc

k(X) realizes
to the Borel-Moore singular chain complex SBM∗ (Xσ). As Xσ is locally contractible and σ-compact,
the latter is quasi-isomorphic to the complex Slf∗ (W ) of locally finite singular chains ([56, Chapter 3]).
Thus the stable homotopy type at infinity Π∞S (X) realizes to the singular complex at infinity S∞∗ (Xσ)
(see Definition [56]), defined by the distinguished triangle of chain complexes of abelian groups

(4.3.4.b) S∞∗ (Xσ)→ S∗(X
σ)

αXσ−−−→ Slf∗ (Xσ)→ S∞∗ (Xσ)[1]

As a corollary of Theorem 2.6.4, we get the following computations:
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Proposition 4.3.5. In the setting of Theorem 2.6.4 assume that either i) or ii) holds and that Y/S is proper.
Then there is a canonical isomorphism

Π∞S (X ×S Y ) ' Π∞S (X)⊗ΠS(Y )

Proposition 4.3.6. In the setting of Theorem 2.6.4 assume that g : Y → S is smooth and stably A1-
contractible over S with relative tangent bundle Tg stably constant over S and let v0 be a virtual vector bundle
over S such that 〈Tg〉 = g∗v0 in K0(Y ). Then there exists a homotopy exact sequence

Π∞S (X ×S Y ) −→ ΠS(X)
αX⊗αY−−−−−→ Πc

S(X)⊗ Th(v0)

In particular, if Tg is the pullback of a vector bundle V over S with a trivial Euler class, then

Π∞S (X ×S Y ) = ΠS(X)⊕Πc
S(X)⊗ ThS(V )[−1]

Note that the splitting uses Example 4.3.2.

Example 4.3.7. Let X be a smooth stably A1-contractible variety of dimension d over a field k. Then,
Proposition 4.3.6 implies that

Π∞k (X) = 1k ⊕ 1k(d)[2d− 1] = Π∞k (Ad
k)

In other words, stable homotopy at infinity cannot distinguish betweenX and affine space Ad
k, as one

would expect from topology (see [7]). A theory of unstable motivic homotopy at infinity, however, is
expected to provide a finer invariant.

Similarly, the situation for smooth morphisms f : X → S with stably A1-contractible fibers over
a general base S is entirely described by their stable tangent bundles. In particular, if Tf is constant
over S, equal to f∗V for some vector bundle V on S, then the stable homotopy type at infinity of X
is the same as that of the vector bundle V . It is thus essentially described by the Euler class of V as
explained in Example 4.3.2.

Remark 4.3.8. In general, one can interpret Π∞S (X) as an extension of ΠS(X) by Πc
S(X). This view-

point is prominent in Wildeshaus’ work on boundary motives; a motivic realization, where weight
considerations are at stake. In topology, it is well-known that forming a product with Euclidean space
Rn kills the fundamental group at infinity. In our stable context, taking a product with affine space
An, or more generally, any smooth stably A1-contractible S-scheme f : Y → S of relative dimension
n with a trivial relative tangent bundle splits the extension in the sense that

Π∞S (X × Y ) ' ΠS(X)⊕Πc
S(X)(n)[2n− 1]

As an application of the results and techniques above, we can now wholly determine the homotopy
at infinity of complements of stably A1-contractible arrangements in smooth stably A1-contractible
schemes over a field (see 3.5.1).

Proposition 4.3.9. Let S be a smooth stably A1-contractible scheme over a field k and let (X,Z) be a stably
A1-contractible arrangement over S such that Z is a normal crossing closed subscheme ofX . Then there exists
a canonical isomorphism

Π∞S (X − Z) '
d⊕
i=0

m(i)1S(i)[i]⊕
d⊕
j=0

m(j)1S(d− j)[2d− j − 1]

where d is the dimension of X over S and where m(n) denotes the sum of the number of connected components
of all codimension n subschemes ZJ of X .

Proof. Indeed, applying Proposition 3.5.3 and Corollary 3.5.4, we deduce the homotopy exact se-
quence

Π∞S (X) −→
d⊕
i=0

m(i)1S(i)[i] −→
d⊕
j=0

m(j)1S(d− j)[2d− j]
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To conclude, it suffices to prove that the second map is zero. Since S is stably A1-contractible over
the field k, it is given by a sum of elements of the groups π2d−i−j,d−i−j(k). Since d > 0, these groups
are all trivial by Morel’s stable A1-connectivity theorem. �

4.4. Stable homotopy type at infinity via punctured tubular neighborhoods.

4.4.1. Recall that a compactification of a separated morphism of finite type f : X → S consists of an
open immersion j : X ↪→ X̄ into a proper S-scheme f̄ : X̄ → S. The closed subscheme ∂X =
(X̄ − X)red of X̄ is called the boundary of the compactification j. We denote by i : ∂X ↪→ X̄ the
corresponding closed immersion and set ∂f̄ = f̄ ◦ i : ∂X → S in the commutative diagram

X �
� j //

f %%

X̄

f̄��

∂X? _
ioo

∂f̄xx
S

The following result gives our main tool for computing stable homotopy types at infinity. For spe-
cializations to topology and motives, see [56] and [88, Theorem 1.6], respectively.

Proposition 4.4.2. Let (X̄, ∂X) be the closed S-pair associated with a compactification of a separated S-
scheme of finite type. Then there exists a canonical isomorphism

Π∞S (X) ' TN×S (X̄, ∂X)

which is natural in (X̄,X, ∂X), covariantly functorial with respect to proper maps, and contravariantly func-
torial with respect to étale maps.

Proof. Given the six functors formalism, this is a direct application of Proposition 4.1.6. More pre-
cisely, with the notation of 4.4.1, one reduces to the commutative diagram

f!f
!(1S)

αf //

∼ ��

f∗f
!(1S)
∼��

f̄∗j!j
!f̄ !(1S)

ad′
j!,j

!
// f̄∗f̄

!(1S)
adj∗,j∗ // f̄∗j∗j

∗f̄ !(1S)

and exactness of the rows and columns of (4.1.12.a). �

Remark 4.4.3. The above result has the following geometric interpretations. First, using the nota-
tions of Proposition 4.1.6 for the closed S-pair (X̄, ∂X) and that of Definition 4.3.1, the commutative
diagram in the proof of Proposition 4.4.2 can be recast as

ΠS(X)
αX // Πc

S(X)
∼��

ΠS(X̄ − ∂X)
αX̄,∂X // ΠS(X̄/∂X)

In particular, considering the Borel-Moore homotopy Πc
S(X) of X naturally leads to considering the

object X̄/∂X obtained by identifying the boundary ∂X of any compactification X̄ with a point. The
latter can be viewed as a motivic model for the one-point compactification in topology.

Second, Π∞S (X) can be canonically identified with the homotopy fiber of the canonical map

(4.4.3.a) ΠS(∂X)⊕ΠS(X)
i∗+j∗−−−→ ΠS(X̄)

Under motivic realization, (4.4.3.a) becomes the formula for the boundary motive given in [87, Propo-
sition 2.4].

A reformulation of Proposition 4.4.2 yields the following invariance result for the punctured tubu-
lar neighborhood of a closed subscheme Z of a proper S-scheme X :

Corollary 4.4.4. Let (X,Z) be a closed S-pair such thatX/S is proper. Then the punctured tubular neighbor-
hood TN×S (X,Z) is isomorphic to Π∞S (X − Z), and therefore it depends only on the open subscheme X − Z.
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By combining Proposition 4.1.5 and Proposition 4.4.2, we obtain the following result.

Corollary 4.4.5. Let (X̄, ∂X) be the closed S-pair associated to a compactification of a separated S-scheme X .
Assume that (X̄, ∂X) is weakly h-smooth with normal bundle N = N∂X/X̄ . Then there is a homotopy exact
sequence

(4.4.5.a) Π∞S (X) −→ ΠS(∂X)
e(N)−−−→ ThS(N)

where e(N) is induced by the Euler class of N (see 2.3.3). In particular, Π∞S (X) = ΠS(N×), and when e(N)
vanishes, there is a splitting Π∞S (X) = ΠS(∂X)⊕ ThS(N)[−1].

Remark 4.4.6. Assume that S is the spectrum of a perfect field k of characteristic exponent p. Then the
realization in DM(k)[1/p] of the homotopy exact sequence (4.4.5.a) is the homotopy exact sequence

∂M(X) −→M(∂X)
c̃r(N)−−−→M(∂X)(r)[2r]

where ∂M(X) is the boundary motive of X in Example 4.3.3, r is the rank of the normal bundle N of
∂X in X̄ and the map c̃r(N) is induced by multiplication with the top Chern class cr(N) ∈ CHr(∂X) '
Hom(M(∂X),1(r)[2r]). Corollary 4.4.5 implies that Π∞k (X) is a strictly finer invariant than ∂M(X),
see Remark 4.1.4.

4.5. Interpretation in terms of fundamental classes. In what follows, we observe connections be-
tween stable homotopy at infinity and more generally punctured tubular neighborhoods and certain
fundamental classes.

Proposition 4.5.1. Let f : X → S be a smooth morphism with relative tangent bundle Tf . Then the map
α′X/S obtained by adjunction from the composite

ΠS(X)
αX/S−−−→ Πc

S(X) ' Hom
(
ΠS(X,−Tf ),1S

)
,

where the isomorphism uses Proposition 2.5.5(4), fits into the commutative diagram

ΠS(X)⊗ΠS(X,−Tf )
α′
X/S //

'
��

1S

ΠS(X ×S X,−p−1
j Tf )

δ!
// ΠS(X)

f∗

OO

The left vertical map is the Künneth isomorphism (2.6.1.b) and δ! is the Gysin map (2.3.1) associated with the
diagonal immersion δ : X → X ×S X .

