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Abstract

We propose a neural network architecture and a training procedure to estimate blurring operators
and deblur images from a single degraded image. Our key assumption is that the forward operators
can be parameterized by a low-dimensional vector. The models we consider include a description of
the point spread function with Zernike polynomials in the pupil plane or product-convolution expan-
sions, which incorporate space-varying operators. Numerical experiments show that the proposed
method can accurately and robustly recover the blur parameters even for large noise levels. For a
convolution model, the average signal-to-noise ratio of the recovered point spread function ranges
from 13dB in the noiseless regime to 8dB in the high noise regime. In comparison, the tested alter-
natives yield negative values. This operator estimate can then be used as an input for an unrolled
neural network to deblur the image. Quantitative experiments on synthetic data demonstrate that
this method outperforms other commonly used methods both perceptually and in terms of SSIM.
The algorithm can process a 512× 512 image under a second on a consumer graphics card, and does
not require any human interaction once the operator parameterization has been set up.

Keywords: Blind deblurring, Blind inverse problems, Identification network, Spatially variant blur,
Deep learning, Unrolled network

Impact Statement

The prospect of restoring blurred images with a wave of the digital wand is undeniably seductive in
microscopy. However, the reality currently appears less satisfying, as handcrafted algorithms often offer
only minimal gains at the price of long parameter tuning. In this paper, we combine physical models
of the blur and artificial intelligence to design an interpretable blind deblurring method. A first neural
network is trained to estimate the point spread function of the optical system, while a second network
leverages this estimate to improve image quality. This approach provides a fully automated tool, capable
of improving the image quality in seconds. The proposed methodology yields point spread function
estimates with a quality that is superior by 10dB to other popular methods, which also leads to better
and more reliable deblurring results.

1 Introduction

Image deblurring and super-resolution consist in recovering a sharp image x̄ from its blurred and sub-
sampled version y = P(Āx̄), where Ā ∈ RM×N is a discretized linear integral operator describing the
acquisition process and P : RM → RM is some perturbation modeling noise, quantization, saturation...
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Figure 1: The Deep-Blur architecture. The first part of the network identifies the parameter γ̂. In this paper, we
use a ResNet architecture. The estimated parameter γ̂ is given as an input of a second deblurring network. This
one is an unrolled Douglas-Rachford algorithm. The yellow blocks are convolution layers with ReLU and batch
normalization. The red ones are average pooling layers. The green ones are regularized inverse layers of the form
xt+1 = (A∗(γ̂)A(γ̂) + λI)−1A(γ̂)y. The violet blocks are U-Net like neural networks with weights learned to
provide a sharp image x̂

It plays an important role in bio-medical and astronomical imaging, where physical phenomena such as
diffraction and turbulence strongly reduce the achievable resolution. It also received a constant attention
in the field of computer vision, where moving or out-of-focus objects create artifacts. When the operator
Ā describing the optical system is available, this problem can be solved with mature variational inverse
problem solvers [16] or data-driven approaches [8].

However, deriving a precise forward model requires specific calibration procedures, well controlled
imaging environments and/or highly qualified staff. In addition, model mismatches result in distorted
reconstructions. This can lead to dramatic performance loss, especially for super-resolution applications
[83, 40].

An alternative to a careful calibration step consists in solving the problem blindly: the forward
model Ā is estimated together with the sharp image x̄. Unfortunately, this blind inverse problem is
highly degenerate. There is no hope to recover the sharp image without prior assumptions on x̄ and
Ā. For instance, assume that Ā is a discrete convolution operator with some kernel h̄, i.e. y = h̄ ⋆ x̄.
Then the couple (h̄, x̄) can be recovered only up to a large group of transformations [78]. For instance,
the identity and blurred image are a trivial solution, the image and kernels can be shifted in opposite
directions or scaled with inverse factors. Therefore, it is critical to introduce regularization terms both
for the operator Ā and the signal x̄.

The main objective of this work is to design a blind inverse problem solver under the two assumptions
below:

• The operator Ā can be parameterized by a low-dimensional vector. In what follows, we let A :
RK → RM×N denote the operator mapping and we assume that Ā = A(γ̄) for some γ̄ ∈ RK .

• The signal x̄ lives in a family X ⊆ RN with some known distribution LX .