In other words, the map αX/S , whose homotopy cofiber is the stable homotopy at infinity of X/S,
can be computed under the canonical isomorphisms

[ΠS(X),Πc
S(X)] ' [ΠS(X)⊗ΠS(X,−Tf ),1S ]

' [ΠS(X ×S X),Th(p−1
j Tf )] = H0

T (X ×S X, p−1
j (Tf ))

as the twisted fundamental class [∆X/S ]jX×X of the diagonal, with respect to the δ-parallelization
corresponding to the smooth retraction pj of δ, see Example 2.3.6.

Proof. For notational convenience, let p1 : X ×S X → X be the projection on the first factor. The
associativity formula in [35, Theorem 3.3.2] shows the equality of fundamental classes ηδ.ηp1 = 1.
The assumption that f is smooth implies the cartesian square

X ×S X
p1 //

p2 �� ∆

X
f��

X
f
// S
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is Tor-independent. Thus the transversal base change formula in [35, Theorem 3.3.2] implies the
equality ∆∗(ηf ) = ηp1 from which the commutativity of the square follows. �

Remark 4.5.2. Computing fundamental classes of the diagonal is a famous problem, at the center
of the Chow-Künneth conjecture, for example. The previous proposition shows the link between
determining the stable homotopy type at infinity, or the boundary motive, ofX/S and computing the
(twisted) fundamental class of its diagonal. The main difference with the Chow-Künneth conjecture
is that we are interested mainly in the non-proper case.

Similarly, one gets the following link between punctured tubular neighborhoods and another fun-
damental class.

Proposition 4.5.3. Let (X,Z) be a closed S-pair such that X/S is smooth with relative tangent bundle TX/s
and such that Z/S is proper and has smooth crossings (see Definition 3.3.2). Then the map β′X,Z obtained by
adjunction from

ΠS(Z)
βX,Z−−−→ ΠS(X/X − Z) ' ΠS(Z,−〈i−1TX/S〉)∨,

where the isomorphism follows from Theorem 4.2.2, fits into the commutative diagram

ΠS(Z)⊗ΠS(Z,−〈i−1TX/S〉)
β′X,Z //

Id⊗i∗
��

1S

ΠS(Z)⊗ΠS(X,−〈TX/S〉) '
(∗) // ΠS(Z ×S X,−〈p−1

j TX/S〉)
γ!
i // ΠS(Z)

q∗

OO

where γ!
i is the Gysin morphism associated to the graph immersion γi = Id× i : Z → Z ×S X .

In other words, the map βX,Z , whose cone is the punctured tubular neighborhood TN×S (X,Z) of
the pair (X,Z), can be computed under the canonical isomorphisms

[ΠS(Z),ΠS(X/X − Z)] ' [ΠS(Z),ΠS(Z,−〈i−1TX/S〉)∨] ' [ΠS(Z)⊗ΠS(Z,−〈i−1TX/S〉),1S ]

' [ΠS(Z ×S X,−〈p−1
j TX/S〉,1S ] ' H0

T (Z ×S X, p−1
j TX/S)

as the twisted fundamental class [Γi]
can
Z×X of the graph γi of the closed immersion i : Z → X , with

obvious γi-parallelization Nγi ' γ−1
i (p−1

j TX/S).

Proof. First, let us note that γi is a section of the smooth separated morphism Z ×S X → Z. So
it is a regular closed immersion whose normal bundle is isomorphic to the relative tangent bundle
p∗jTX/S of Z ×S X over Z. This justifies the existence of the Gysin map γ!

i using 2.3.1. Secondly, the
isomorphism (∗) follows from the Künneth isomorphism of Proposition 3.3.6. A routine check using
the definitions of the maps shows that the diagram commutes. �

4.5.4. Pushing the idea from the preceding result, one obtains a method of computation for the de-
composition of punctured tubular neighborhoods obtained in Theorem 4.2.1. We use the notations of
op. cit.: (X,Z) is a closed S-pair, Z = ∪i∈IZi. Furthermore, we make the following assumptions.

(1) X/S is smooth with relative tangent bundle TX/S .
(2) Z/S is proper and has smooth crossings.

In fact, as Zi/S is smooth and proper, one deduces from Example 2.5.7 that ΠS(Zi, Ni) is rigid with
dual ΠS(Zi,−〈T iX/S〉), where we denote by T iX/S the restriction of TX/S toZi and use the isomorphism
of virtual vector bundles 〈T iX/S〉 = 〈Ni〉+ 〈TZi/S〉. Combined with the Künneth formula (2.6.1.b), one
gets a canonical isomorphism

(4.5.4.a) ϕ : [ΠS(Zi),ΠS(Zj , Nj)]
∼=−−→ H0

T (Zi ×S Zj , p−1
2 T jX/S)
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Proposition 4.5.5. Consider the above assumptions and the cartesian square of closed immersions

(4.5.5.a) Z ′ij
//

ν′ij ��

X

δ��
Zi ×S Zj

ν̄i×S ν̄j // X ×S X

Let δij : ΠS(Zi)→ ΠS(Zj , Nj) be the map appearing in Theorem 4.2.1.
(1) Through the isomorphism (4.5.4.a), we have

δij = (ν̄i ×S ν̄j)∗
(
[∆X/S ]2X×X

)
where the right-hand side is the second twisted fundamental class of the diagonal of X/S (see Exam-
ple 2.3.6).

(2) If i = j, ν ′ii is the diagonal δi of Zi/S. We consider the map

H0
T (X,Ni)

ε2∗−−→ H0
T (Zi, Nδi + δ−1

i p−1
2 TX/S)

δi!−→ H0
T (Zi ×S Zi, p−1

2 TX/S)

where the first map is induced by the canonical isomorphism of virtual bundles

ε2 : 〈Ni〉 ' 〈Ni〉 − 〈T iX/S〉+ 〈δ−1
i p−1

2 TX/S〉 ' 〈Nδi〉+ 〈δ−1
i p−1

2 TX/S〉

over Zi and δi! is the Gysin map in cohomotopy (see 2.3.1). Let also e(Ni) be the Euler class of the
normal bundle Ni of Zi/X (see Example 2.3.3). Then through the isomorphism (4.5.4.a), we have

δii = δi!(ε2∗e(Ni))

(3) Assume furthermore that (4.5.5.a) is transversal: ν ′ij is regular with normal bundle isomorphic to
the restriction of TX to Zij , i.e., it is of proper codimension. Then δij can be computed through the
isomorphism (4.5.4.a) as

δij = [Z ′ij ]
2
Zi×Zj

Here, [Z ′ij ]
2
Zi×Zj ∈ H

0
T (Zi×S Zj , p−1

2 〈T
j
X〉) is the twisted fundamental class of ν ′ij with respect to the

obvious ν ′ij-parallelization.

Proof. The first statement follows from the definition of the explicit duality pairing given in Exam-
ple 2.5.7, and the properties of fundamental classes. For compatibility with composition and transver-
sal base change formula for closed immersions, see [35, Lemma 3.2.13, Ex. 3.2.9(i)]. The second
(resp. third) computation follows from the first one and the excess intersection (resp. transversal
base change) formula for the above cartesian square. �

Example 4.5.6. When T is an oriented motivic category, i.e., one of the categories under DM in
(1.2.0.a), and we assume that the second condition of the proposition holds, then δij = [Z ′ij ]Zi×Zj
is the image of the usual cycle class of the natural diagonal immersion of Z ′ij by the cycle class map

CHd(Zi ×S Zj)→ H2d,d
T (Zi ×S Zj)

where d is the dimension of X/S. In particular, we get δij = δji after making the identification
CHd(Zi ×S Zj) = CHd(Zj ×S Zi). That is, the matrix in Theorem 4.2.1 is symmetric. In the non-
oriented case, this will no longer be true in general, as we will illustrate in the forthcoming section.

5. MOTIVIC PLUMBING

In this section, we explain in which sense our punctured tubular neighborhood gives rise to a
motivic version of Mumford’s plumbing construction from [71] and show how to extend some of the
computations of loc. cit. in the A1-homotopical context.

5.1. Assumptions and notation. We impose the following assumptions.
(M1) (X,D) is a closed S-pair, S an arbitrary base scheme.9

9On the stable homotopy case we will often assume that S is semi-local. In our examples S will be a field.
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(M2) X/S has relative dimension 2 and is smooth in a neighborhood of D.
(M3) D is a divisor on X , proper and with smooth reduced crossings over S.10

(M4) The components (Di)i∈I of D are rational curves. For i ∈ I , we fix an isomorphism αi : Di →
P1
S . This determines 3 distinct rational points on Di, say 0i, 1i,∞i. We assume that the point
∞i on Di is not a point on another irreducible component Dj of D. We let ωi = det(ΩDi/S) ∼=
α∗iOP1

S
(−2) be the canonical sheaf of Di and we denote by Ti its associated line bundle.

Later on, we will add one of two other assumptions (M5a)/(M5b) to this list (see Lemma 5.2.5). In
the above situation, we follow the conventions of the previous section:

• Let ΩX/S |D be the restriction to D of the relative cotangent sheaf of X/S (computed in a
neighborhood of D) and denote by TX |D the corresponding vector bundle of rank 2 on D. We
let ωX |D = det(ΩX/S |D).
• For every i ∈ I , we denote by νi : Di → D and by ν̄i : Di → X the natural closed immersions

and by pi : Di → S the projection. We let Ci = CDi/X be the conormal sheaf of Di in X , and
we denote by Ni the associated line bundle.
• We fix an arbitrary order on I . For i < j in I , we put D′ij = Di ×X Dj , and let Dij be its

reduction. Under our assumptions, the projection pij : Dij → S is a finite étale morphism.
There are closed immersions νlij : Dij → Dl, l = i, j. We set Cij = CDij/X and Clij = CDij/Dl the
conormal sheaves of Dij in X and Dl respectively, l = i, j, and we denote by Nij and N l

ij the
associated vector bundles of respective rank 2 and 1 on Dij .

For i < j, there are canonical isomorphisms

Cij ' ΩX |Dij Clij ' ωl|Dij , l = i, j(5.1.0.a)

ωX |Di ' Ci ⊗ ωi, det(Cij) ' Clij ⊗ Cl|Dij l = i, j(5.1.0.b)

These define canonical isomorphisms of virtual vector bundles TX |Di ' Ti +Ni and

TX |Dij ' Nl|Dij +N l
ij ' Nl|Dij + Tl|Dij l = i, j

To get more precise results, we will also introduce at some point (see (Proposition 5.2.8 and the
subsequent results) the following strengthening of assumption (M3):
(M3+) S is the spectrum of a field k, the irreducible components Di of D intersect transversely (at all

points Dλ
ij), and the residue field κλij of Dλ

ij is finite separable over k.

The transversality assumption implies that for every i < j, we have Dij = Di ×X Dj =
⊔
λD

λ
ij .

Furthermore, it guarantees for all i 6= j and all λ the existence of a canonical isomorphism Ci|Dλij '
Cjij |Dλij and hence of a canonical isomorphism

(5.1.0.c) Ci|Dλij ⊗ ω
∨
j |Dλij ' C

j
ij |Dλij ⊗ ω

∨
j |Dλij

(5.1.0.a)
' ωj |Dλij ⊗ ω

∨
j |Dλij ' κ

λ
ij

5.2. Punctured tubular neighborhoods and quadratic Mumford matrices. Under a reasonable ori-
entability assumption, the computations in this subsection apply to any motivic∞-category T . We
will later focus on the (universal) cases of SH and DMQ.

5.2.1. Under the assumptions and notation in Section 5.1, we will use the formula given in Theo-
rem 4.2.1 in two steps. First, since D is an h-smooth crossing S-scheme, Proposition 3.3.3 identifies
ΠS(D) with the homotopy cofiber of the canonical map

(5.2.1.a) d1 =
∑
i<j

νiij∗ − ν
j
ij∗ :

⊕
i<j

ΠS(Dij)→
⊕
i∈I

ΠS(Di)

10See Definition 3.3.2.
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The isomorphisms αi of 5.1(M4) determine an isomorphism

(5.2.1.b) γ1 =
∑
i∈I

αi∗ :
⊕
i∈I

ΠS(Di)→
⊕
i∈I

1S ⊕
⊕
i∈I

1S(1)[2]

The following lemma is immediate.

Lemma 5.2.2. Under the above assumptions and notation, the composite γ1 ◦ d1 factors through the inclusion
of the direct summand

⊕
i∈I 1S on the right-hand-side of (5.2.1.b). Moreover, the factorization coincides with

the map

(5.2.2.a) q1 =
∑
i<j

piij∗ − p
j
ij∗ :

⊕
i<j

ΠS(Dij)→
⊕
i∈I

1S

where plij∗ is the composition of the inclusion of the l-factor of the left hand-side with pij∗.
In particular, there is a canonical isomorphism

(5.2.2.b) ΠS(D) ' D ⊕
⊕
i∈I

1S(1)[2]

where D is the homotopy cofiber of q1.

Remark 5.2.3. One can interpret the preceding lemma by saying that ΠS(D) is a sum of the combina-
torial part D depending on the combinatorics of the intersection of the irreducible components of D,
which is a smooth Artin object11 and the “geometric” part

⊕
i∈I 1S(1)[2].

5.2.4. The description of the target ΠS(X/X−D) of the map βX,D in Definition 4.1.1 is more involved,
in particular in the non-oriented case.

Lemma 5.2.5. Consider the assumptions of Section 5.1. Assume one of the following condition holds:
(M5a) The motivic∞-category T is oriented.
(M5b) The motivic category is T = D̃M, or T = SH and K0(S) is infinite cyclic. Furthermore, we assume

given for every i ∈ I two orientation classes εi ∈ OrDi(Ci) and τi ∈ OrDi(ωi) (see 6.1.5) such that
for every i < j, the equality

(εi ⊗ τi)|Dij = (εj ⊗ τj)|Dij

holds in OrDij (ωX |Dij )
(5.1.0.b)
' OrDij ((Ci ⊗ ωi)|Dij ).

Then there exists an isomorphism

ε∗ : ΠS(X/X −D)→ ΠS(D)∨(2)[4] = Hom(ΠS(D),1S)(2)[4]

in T (S), canonical in case (M5a) and depending canonically on the orientations classes (εi)i∈I and (τi)i∈I in
case (M5b).

Combining the isomorphism ε∗ with Lemma 5.2.2, we get the isomorphism

(5.2.5.a) ΠS(X/X −D) ' D∨(2)[4]⊕
⊕
j∈I

1S(1)[2]

Note moreover that D∨ is still an Artin object as in Remark 5.2.3.

Remark 5.2.6. (1) Assumption (M5b) implies that the conormal sheaves Ci of all the divisors Di in
X must have even degree.

(2) When ωX |D is orientable, say with a given orientation class ϕ ∈ OrD(ωX |D), one way of fulfill-
ing condition (M5b) is to choose for τi the orientation given by the canonical isomorphism ci :
ωi → (ODi(−1))⊗2 and for εi the image of the orientation class ϕ|Di ⊗ τ∨i ∈ OrDi(ωX |Di ⊗ω∨i )

under the isomorphism OrDi(ωX |Di ⊗ ω∨i )
(5.1.0.b)
' OrDi(Ci).

11By analogy with the case of motives, it is the smallest∞-category containing ΠS(V ) for V/S finite étale, and stable
under suspensions, homotopy (co)fibers.
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Proof. In the case of assumption (M5a), the lemma follows from Theorem 3.4.3 by canonically trivial-
izing twists of vector bundles.

Next we treat the more involved case of (M5b). Consider the Gysin morphisms

(νlij)
! : ΠS(Dl,−〈Tl〉)(2)[4]

(5.1.0.a)
' ΠS(Dl,−〈N l

ij〉)(2)[4]→ ΠS(Dij)(2)[4]

(νlij)
! : ΠS(Dl, Nl)→ ΠS(Dij , (ν

l
ij)
−1Nl − 〈N l

ij〉)
(5.1.0.b)
' ΠS(Dij , Nij)

Then for every l = i, j, we have a commutative diagram of isomorphisms

ΠS(Dl)
∨(2)[4]

(νlij∗)
∨
//

θl ��

ΠS(Dij)
∨(2)[4]
θij��

ΠS(Dl,−〈Tl〉)(2)[4]
(νlij)

!

//

η
(l)
∗ ��

ΠS(Dij)(2)[4]

ε
(ij,l)
∗��

ΠS(Dl, Nl)
(νlij)

!

// ΠS(Dij , Nij)

The top square is the canonical commutative diagram coming from the explicit duality pairing con-
structed in Example 2.5.7. The vertical isomorphism of the bottom square is defined as follows: The
isomorphism ε

(ij,l)
∗ is obtained either from the SL-orientation of D̃M or in case T = SH from Propo-

sition 6.1.16 by using the orientation (εl ⊗ τl)|Dij of det Cij
(5.1.0.a)
' ωX |Dij . The isomorphism η

(l)
∗ is

obtained in the same way by using the isomorphisms

ΠS(Dl, Nl) ' ΠS(Dl)(1)[2] and ΠS(Dl,−〈Tl〉) ' ΠS(Dl)(−1)[−2]

associated to the chosen orientations εl and τl, respectively. The assumption that the orientations
(εi ⊗ τi)|Dij and (εj ⊗ τj)|Dij coincide in OrDij (ωX |Dij ) ensures that ε(ij,i)∗ = ε

(ij,j)
∗ . It follows that the

diagram ⊕
i∈I ΠS(Di)

∨(2)[4]

∑
i<j(ν

i
ij∗)
∨−(νjij∗)

∨
//

⊕
η

(i)
∗ θi
��

⊕
i<j ΠS(Dij)

∨(2)[4]⊕
ε
(ij,i)
∗ θij=

⊕
ε
(ij,j)
∗ θij

��⊕
i∈I ΠS(Dl, Nl)

∑
i<j(ν

i
ij)

!−(νjij)
!

//
⊕

i<j ΠS(Dij , Nij)

is commutative. This provides the desired canonical isomorphism between the homotopy fiber
ΠS(D)∨(2)[4] of top line (see (5.2.1.a)) and the homotopy fiber ΠS(X/X − D) of the bottom line
(see Proposition 3.3.10). �

Using the above two lemmas, we can refine Theorem 4.2.1 as follows:

Theorem 5.2.7. Assume conditions (M1)-(M4) of Section 5.1 as well as one of the conditions (M5a) or (M5b)
of Lemma 5.2.5. Then the punctured tubular neighborhood TN×S (X,D) in T (S), or equivalently (Propo-
sition 4.4.2) the homotopy at infinity Π∞S (X − D) when X/S is in addition proper, is isomorphic to the
homotopy fiber of the map

β =

(
a b′

b µ

)
: D ⊕

⊕
i∈I

1S(1)[2]→ D∨(2)[4]⊕
⊕
j∈I

1S(1)[2]

Here µ :
⊕

i∈I 1S(1)[2] →
⊕

j∈I 1S(1)[2] is given by a square matrix (µij)i,j∈I2 with coefficients in the
endomorphism ring EndT (1S).

In the case (M5b), we call µ the quadratic Mumford matrix of (X,D). The next proposition provides
an explicit description of this matrix.