We propose a specific convolutional neural architecture and a training procedure to recover the couple
(γ̄, x̄) from the degraded data y and the mapping A( · ). A first network identifies the parameterization
γ̄, while the second uses this parameterization to estimate the image ȳ. This results in an efficient
algorithm to sequentially estimate the blur operator and the sharp image x̄. The network architecture
is shown on Fig. 1. At a formal level, the work can be adapted to arbitrary inverse problems beyond
image deblurring. We however showcase its efficiency only for challenging deblurring tasks involving
convolutions, but also more advanced space-varying operators.

1.1 Related works

Solving blind deblurring problems is a challenging task that started being studied in the 1970’s [79]. Fifty
years later, it seems impossible to perform an exhaustive review of existing methods and the following
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description will be lacunary. We refer the interested reader to [18] for a general overview of this field
and to [73] for a survey more focused on microscopy. The prevailing approach is to estimate the original
signal and the blur operator by solving variational problems of the form:

inf
A∈RM×N , x∈RN

1

2
∥Ax− y∥22 +RA(A) +Rx(x), (1)

where RA : RM×N → R∪{+∞} and Rx : RN → R∪{+∞} are regularization terms for the operator and
the signal respectively. This problem arises when considering maximum a posteriori (MAP) estimators
[49]. It can be attacked with various types of alternating minimization procedures [11]. Before the
advent of data-driven approaches, the regularizers were carefully designed to target specific features.
The point spread functions can be considered as sparse and compactly supported for motion deblurring
[48, 33, 27, 81, 68, 69, 15, 25]. They are smooth for diffraction limited systems [17] and can also be
parameterized with Zernike polynomials in the pupil plane [39, 73, 46, 7, 77, 78]. The images can
sometimes be considered as sparse in microscopy and astronomical imaging [59, 30] or piecewise constant
for natural images. The typical regularizer Rx is then the total variation, or more advanced priors on
the image gradient [17, 9, 67, 68, 69, 15]. Some authors also advocate for the use of priors on the image
spectrum [85, 37], which transform the blind deconvolution problem into a phase retrieval problem under
ideal conditions.

The most recent variants of these approaches can provide excellent results, see e.g. [65, 87]. However,
they strongly rely on the detection of specific features (points, edges, textures) which may be absent
or inaccurate models of the typical image features. In addition, the problem (1) or its derivatives are
usually highly non-convex and the initialization must be chosen carefully to ensure local convergence
to the right minimizer. As a result, these methods require a substantial know-how to be successfully
applied to a specific field.

In the most recent years, machine learning approaches have emerged and now seem to outperform
carefully handcrafted ones, at least in well controlled conditions. These approaches can be divided in
two categories. The first category concerns methods that directly estimate the reconstructed image from
the observation [74, 55, 63, 60, 54, 3, 20, 56]. The second category contains approaches that produce
an estimation of the blur operator. This estimate can then be used to deblur the original image. These
approaches are specifically tuned for applications in computer vision [80, 74, 38, 14, 50] (motion and
out-of-focus blurs) or diffraction limited systems [57, 76, 75, 72, 26, 84]. Our work rather falls in the
second category.

In this list of references, a few authors propose ideas closely related to the ones developed hereafter.
In particular, [72, 26, 84] propose to estimate the pupil function of a microscope from images of point
sources using neural networks. This idea is similar to the identification network in Fig. 1. The two
underlying assumptions are a space invariant system and the observation of a single point source. The
idea closest to ours is from Shajkofci and Liebling [76, 75]. Therein, the authors estimate a decomposition
of the point spread function from a single image using a low dimensional parameterization such as a
decomposition over Zernike polynomials. The spatial variations are then estimated by splitting the
observation domain in patches where the blur is assumed locally invariant. The image can then be
deblurred using a Richardson-Lucy algorithm based on the estimated operator.

1.2 Contributions

In this work, we propose to use a pair of convolutional neural networks to first estimate the operator
parameterization γ̄ ∈ RK and then use this parameterization to estimate the sharp image x̄ ∈ RN with
a second convolutional neural network. The first network is the popular ResNet [44] as in [76]. The
second network has the structure of an unrolled algorithm, which offers the advantage of adapting to the
forward operator [1, 2, 58]. We call the resulting algorithm Deep-Blur, see Fig. 1. This work contains
various original features:

• It includes space varying blur operators that are accurately and efficiently encoded using product-
convolution expansions as illustrated in [32, 31]. In particular, we show that this approach is
compatible with the characterization of an optical system as a low-dimensional subspace of opera-
tors proposed in [29, 28]. Most approaches in the literature decompose the observation space into
patches and treat each patch independently. In this work, we consider operators with an impulse
response that varies continuously in the field of view.
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• The resulting deblurring network is able to adapt to different forward models and to handle model
mismatches naturally. This issue is an important concern for the use of model-based inverse problem
solvers [6, 35, 64]. As will be discussed later, our approach can be seen as an intermediate step
between the Plug & Play algorithms [82, 86] and the unrolled algorithms [1].

• We evaluate the efficiency, robustness and stability of the proposed approach on various challenging
problems, showing that the method is reliable and accurate.

The PyTorch implementation of our method is available on demand. We are currently integrating it in
the DeepInv package.

2 Methods

In this paper, we assume that the degraded signal y ∈ RM is generated according to the following
equation:

y = P(A(γ̄)x̄), (2)

where A(γ) : RN → RM is a linear operator describing the optical system. It depends on an unknown
parameter γ̄ ∈ RP . The mapping P : RN → RN can model various deterministic or stochastic per-
turbations occurring in real systems such as additive white Gaussian noise, Poisson noise, quantization,
.... In this paper, we will use a Poisson-Gaussian noise approximation detailed in [34]. It is known to
accurately model microscopes, except in the very low photon count regime. Other more complex models
could be easily incorporated in the proposed framework at the learning stage. A critical aspect of this
paper is the parameterization of the forward operator A. We discuss this aspect below.

2.1 Modeling the blur operators

We consider both space invariant and space varying blur operators and linear or nonlinear parameteri-
zation.

2.1.1 Linear parameterization

We may assume that A belongs to a subspace of operators.

Convolution models and eigen-PSF bases By far the most wide-spread blurring model in imaging
is based on convolution operators: the point spread function is identical whatever the position in space.
This model is accurate for small fields of view, which are widespread in applications. Assuming that
there is no sub-sampling in the model, we can set M = N and Ax = h⋆x for some unknown convolution
kernel h.

The convolution model strongly simplifies the blur identification problem since we are now looking
for a vector of size N instead of a huge N ×N matrix. Yet, the blind deconvolution problem is known
to suffer from many degeneracies and possesses a huge number of possible solutions, see e.g. [78]. To
further restrict the space of admissible operators and therefore improve the identifiability, we can expand
the kernel h in an eigen-PSF basis. This leads to the following low dimensional model.

Model 2.1 (Convolution and eigen-PSFs). We assume that

A(γ)x =

K∑
k=1

γ[k]ek ⋆ x,∀x ∈ RN ,

where (ek) is an orthogonal family of convolution kernels called eigen-PSF basis.

Defining an eigen-PSF basis can be achieved by computing a principal component analysis of a
family of observed or theoretical point spread functions [36]. An example of experimental eigen-PSF
basis obtained in [28] is shown on Figure 2, top.
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Figure 2: Examples of eigen-PSF and eigen-space variation bases for a wide-field microscope [28]

Space variant models and product-convolution expansions The convolution model 2.1 can only
capture space invariant impulse responses. When dealing with large field of views, this model becomes
inaccurate. One way to overcome this limitation is to use product-convolution expansions [31, 32, 28],
which efficiently encode space-varying systems.

Model 2.2 (Product-convolution expansions). Let (ei)1≤i≤I and (fj)1≤j≤J define two orthogonal fami-
lies of RN . The action of a product-convolution A operator reads:

Ax =
∑
i,j

ei ∗ (fj ⊙ x),∀x ∈ RN , (3)

where ⊙ indicates the coordinate-wise (Hadamard) product.

In the above model, the basis (ei) can still be interpreted as an eigen-PSF basis. Indeed, we have for
all locations z ∈ {1, . . . , N}:

A(γ)δz =

I∑
i=1

 J∑
j=1

γ[i, j]fj [z]

 ei[ · − z].

Hence, we see that each impulse response is expressed in the basis (ei). The basis (fj) on its side, can
be interpreted as an eigen-space variation basis: it describes how the point spread functions can vary in
space. It can be estimated by interpolation of the coefficient of a few scattered PSF in the eigen-PSF
basis (ei). In optical devices such as microscopes, the estimation of the families (ei) and (fj) can be
accomplished by observing several images of micro-beads [10, 28]. An example of experimental product-
convolution family is shown in Figure 2 for a wide-field microscope. In that case, the dimension K of
the subspace is K = I · J = 16. Airy pattern oscillations are found in the first eigen-PSFs and intensity
variations, such as non homogeneous illuminations/vignetting, in the spatial variation maps.