Proposition 5.2.8. We assume conditions (M1)-(M4) of Section 5.1.
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• In case (M5a), and T = DM,DMét,D
σ
B , D(−ét,Z`),Dm

Hdg (see diagram (1.2.0.a)) we have EndT (k) =

Z and for every i, j,

µij = deg([Di] · [Dj ]) = (Di, Dj)

is the usual intersection number of the (effective Cartier) divisors Di and Dj .
• In case (M5b), EndT (1Z[ 1

2
])⊗ Z(2) = GW(Z[1

2 ])⊗ Z(2)
12 and EndT (1k) = GW(k) for any field k.

Then, for every i, we have

µii = d̃egτ ′i e(Ni, εi)

where e(Ni, εi) ∈ C̃H1(Di) is the Euler class of the oriented bundle (Ni, εi), and d̃egτ ′i : C̃H1(X) →
GW(k) is the quadratic τ ′i -degree associated with the quadratic isomorphism τ ′i = τ−1

i : ODi � ωi
(see (6.2.3.a) and Remark 5.2.9(2)).

Furthermore, under the additional assumption (M3+) and for every i 6= j, we have

µij =
∑
λ

〈Trκλij/k
(uλij · xy)〉

Here Trκλij/k
is the trace form (in variables x, y), and uλij ∈ κλij is a unit whose quadratic class is the

image of the orientation class

ελij = (εi ⊗ τ∨j )|Dλij ∈ OrDλij
((Ci ⊗ ω∨j )|Dλij )

under the isomorphism OrDλij
((Ci ⊗ ω∨j )|Dλij )

(5.1.0.c)
' OrDλij

(κλij)
Remark 6.1.7' Q(κλij).

Proof. By construction, for every (i, j) ∈ I2, the coefficient µij is computed as the composite map

1S(1)[2]
p!
i−→ ΠS(Di,−Ti)(1)[2]

(1)−−→ ΠS(Di)
(ν̄i)∗−−−→ ΠS(X)

(ν̄j)
!

−−−→ ΠS(Dj , Nj)
(2)−−→ ΠS(Dj)(1)[2]

(pj)∗−−−→ 1S(1)[2]

Here pi : Di → Spec(k) (resp. ν̄i : Di → X) is the projection map (resp. inclusion), the map (1) (resp.
(2)) is the isomorphism from Lemma 5.2.2 (Lemma 5.2.5). The case (M5a) follows readily. In the case
(M5b), (1) corresponds to the isomorphism induced by the orientation τi and (2) from the orientation
εj . The assertion then follows readily from the definitions. �

Remark 5.2.9. (1) The assumption made in Lemma 5.2.5 case (M5b) that (εi ⊗ τi)|Dij and (εj ⊗
τj)|Dij are equivalent orientations the sheaf ωX |Dλij implies under assumption (M3+) that for

all i 6= j and all λ the orientation classes ελij and ελji of κλij are equal, hence that the matrix µ is
symmetric.

(2) The element d̃egτi e(Ni, εi) ∈ GW(k) coincides with the Euler number nGS(Ni, σ0, ρi) of the
zero section σ0 of Ni with respect to the relative orientation class τ−1

i ◦ εi : Ci � ωi in OrDi(Ci ⊗
ω∨i ) (see Example 6.1.8 for explanations) of Ci considered by Bachmann-Wickelgren in [17].
One can check that in our setting, this element is actually independent on the chosen orien-
tations, equal to 1

2(Di, Di)h, where h = 〈1〉 + 〈−1〉 ∈ GW(k) is the class of the hyperbolic
plane and where (Di, Di) = deg(C∨i ) ∈ 2Z is the usual self-intersection number of Di

13. In
contrast, the coefficients µij , i 6= j of the matrix µ do depend by construction on the choice of
the orientations εi and τi made in assumption (M5b) of Lemma 5.2.5.

12See [16, §5] for more general results.
13Ci has even degree on account of being orientable, see Remark 5.2.6(1).
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5.3. Abelian mixed Artin-Tate motives.

5.3.1. In the following, we apply Theorem 5.2.7 to rational abelian mixed Artin-Tate motives. That is,
we use T = DMQ, and restrict for simplicity to the case S = Spec(K) for some field K.

Let (X,D) be a K-pair satisfying the assumptions (M1)-(M4). Theorem 5.2.7 implies that the
motive M(TN×(X,D)) over K is Artin-Tate: it is in the smallest thick triangulated subcategory
DMAT(K,Q) of DM(K,Q) which contains motives of the form M(L)(n), where L/K is a finite sepa-
rable extension of K.

To state the next result, we moreover consider one of the following settings:
(1) Assume K is a field of Kronecker index at most one;14 for example, a number field, a fi-

nite field or a finitely generated field of transcendence degree 1 over a finite field. We let
DMAT(K,Q) be the triangulated category of (constructible) Artin-Tate motives over Q. From
[65] it follows that DMAT(K,Q) admits a motivic t-structure (uniquely characterized), whose
heart is the Tannakian category MMAT(K,Q) of abelian Artin-Tate motives. In particular, one
gets a homological and monoidal functor

H0 : DMAT(K,Q)→ MMAT(K,Q)

(2) AssumeK is a field of characteristic 0 with a fixed complex embedding. Then we can consider
the Tannakian category M(K) of Nori motives over K, as defined in [55], together with its
canonical (universal) homological functor

H0 : DMgm(K,Q)→M(K)

In that case, we define the category of Artin-Tate-Nori motives MMAT(K,Q) as the smallest
thick abelian subcategory ofM(K) which contains H0 DMAT(K,Q). As in the previous case,
we get a homological functor.

Under these assumptions, we define the Artin-Tate-Nori motive

Hi(TN×(X,D)) := H0(TN×(X,D)[−i])
as the i-th (motivic) homology of the punctured tubular neighborhood of (X,D). When X is in
addition proper over K, this is the homology of the boundary motive of (X −D) (see Example 4.3.3
and Proposition 4.4.2), or the motivic homology at infinity

H∞i (X −D) = Hi(TN×(X,D))

Proposition 5.3.2. Under the above assumptions, the homology motive Hi(X) vanishes for i 6∈ [0, 3] and
there is an exact sequence

0→H3(TN×(X,D))→
⊕
i∈I

1S(2)

∑
i<j p

i!
ij−p

j!
ij−−−−−−−−→
⊕
i<j

MS(Dij)(2)

→ H2(TN×(X,D))→
⊕
i∈I

1S(1)
µ−−→
⊕
j∈I

1S(1)

→ H1(TN×(X,D))→
⊕
i<j

MS(Dij)

∑
i<j p

i
ij∗−p

j
ij∗−−−−−−−−−→

⊕
i∈I

1S → H0(TN×(X,D))→ 0

Here, µ is the Mumford matrix, and MS(Dij) = H0(MS(Dij)) is seen as an abelian Artin-Tate motive, or as
an Artin-Tate-Nori motive.

Note in particular that H0(TN×(X,D)) and H3(TN×(X,D)) are pure of respective weights 0 and
−4, while H1(TN×(X,D)) and H2(TN×(X,D)) are in general mixed of weights {0,−2} and {−2,−4},
respectively (see [58] for the notion of weights on Artin-Tate-Nori motives).

14Recall the Kronecker index of a field F , of transcendence degree d over its prime subfield and characteristic p, is either
d+ 1 if p = 0 or d if p > 0.
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Proof. Theorem 5.2.7 provides a distinguished triangle computing M(TN×(X,D)). The above long
exact sequence follows by using the long exact sequence associated with the homological functor
H0. �

Remark 5.3.3. One obtains similar exact sequences of mixed motives over more general bases S using:
(1) [80]: when S ⊂ SpecOK , OK a number ring;
(2) [58]: S a smooth K-scheme, for a field K with a complex embedding K ⊂ C.

Indeed, the indicated references provide us with a suitable category of Artin-Tate(-Nori) motives,
and one can make precisely the same calculation (taking into account the dimension of S as we use
perverse motivic t-structures).

Example 5.3.4. To illustrate Theorem 5.2.7, Proposition 5.2.8, we compute Wildeshaus’ boundary mo-
tive, or equivalently the motive at infinity (Example 4.3.3), of Ramanujam’s surface Σ over a field k of
characteristic different from 2. We work in T = DM, the integral category of motives.

First we recall the construction of Σ. Given a cuspidal cubic C ⊂ P2
k and a smooth k-rational conic

Q ⊂ P2
k intersecting C with multiplicity 5 in a k-rational point p, let Σ be the complement of the

proper transforms of C and Q in the blow-up σ : F1 → P2
k of the remaining k-rational intersection

point q of C and Q (see [51] for Hirzebruch surfaces Fn, n ≥ 0). Over the complex numbers, the un-
derlying analytic space of Σ is a topologically contractible open smooth manifold non-homeomorphic
to R4 whose topological fundamental group at infinity π∞1 (Σ) is infinite with trivial abelianization,
see [74].

A compactification X = Σ̄ of Σ with smooth crossing boundary D = ∂Σ is obtained from F1 by
blowing-up the singular point of C, with exceptional divisor E ' P1

k. The irreducible components
of D are then E and the proper transforms of Q and C, with respective self-intersections E2 = −1,
Q2 = 4 and C2 = 3. Furthermore, Q and C intersects with multiplicity 5 at the unique point p and E
and Q intersects with multiplicity 2 at a unique k-rational point.

Next we apply Theorem 5.2.7 to the pair (X,D). One first obtains that the Artin part D = 1k, and
that the maps a, b, b′ are all zero for degree reasons (see also the proof of Proposition 5.4.2). Then from
Proposition 5.2.8, the map µ : (1k(1)[2])⊕3 → (1k(1)[2])⊕3 is given by the integer valued intersection
matrix  4 5 2

5 3 0
2 0 −1


Its Smith normal form is the diagonal matrix ∆(1, 1, 1) in M3,3(Z). Theorem 5.2.7 implies the bound-
ary motive of Σ is isomorphic to homotopy fiber of the trivial map 1k → 1k(2)[4]. In summary, we
obtain

∂M(Σ) = M∞(Σ) ' 1k ⊕ 1k(2)[3]

5.4. Punctured tubular neighborhoods of orientable trees of rational curves.

5.4.1. Consider the assumptions (M1)-(M4), (M3+) of Section 5.1, in the special case where D is an
orientable tree of smooth k-rational curves on a smooth surface X/k over a field k, that is:

(1) D is a smooth normal crossing divisor on X with irreducible components Di ' P1
k, i ∈ I , such

that for every i 6= j, Dij is either empty or consists of a single k-rational point.
(2) For every i ∈ I , the conormal sheaf Ci of Di is X is orientable, hence isomorphic to ODi(2ni)

for some ni ∈ Z.
(3) The incidence complex Γ of D is a tree.

Recall that h = 〈1〉 + 〈−1〉 = 1 + 〈−1〉 ∈ GW(k) denotes the class of the hyperbolic plane. As an
application of the general computation of Proposition 5.2.8, we get:

Proposition 5.4.2. Under the above assumptions, there is a choice of orientations (εi)i∈I fulfilling condition
(M5b) of Lemma 5.2.5 which guarantees that the punctured tubular neighborhood TN×S (X,D) in SH(k) is
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isomorphic to
1k ⊕ hofib(µ)⊕ 1k(2)[3]

where the quadratic Mumford matrix µ :
⊕

i∈I 1k(1)[2]→
⊕

i∈I 1k(1)[2] is obtained from the integer-valued
Mumford matrix (Di, Dj)i,j by replacing each diagonal entry (Di, Di) = −2ni by −nih.

Proof. First, assume any choice of orientation εi fulfilling condition (M5b). Denote by J ⊂ I × I
the subset consisting of pairs i < j such that Dij 6= ∅. Since Γ is a tree, we have ]J = ]I − 1 and⊕

i<j Πk(Dij) =
⊕

(i,j)∈J 1k. The map q1 in (5.2.2.a) is given by a matrix in M]J,]I(Z), whose Smith
normal form is the diagonal matrix (

id]J
0

)
The homotopy cofiberD of q1 is thus equal to that of the trivial map 0→ 1S , hence to 1S . This implies
that D∨ = 1S . By Morel’s A1-connectivity theorem, HomSH(k)(1k,1k(i)[2i]) = 0 for all i > 0. Thus
Theorem 5.2.7 implies that TN×S (X,D) is the homotopy fiber of the map

β =

(
0 0
0 µ

)
: 1S ⊕

⊕
i∈I

1S(1)[2]→ 1S(2)[4]⊕
⊕
j∈I

1S(1)[2]

By Proposition 5.2.8 and Remark 5.2.9(2), the diagonal entries of µ are equal to the Euler classes
e(C∨i ) = e(OP1

k
(−2ni)) = −nih ∈ GW(k).

To finish the proof, we will now show that, up to modifying the τi, there always exists a choice of
orientations εi fulfilling condition (M5b) and such that the orientations εij of κ(Dij) = k appearing
in Proposition 5.2.8 are all equivalent to the canonical orientation of k defined as the inverse of the
multiplication homomorphismm : k⊗k → k, a⊗b 7→ ab. In turn, this shows our remaining assertion
about the coefficients away from the diagonal in the matrix µ.

This can be seen as follows. Let D0 be any irreducible component of D, which we view as the
root of the incidence tree Γ of D and denote by D1, . . . Ds be the irreducible components of D which
interest D0. Let ε0 : C0 → L⊗2

0 and τ0 : ω0 → M⊗2
0 be any fixed choice of orientations. For any

orientation τj : ωj →M⊗2
j , j = 1, . . . , s the orientation

εj,0 = εj ⊗ tτ−1
0 : k ' Cj |D0,j ⊗ ω∨0 |D0,j → (Lj |D0,j ⊗M∨0 |D0,j )

⊗2

is equivalent to u0,j ·m−1 : k → k ⊗ k, defined by 1 7→ u0,j1⊗ 1 for some element u0,j ∈ k∗ uniquely
determined up to multiplication by an element of (k∗)2. If u0,j 6= 1 then by replacing τj by τj ◦ (×u−1

0,j )

we obtain an orientation whose associated unit u0,j of k as in Proposition 5.2.8 is equal to 1. The same
argument implies the existence of orientations εj : Cj → L⊗2

j , j = 1, . . . s, such that for all j = 1, . . . s,
the unit uj,0 of k associated to the orientation

ε0,j = ε0 ⊗ tτ−1
j : k ' C0|D0,j ⊗ ω∨j |D0,j → (L0|D0,j ⊗M∨j |D0,j )

⊗2

is equal to 1.
Since the incidence complex Γ ofD is a tree, the incidence complex of

⋃
i 6=0Di is a union of trees Γj

with the components Dj , j = 1, . . . , s as their respective roots, with the just constructed orientations
τj : ωj → M⊗2

j and εj : Cj → L⊗2
j . By repeating for each of these trees the same argument as

above, we obtain by induction the existence of a collection of orientations τi and εi for which the
units uij ∈ k = κij associated to the orientations εij and εji are all equal to 1.

We claim the constructed collection of orientations has the property that for every i 6= j, the ori-
entations (εi ⊗ τi)|Dij and (εj ⊗ τi)|Dij of ωX |Dij appearing in Lemma 5.2.5 are equivalent. Indeed,
for

oij = (τi ⊗ τj)|Dij : Fij = ωi|Dij ⊗ ωj |Dij → (Mi|Dij ⊗Mj |Dij )⊗2

the orientations (εi ⊗ τi)|Dij and (εj ⊗ τi)|Dij are obtained by tensoring the equivalent ones εij and εji
with oij using the canonical isomorphisms

Ci|Dij ⊗ ωi|Dij ' Ci|Dij ⊗ ω∨j |Dij ⊗Fij and Cj |Dij ⊗ ωi|Dij ' Cj |Dij ⊗ ω∨i |Dij ⊗Fij
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The assertion follows now from the application of the formula in Proposition 5.2.8 which gives

µij = 〈Trκij/k(uij · xy)〉 = 〈1〉 = 1 = (Di, Dj) ∈ GW(k)

�

In the next subsection, we illustrate our techniques by explicitly computing the punctured tubular
neighborhoods of Du Val singularities on normal surfaces and the stable homotopy types at infinity
of Danielewski hypersurfaces, a family of smooth affine surfaces of historical interest in the context
of the Zariski cancellation problem.

Example 1: Stable motivic links of Du Val singularities on normal surfaces. Let X0 be a geometrically
integral normal surface essentially of finite type over a field k with an isolated k-rational rational
double point x, also called a Du Val singularity. Recall from [2], [3] that among many equivalent
characterizations, this means that letting π : X → X0 be the minimal desingularization of X0 and
πk̄ : Xk̄ → X0,k̄ be the base change to an algebraic closure k̄ of k, the following holds:

(1) π−1
k̄

(xk̄) is a smooth normal crossing divisor whose irreducible components are proper k̄-
rational curves Ei intersecting each other transversely at k̄-rational points only.

(2) The curves Ei have self-intersection number −2 and the intersection matrix (Ei, Ej)i,j is neg-
ative definite.

The incidence graph of the divisor E = π−1
k̄

(xk̄) is one of the classical Dynkin diagram of type An,
n ≥ 1, Dn, n ≥ 4, E6, E7 and E8 depicted in the left column of Table 1. If k̄ has characteristic
different from 2, 3 and 5, the completion of the local ring OX0,k̄,xk̄ is isomorphic to k̄[[x, y, z]]/(f)

where f is one of the polynomials listed in the second column of Table 1, in particular the analytic
local isomorphism type of the singularity depends only on the Dynkin diagram.15 Over a non-closed
field, Du Val singularities An, Dn and E6 can in general have non-trivial k-forms depending on the
action of the Galois group Gal(k̄/k) on the irreducible components of E. We now assume in addition
that all the irreducible components of E are defined over the base field k and isomorphic to P1

k.16 For
such singularities, the closed pair (X,E) satisfies the assumptions in 5.4.1, and the punctured tubular
neighborhood TN×S (X0, x) of x in X0 is a natural invariant of the Nisnevich germ of x in X0 which,
by Corollary 4.1.8, can be computed as the punctured tubular neighborhood TN×S (X,E). Applying
Proposition 5.4.2, we obtain the following

Proposition 5.4.3. With the assumption above, the punctured tubular neighborhood TN×k (X0, x) is isomor-
phic to

1k ⊕ hofib(µ(Γ))⊕ 1k(2)[3]

Here µ(Γ) is the square matrix with entries in GW(k) obtained from the integer valued intersection matrix
(Ei, Ej)i,j associated to the Dynkin diagram Γ = An, Dn, E6, E7, E8 by replacing each diagonal entry −2 by
−h.

The above proposition implies that the stable motivic link TN×(Γ) := TN×k (X0, x) of the Du Val sin-
gularity germ (X,x0) depends only on the Dynkin diagram Γ. We summarize these links in Table 1.

5.4.4. Let us explain how to compute with Smith normal forms the part hofib(µ(Γ)) of TN×(Γ), the
stable homotopy punctured tubular neighborhood associated with du Val singularities in Table 1.
A priori, this is non-standard since we are considering a matrix µ(Γ) with coefficients in the non-
principal (even non-reduced!) ring

Zε := Gm(Z) = Z[ε]/(ε2 − 1).

15In characteristics 2, 3 and 5, there are finitely many additional ”normal forms”, see [3] for the complete list.
16Over a field of characteristic zero, this amounts to restricting to ”split” Du Val singularities A−n , D−n , E−6 , E7 and E8,

see [64].
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Dynkin diagram Normal form over k TN×(Γ)

A−n x2 − y2 − zn+1 = 0


1k ⊕ hofib(−mh)⊕ 1k(2)[3] n = 2m− 1

1k ⊕ hofib(n2h+ 1)⊕ 1k(2)[3] n ≡ 0 [4]

1k ⊕ hofib((n2 ) + 1)h− 1)⊕ 1k(2)[3] n ≡ 2 [4]

D−n x2 + y2z − zn−1 = 0

{
1k ⊕ hofib(−h)⊕ 1k(2)[3] n = 2m

1k ⊕ hofib(−2h)⊕ 1k(2)[3] n = 2m+ 1

E−6 x2 + y3 − z4 = 0 1k ⊕ hofib(2h− 1)⊕ 1k(2)[3]

E7 x2 + y3 + yz3 = 0 1k ⊕ hofib(−h)⊕ 1k(2)[3]

E8 x2 + y3 + z5 = 0 1k ⊕ 1k(2)[3]

TABLE 1. Stable motivic links of classical split forms of Du Val Singularities

However, one can consider the two quotient rings Z± = Zε/(ε ± 1), both isomorphic to Z and the
canonical injective map π : Zε → Z+ × Z− with image given by pairs (n,m) such that n ≡ m mod 2
(see [28, 3.1.1, 3.1.2]). We begin with the matrix µ(Γ) having coefficients in Zε, and compute the
Smith normal form µ(Γ)± = SpmD±T± of the matrix obtained by mapping to the principal ring Z±
(i.e., setting ε = ±1). If the invertible matrices (S+, S−), (T+, T−), as well as the diagonal matrix
(D+, D−), are in the image of π (coefficients by coefficients), one can define unique lifts (S, T,D) with
coefficients in Zε, such that S and T are invertible and the relation µ(Γ) = SDT holds true. In this
situation, we deduce the desired Smith normal form and in SH(k) we obtain an isomorphism

hofib
(
µ(Γ)

)
' hofib

(
D
)

Remark 5.4.5. We note that except for the E8 case, the stable motivic link TN×(Γ) of a Du Val singu-
larity is different from the stable motivic link of TN×(A2

k, {0}) = 1k ⊕ 1k(2)[3] of a regular point on a
surface. In particular, TN×(Γ) distinguishes Du Val singularities other than E8 from regular points.
This is in contrast with the étale local fundamental groups of these singularities, which, in character-
istic p > 0, do not distinguish a double point of the form Ape from a regular point, see [3]. For E8 and
the complex numbers, we can interpret the equality TN×(E8) = TN×(A2

k, {0}) as a reminder that
the topological link of E8 is the Poincaré homology 3-sphere Σ(2, 3, 5). It is a compact topological
3-manifold with the same singular homology groups as S3, whose fundamental group is isomorphic
to the binary dodecahedral group.

Example 2: Danielewski hypersurfaces. For a field k and n ≥ 1, the Danielewski hypersurface Dn is the
smooth affine surface Dn in A3

k cut out by the equation xnz = y(y − 1). Owing to [29], Dn becomes
a Zariski locally trivial Ga-bundle over the affine line with two origins Ă1

k (using the factorization of
the surjective projection πn = prx : Dn → A1

k). Thus Dn is A1-equivalent to Ă1
k and P1

k. The three-
foldsDn×A1

k are isomorphic, but the surfacesDn are pairwise non-isomorphic. Over C, Danielewski
[29], Fieseler [48] established this by showing the underlying complex analytic manifolds have non-
isomorphic first singular homology groups at infinity. Our methods provide a base field independent
argument that distinguishes between the Dn’s via their stable homotopy types at infinity.

We begin by constructing explicit smooth projective completions D̄n of the surfaces Dn, whose
boundaries are strict normal crossing divisors. The morphism ϕn = prx,y : Dn → A2

k expresses Dn

as the affine modification of A2
k with center at the closed subscheme Zn with ideal (xn, y(y − 1)) and

divisor Dn = div(xn), cf. [41]. Furthermore, ϕn decomposes into a sequence of affine modifications

(5.4.5.a) ϕn = ϕ1 ◦ ψ2 · · · ◦ ψn : Dn → Dn−1 → · · ·D2 → D1 → A2
k
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given by ψ` : D` → D`−1; (x, y, z) 7→ (x, y, xz), with center at the closed subscheme Y`−1 = (x, z) and
divisor H` = div(x). That is, ϕ1 : D1 → A2

k is the birational morphism obtained by blowing-up the
points (0, 0), (0, 1) in A2

k and removing the proper transform of {0} ×A1
k, and ψ` : D` → D`−1 is the

birational morphism obtained by blowing-up the points (0, 0, 0), (0, 0, 1) in π−1
` (0) and removing the

proper transform of π−1
`−1(0).

Now consider the open embedding A2
k ↪→ P1

k×P1
k; (x, y) 7→ ([x : 1], [y : 1]). Then C∞ = P1

k× [1 : 0]
and F∞ = [1 : 0] × P1

k are irreducible components of P1
k × P1

k and we set F0 = [0 : 1] × P1
k. Let

ϕ̄1 : D̄1 → P1
k ×P1

k be the blow-up of the points ([0 : 1], [0 : 1]), ([0 : 1], [1 : 1]) in F0, with respective
exceptional divisors E1,0, E1,1. From now on the proper transform of F0 in D̄1 is also denoted by F0.
With these definitions, there is a commutative diagram

D1

ϕ1

��

// D̄1

ϕ̄1

��
A2
k

// P1
k ×P1

k

Here, D1 ↪→ D̄1 is the open immersion given by the complement of the support of the strict normal
crossing divisor ∂D1 = C∞ ∪ F∞ ∪ F0. The closures in D̄1 of the two irreducible components {x =

y = 0} and {x = y − 1 = 0} of π−1
1 (0) equal the exceptional divisors E1,0 and E1,1, respectively. We

calculate the self-intersection numbers C2
∞ = F 2

∞ = 0, F 2
0 = −2 in D̄1; that is, the usual degrees of

the respective normal line bundles of these curves in D̄1, see e.g., [49, Chapter 5.6], [81, Chapter IV].
To construct D̄n, n ≥ 2, we start with D̄1 and proceed inductively by performing the same sequence

of blow-ups as for the affine modifications ψ` : Dl → D`−1 in (5.4.5.a). This yields birational mor-
phisms ψ̄` : D̄` → D̄`−1 consisting of the blow-up of one point on E`,0 − E`−1,0 and another point on
E`,1−E`−1,1 with respective exceptional divisors E`+1,0 and E`+1,1 (by convention E0,0 = E0,1 = F0).
Moreover, D` embeds into D̄` as the complement of the support of the strict normal crossing divisor
∂D` = C∞ ∪ F∞ ∪ F0 ∪

⋃`−1
i=1(Ei,0 ∪ Ei,1) in such a way that the closures of the two irreducible com-

ponents {x = y = 0} and {x = y − 1 = 0} of π−1
` (0) coincide with the divisors E`+1,0 and E`+1,1,

respectively. By construction, there is a commutative diagram

D̄`
ψ̄` // D̄`−1

// · · · // D̄2
ψ̄2 // D̄1

ϕ̄1 // P1
k ×P1

k

D`
ψ` //

OO

D`−1
//

OO

· · · // D2
ψ2 //

OO

D1
ϕ1 //

OO

A2
k

OO

For every n ≥ 2, we may visualize the boundary divisor ∂Dn as a fork of 2n+ 1 copies of P1
k

(E1,0,−2) · · · (En−1,0,−2)

(F∞, 0) (C∞, 0) (F0,−2)

(E1,1,−2) · · · (En−1,1,−2)

intersecting transversally in k-rational points, with the indicated self-intersection numbers for each
irreducible component. We may order the irreducible components of ∂Dn by setting

F∞ < C∞ < F0 < E1,0 < . . . < En−1,0 < E1,1 < . . . < En−1,1
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The above constructed boundary divisor ∂Dn satisfies the assumption of 5.4.1. Applying Proposi-
tion 5.4.2, we deduce that Π∞k (Dn) is isomorphic to

1k ⊕ hofib(µn)⊕ 1k(2)[3]

where µn is the following matrix (with zero entries mostly left out of the notation)

µn =



0 1
1 0 1

1 −h 1 0 1
1 −h 1

0 1
. . . 1
1 −h 0

1 0 −h 1

1
. . . 1
1 −h


∈ M2n+1,2n+1(GW(k))

Elementary row and column operations show that µn is equivalent to the diagonal matrix ∆(1, . . . , 1, nh).
We deduce that Π∞k (−) distinguishes between all the Danielewski surfaces.

Proposition 5.4.6. Over a field k and n ≥ 1, the stable homotopy type at infinity of the Danielewski surface
Dn is given by

Π∞k (Dn) ' 1k ⊕ hofib(nh)⊕ 1k(2)[3]

6. APPENDIX: QUADRATIC ORIENTATIONS AND ISOMORPHISMS, CYCLES AND DEGREE

6.1. Oriented vector bundles and quadratic isomorphisms.

6.1.1. The notion of oriented real vector bundles was extended to the algebraic setting by Barges-
Morel in [18]. We recall their theory and introduce new tools for our orientations.

Definition 6.1.2. A quadratic pre-isomorphism from an invertible sheaf L to an invertible sheaf L′ is an
isomorphism τ : L → L′ ⊗M⊗2, whereM is an arbitrary invertible sheaf on X .

Two quadratic pre-isomorphisms τ : L → L′ ⊗M⊗2 and τ ′ : L → L′ ⊗N⊗2 are called equivalent
if there exists an isomorphism φ :M→N such that the following diagram commutes

L′ ⊗M⊗2

Id⊗φ⊗2
��L

τ 22

τ ′
,,,, L′ ⊗N⊗2

A quadratic isomorphism ε : L� L′ is the equivalence class of a quadratic pre-isomorphism.

The composition of quadratic pre-isomorphisms τ : L → L′ ⊗M⊗2 and τ ′ : L′ → L′′ ⊗ N⊗2 is
defined by the formula

(6.1.2.a) τ ′ ◦ τ : L τ−→ L′ ⊗M⊗2 τ ′⊗Id−−−−→ L′′ ⊗N⊗2 ⊗M⊗2 ' L′′ ⊗ (N ⊗M)⊗2

The composition law is compatible with the equivalence relation on quadratic pre-isomorphism. It
admits as the identity of an invertible sheaf L the canonical isomorphism IdL⊗m−1 : L → L ⊗ O⊗2

X
where m : OX ⊗OX → OX is the multiplication map, and it satisfies the associativity relation.

Example 6.1.3. An invertible sheaf L is orientable in the sense of Barge-Morel if and only if it is
quadratically isomorphic to OX , and an orientation (resp. class of orientation) of L is a quadratic
pre-isomorphism (resp. isomorphism) – we will elaborate on this relation below. Moreover, if X is a
smooth scheme over a field k, with canonical sheaf ωX and L = V(L) is a line bundle on X , then a
relative orientation of L in the sense of Bachmann-Wickelgren is the same as a quadratic isomorphism
L� ωX .
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Definition 6.1.4. The quadratic Picard groupoid Picor(X) of a scheme X is the category whose objects
are invertible sheaves on X and with morphisms, the quadratic isomorphisms.

Let Pic(X) denotes Deligne’s Picard category of invertible sheaves on X (see Section 1.3 for our
conventions). There is an obvious functor

ρX : Pic(X)→ Picor(X)

which is the identity on objects and maps an isomorphism φ : L → L′ to the equivalence class of
the quadratic pre-isomorphism φ ⊗m−1 : L = L ⊗ OX → L′ ⊗ (OX)⊗2. Moreover, one checks the
following properties:

(1) The tensor product of invertible sheaves induces a symmetric monoidal structure on Picor(X),
such that ρ becomes monoidal. Therefore Picor(X) is a Picard groupoid and ρX is a natural
transformation of Picard groupoids.

(2) Given a morphism of schemes f : Y → X , the pullback of invertible sheaves induces a functor
f∗ : Picor(X)→ Picor(Y ) such that ρX is natural in X .

We henceforth denote by Isom (resp. IsomQ) the sets of isomorphisms (resp. quadratic isomorphisms)
of invertible sheaves.

6.1.5. Orientation classes. The notion of quadratic isomorphisms naturally recovers Barge-Morel’s for-
malism of orientations. Given an invertible sheaf L over a scheme X , we define the set of orientation
classes of L as

OrX(L) = IsomQ(L,OX) =
{

(ε,M) | ε : L '−→ OX ⊗M⊗2
}
/ ∼

This assignment is functorial for quadratic isomorphisms. The monoidal structure on Picor(X) in-
duces a product

OrX(L)⊗ Or(L′)→ OrX(L ⊗ L′), (ε, ε′) 7→ ε.ε′ = (m−1 ⊗ id(M⊗M′)⊗2) ◦ (ε⊗ ε′)
The composition law

OrX(OX)⊗ Or(OX)→ OrX(OX ⊗OX)
m−1

−−−→ OrX(OX)

defines an abelian group structure on OrX(OX). Its neutral element is the class of the quadratic
pre-isomorphism m−1 : OX → O⊗2

X . 17

Moreover, the preceding product induces an action of OrX(OX) on OrX(L). Next we record a
fundamental fact about orientations whose proof is elementary and left to the reader.

Theorem 6.1.6. For any scheme X , there is a short exact sequence of abelian groups

0 // Gm(X)/Gm(X)2 // OrX(OX) // Pic(X)2
// 0

u � // m−1 ◦ (×u)

(ε,M) � //M

where Pic(X)2 is the 2-torsion subgroup of Pic(X).
The action of OrX(OX) on OrX(L) is faithful. Moreover, when Pic(X) has no 2-torsion, the abelian

group OrX(OX) ' Gm(X)/Gm(X)2 acts fully faithfully on the set OrX(L). In particular, two classes of
orientations of L differ by a uniquely defined element of Gm(X)/Gm(X)2 (modulo this action).

Remark 6.1.7. To summarize, an invertible sheaf L on X is orientable if and only if its class in Pic(X)
is 2-divisible. If Pic(X) has no 2-torsion, then two orientations of L differs by a unique quadratic
class φ̄ ∈ Gm(X)/Gm(X)2 for some global invertible function φ on X .

For instance, if X = P1
k is the projective line over a field k, an invertible sheaf L is orientable if and

only if it has an even degree; moreover, two orientations of L differ by a unique quadratic class in
Q(k) = k∗/(k∗)2.

17One can check that the composition of quadratic isomorphisms also induces this group structure.
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Example 6.1.8. With reference to Example 6.1.3, the previous definitions and loc. cit. readily imply that
the set OrX(L ⊗ ω∨X) is in bijection with quadratic isomorphisms ε : L� ωX and also with relative
orientations of L = V(L) in the sense of Bachmann-Wickelgren [17].

6.1.9. Recall from [33, 7.13] the monoidal twisted Thom space functor (see also 2.1.1)

Tw := TwX : Pic(X)→ SH(X),L 7→ Th(L)(−1)[−2]

Proposition 6.1.10. There exists a canonical monoidal extension T̃w of the twisted Thom space functor and a
natural isomorphism

Pic(X)
Tw //

ρ )) ∼��

SH(X)

Picor(X)
T̃w

55

which is the identity on objects.

Proof. To a quadratic isomorphism ε : L � L′, represented by ε : L → L′ ⊗M⊗2, we associate an
isomorphism in SH(X)

ε∗ : Tw(L)→ Tw(L′ ⊗M⊗2) ' Tw(L′)⊗ Tw(M⊗2) ' Tw(L′)
The identification of Tw(L′ ⊗M⊗2) follows from the monoidality of Tw and [33, 7.13]. One checks
that the isomorphism in SH(X) depends only on the equivalence class of ε and that it is compatible
with the composition defined in (6.1.2.a). It is now straightforward to define the desired natural
transformation from Tw to the composition of ρ and T̃w. �

Example 6.1.11. It follows that the Thom space Th(L) of an invertible sheaf L depends only on the
orientation class of L. More precisely, every quadratic isomorphism ε : L � L′ induces a (well-
defined) isomorphism

ε∗ : Th(L) = T̃w(L)(1)[2]→ T̃w(L′)(1)[2] ' Th(L′)
In particular, one associate to any orientation class ε ∈ OrX(L) of L a canonical isomorphism

ε∗ : ΠS(X,V(L))→ ΠS(X)(1)[2]

in SH(X).

6.1.12. Next, we introduce a quadratic version of Deligne’s (rank-)determinant functor of Picard cat-
egories

K(X)
(rk,det)−−−−→ ZX × Pic(X),V 7→ (rkV,detV)

Definition 6.1.13. The category Kor(X) of virtual vector bundles over X modulo orientation is the
groupoid whose objects are virtual locally free sheaves V on X and a morphism from V to V ′ is a
morphism from (rkV, detV) to (rkV ′, detV ′) in ZX×Picor(X), i.e., a quadratic isomorphism detV �
detV ′ assuming rkV = rkV ′.

We refer to morphisms in Kor(X) as quadratic isomorphisms and use the notation V � V ′. By
definition, Kor(X) is the essential image of the composite functor

K(X)
(rk,det)−−−−→ ZX × Pic(X)

Id×ρ−−−→ ZX × Picor(X)

In particular, one gets a canonical monoidal structure on Kor(X), so that it becomes a Picard groupoid
with a canonical monoidal functor

K(X)
ρ−→ Kor(X)

Remark 6.1.14. We can again follow the lines of 6.1.5 and define an orientation of a virtual vector
bundle v = V(V) as either an orientation of its determinant or a quadratic isomorphism V � 〈r〉
where r = rk(V) (as a locally constant function on X). The same applies to vector bundles and
recovers the classical definition of Barge and Morel.
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Example 6.1.15. Let E be a ring spectrum over a scheme S which is SL-oriented in the sense of Panin-
Walter (see [1]). Let X be a separated S-scheme and v a virtual bundle over X . Using Thom isomor-
phisms attached to the SL-orientation of E, one obtains that the v-twisted E-cohomology of X

En(X, v) := [ΠS(X,−v),E[n]]

depends only on the pair (rk(v),det(v)). Moreover, it follows from Proposition 6.1.10 that En(X, v) is
functorial in v with respect to isomorphisms modulo orientation.

Chow-Witt groups provide the most fundamental example for us (the unramified Milnor-Witt
sheaf KMW

∗ represents these groups over fields).

Proposition 6.1.16. LetX be a scheme such thatK0(X) is infinite cyclic, e.g., a semi-local scheme or a unique
factorization domain. Then there exists a canonical monoidal extension T̃hX of the Thom space functor and a
natural isomorphism

K(X)
ThX //

ρ )) ∼��

SH(X)

Kor(X)
T̃hX
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which is the identity on objects.

Proof. By assumption, the morphism K(X)
(rk,det)−−−−→ ZX×Pic(X) is an equivalence of categories. Thus,

by definition of Kor(X), Proposition 6.1.10 concludes the proof. �

Remark 6.1.17. Note that, for X as above, we get an explicit quasi-inverse to (rk, det) by associating
to the class of (r,L) the class of the locally free sheaf Or−1

X ⊕ L. In particular, one can describe the
functor T̃hX as the composite

Kor(X)
'−→ ZX × Picor(X)→ SH(X),V 7→ (r = rkV, detV) 7→ TwX(V)(r)[2r]

The latter description clarifies the functoriality. In fact, the proposition posits the existence of a canon-
ical isomorphism (functorial for isomorphisms in V)

ThX(V) ' TwX(detV)(r)[2r], r = rkV

6.2. Quadratic 0-cycles and quadratic degrees.

6.2.1. Next, we recall a few definitions of Chow-Witt groups suitable for our needs.18 We fix a base
field k, not necessarily perfect but finitely generated over a perfect field k0.19

Given a finitely generated extension field K/k, we let KMW
∗ (K) be the Milnor-Witt ring of K (see

[70, Def. 3.1]). Given an invertible K-vector space L, we define the twisted Milnor-Witt ring of K by
the formula in [70, Rem. 3.21]

(6.2.1.a) KMW
∗ (K,L) := KMW

∗ (K)⊗Z[K×] Z[L×]

where L× = L − {0}, using the action of K× on KMW
∗ (K) via the canonical map K× → GW(K) =

KMW
0 (K).
Let now X be an essentially smooth k-scheme of dimension d and L an invertible sheaf on X . One

defines the group of quadratic 0-cycles on X twisted by L as

Z̃d(X,L) :=
⊕

x∈X(d)

GW(κ(x), ω∨x/X ⊗κ(x) L|x)

Here X(d) is the set of closed points x of X and ωx/X is the determinant of the κ(x)-vector space
Cx/X = mx/m

2
x. The support of a quadratic 0-cycle α is the set of points x ∈ X(d) whose coefficient in

α is non-zero. We will consider it as a finite reduced closed subscheme of X .

18We focus on zero cycles and emphasize (quadratic) cycles rather than cycle classes.
19This is to be able to use the written account on Chow-Witt groups. This assumption will be removed in [34].
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Owing to [70, Rem. 5.13], [45], or [46, Def. 7.2]20 there is a map

div :
⊕

y∈X(d−1)

KMW
1 (κ(y), ω∨y/X ⊗ L|y) −→ Z̃

d
(X,L)

Two quadratic zero-cycles are said to be rationally equivalent if their difference is in the image of div.
The above defines an additive equivalence relation ∼rat on quadratic 0-dimensional cycles, and the
d-th Chow-Witt group of X twisted by L is the quotient

C̃H
d
(X,L) = Z̃

d
(X,L)/∼rat= coKer(div)

This group depends functorially on L for quadratic isomorphisms.

Proposition 6.2.2. Let X be an essentially smooth k-scheme of dimension d and let v = V(V) be a virtual
vector bundle of rank d on X . Then there is a canonical isomorphism

H0
SH(X, v) := [1X ,Th(v)] ' C̃H

d (
X,detV

)
Proof. With k being finitely generated over a perfect field k0, one can work over k0 or assume that k is
perfect. The coniveau spectral sequence (see [31], §1.1.1 and Def. 1.4) associated with the cohomology
theory H∗SH(X, v) takes the form

Ep,q1 = ⊕x∈X(p)H
p+q
SH (Th(NxX(x)), v)⇒ Hp+q

SH (X, v)

Here X(x) = Spec(OX,x) and NxX(x) is the normal bundle of x (this relies on Morel-Voevodsky’s
homotopy purity theorem). The E1-term is concentrated in the range p ∈ [0, d] and by the A1-
connectivity theorem, in the range q ≤ 0. According to Morel’s computation of the 0-stable stem
and Feld’s theory [47], there is an isomorphism between complexes

E∗,01 ' C∗(X,KMW
∗ , ω∨X/k ⊗ detV)

We conclude by looking at the line p+ q = d. �

6.2.3. Quadratic Degree. Let X/k be a smooth proper scheme of dimension d with canonical sheaf
ωX = det(ΩX/k). In the following we define a notion of quadratic degree of ωX -twisted quadratic
0-cycles. To begin, note that there is a canonical isomorphism

Z̃d(X,ωX) = ⊕x∈X(d) GW(κ(x), ω∨x/X ⊗ ωX |x) ' ⊕x∈X(d) GW
(
κ(x)

)
This holds because for any closed point x ∈ X , the conormal exact sequence

0→ Cx/X → ΩX |x → Ωx/k → 0

together with the fact that Ωx/k = 0 (as κ(x)/k is étale) provides a canonical isomorphism of κ(x)-
vector spaces ω∨x/X⊗ωX |x = det(Cx/X)∨⊗ωX |x ' κ(x). Thus, an ωX -twisted quadratic 0-cycle can be
identified with a formal sum α =

∑
i∈I〈σi〉.xi, where xi ∈ X is a closed point and σi is a symmetric

bilinear form over κ(xi).
One defines the quadratic degree d̃eg of a quadratic cycle α as the proper pushforward associated

with the projection of X/k (see [15, Chap. 2, §3]). It is defined at the level of cycles and factorizes
through rational equivalence. If one assumes that the support of α is étale over k, then it can be
computed explicitly as the element

d̃eg(α) =
∑
i∈I
〈Trκ(xi)/k ◦σi〉 ∈ GW(k)

where Trκ(xi)/k is the trace form for the finite separable (by assumption) extension κ(xi)/k (apply loc.
cit. Lemma 2.3).

20In Morel’s notation, Z̃d(X,L) is the d-th term of the Rost-Schmid complex C∗RS(X,KMW
d {L}) while in Feld’s notation

it is the end of the complex C∗(X,KMW
∗ , ω∨X/k ⊗ L), where ωX/k = det(ΩX/k) is the canonical sheaf of X/k.
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More generally, let L be an invertible sheaf over X with a relative orientation (see Example 6.1.8)
given by a quadratic isomorphism ε : L� ωX . We define the quadratic ε-degree as the composite

(6.2.3.a) d̃egε : Z̃d(X,L)
ε∗−→ Z̃d(X,ωX)

d̃eg−−→ GW(k)

To compute this degree concretely, assuming that the support of α is étale over k, one first choose any
representative ε̃ : L ε−→ ωX ⊗M⊗2 of the quadratic isomorphism ε. Then, by linearity, one is reduced
to quadratic cycles of the form

α = 〈σ〉 ⊗ (t∗ ⊗ l).x ∈ GW (κ(x), ω∨x/X ⊗ L|x) = GW (κ(x))⊗Z[κ(x)×] Z[(ω∨x/X ⊗ L|x)×]

where t = t1∧ ...∧td belongs to ωx/X and correspond to a local parametrisation of x ∈ X , and l ∈ L|×x .
Then εx(l) = wl ⊗ (u⊗ u) where wl ∈ ωX |x and u ∈ M|×x . Finally, one gets a canonical isomorphism
ωX |x ' ωx/X so that t defines a non-zero linear form

t∗ : ωX |x ' ωx/X → κ(x)

Putting everything together, we get the formula

(6.2.3.b) d̃egε
(
〈σ〉 ⊗ (t∗ ⊗ l).x

)
= 〈Trκ(x)/k(t

∗(wl).σ)〉 ∈ GW(k)

6.2.4. Oriented degree of oriented cycles We keep the notation and hypotheses of the previous paragraph
and assume that ωX is orientable, with chosen orientation class τ ∈ OrX(ωX). Suppose that Y is a
reduced d-codimensional closed subscheme of X , such that Y/k is étale. Let ωY/X = det CY/X be the
determinant of the conormal sheaf of Y in X and assume given an orientation classe ε ∈ OrZ(ωY/X).
This allows us to define a canonical quadratic 0-cycle [Y ]εX ∈ Z̃d(X) associated with (Y, ε), as the
image of

∑
x∈Y(0)

〈1〉.x ∈ Z̃0(Y ) under the composite map

Z̃0(Y )
ε−1
∗−−→ Z̃0(Y, ωY/X)

i∗−→ Z̃d(X)

Note that given our conventions, the map i∗ is just the identity. As τ corresponds to a quadratic
isomorphism ωX � OX , we get the τ -degree map

degτ−1 : Z̃d(X)
τ−1
∗→ Z̃d(X,ωX)

d̃eg−−→ GW(k)

Then the τ -oriented degree of the ε-oriented cycle [Y ]εX is given by the class

degτ−1([Y ]εX) =
∑
x∈Y(0)

Trκ(x)/k ◦〈ux〉 ∈ GW(k)

for quadratic classes ux ∈ Q(κ(x)) computed as in the above paragraph.
The quadratic class ux can be computed in terms of the chosen orientations using again the canon-

ical isomorphism φ : ωX |x ' ωx/X (as κ(x)/k is separable). Namely, we get two induced orientation
classes ε|x and φ∗(τ |x) of the 1-dimensional κ(x)-vector space ωx/X = ωX |x, which, according to
Remark 6.1.7, are uniquely linked by a relation of the form

ε|x = ux.φ∗(τ |x)

Equivalently, ux is the element ε|x ⊗ (τ |∨x )−1 in

Orκ(x)(ωx/X ⊗ ω∨X |x) ' Orκ(x)(Oκ(x)) ' Q(κ(x))
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58 ADRIEN DUBOULOZ, FRÉDÉRIC DÉGLISE, AND PAUL ARNE ØSTVÆR

[39] B. Drew and M. Gallauer. The universal six-functor formalism. arXiv: 2009.13610, Feb. 2021.
[40] A. Dubouloz and J. Fasel. Families of A1-contractible affine threefolds. Algebr. Geom., 5(1):1–14, 2018.
[41] A. Dubouloz, S. Pauli, and P. A. Østvær. A1-contractibility of affine modifications. Int. J. Math., 30(14):34 pp, 2019.

Id/No 1950069.
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