2.1.2 Nonlinear parameterization and Zernike polynomials

An alternative to the linear models is given by the theory of diffraction. A popular and effective model
in microscopy and astronomy consists in using the Fresnel/Fraunhoffer theory. We can approximate the
pupil function with a finite number of Zernike polynomials [43, 39]. This model leads to some of the
state-of-the-art algorithms for blind deconvolution and super-resolution in microscopy and astronomy
[77, 7, 71, 61].

Model 2.3 (Fresnel approximation and a Zernike basis). We assume that the forward model is a con-
volution with a slice of a continuous 3D kernel h(x, y, z). The 3D kernel can be expressed through the
2D pupil function ϕ as:

h(x, y, z) =
∣∣∣ ∫

B(0,fc)

ϕ(w1, w2) exp(2iπzd(w1, w2)) exp(2iπ(w1x+ w2y))dw1dw2

∣∣∣2
where fc = n/λ is the cut-off frequency, n is the refractive index of the immersion medium and λ is the
wavelength of the observation light and

d(w1, w2) =
√

f2
c − (w1 + w2)2.
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The complex pupil function ϕ can be expanded with Zernike polynomials Zk:

ϕ = exp

(
2i

K+4∑
k=4

γ[k]Zk

)
,

where the coefficients γ[k] ∈ R are real numbers 1.

A few examples of slices of point spread functions generated with Model 2.3 are displayed in Figure
3. Notice that we do not use the first three Zernike polynomials (piston, tip, and tilt) as they do not
influence the shape of the PSF. In our experiments, we used K = 7 Zernike polynomials. In the Noll
nomenclature, they are referred to as Z4: defocus, Z5-Z6: primary astigmatism, Z7-Z8: primary coma,
Z9-Z10: trefoil. We set the coefficients γ as uniform random variables with an amplitude smaller than
0.15. As can be seen, a rich variety of impulse responses can be generated with this low dimensional
model.

2.2 The Deep-Blur architecture

We propose to train two different neural networks IN and DN sequentially:

• IN is an identification network. It depends on weights θ. The mapping IN(θ) : RM → RK takes
as an input a degraded image y ∈ RM and provides an estimate γ̂ of γ̄ in RK .

• DN is a deblurring network. It depends on weights ξ. The mapping DN(ξ) : (RM ,RK) → RN takes
as input parameters the blurry image y and the operator coefficient γ. It outputs an estimate x̂
of the sharp image x̄.

2.2.1 The identification network

Traditional estimation of a blur kernel relies on the detection of cues in the image such as points (direct
observation [30, 10, 72, 26]), edges in different orientations (Radon transform of the kernel [48]) or textures
(power spectrum [37]) followed by adapted inversion procedures. This whole process can be modeled by
a set of linear operations (filtering) and nonlinear operations (e.g. thresholding). A convolutional neural
network, composed of similar operations, should therefore be expressive enough to estimate the blur
parameters. This is the case for the Deep-Blur identification architecture, a ResNet encoder [44] shown
on Fig. 1, left. It consists of a succession of convolutions, ReLU activation, batch normalization and
average pooling layers, which sequentially reduce the image dimensions. The last layer is an adaptive
average pooling layer, mapping the output of the penultimate layer to a vector of constant size K. In our
experiments, the total number of trainable parameters, which includes the weights of the ResNet, i.e the
convolution kernels in the convolution layers, the biases in the convolution layers and the weights of the
adaptive pooling layer, is |θ| = 11, 178, 448. The encoder structure has been proven to be particularly
effective for a large panel of signal processing tasks [88].

2.2.2 The deblurring network

The proposed deblurring network mimics a Douglas-Rachford algorithm [21]. It is sometimes called an
unrolled or unfolded network. This type of network currently achieves near state-of-the-art performance
for a wide range of inverse problems (see e.g. [58]). It has the advantages of having a natural inter-
pretation as an approximate solution of a variational problem and naturally adapts to changes of the
observation operators.

Deep unrolling For λ > 0, let Rγ,λ denote the following regularized inverse:

Rγ,λ = (A(γ)TA(γ) + λI)−1A(γ)T .

For a parameter γ describing the forward operator and an input image y, the Douglas-Rachford algorithm
can be described by the following sequence of operations, ran from t = 0 to t = T − 1 with T ∈ N.

1In this model, only the phase of the pupil function varies. In all generality, the amplitude could vary as well at a slower
rate. Most models in the literature assume a constant amplitude.
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Algorithm 1 The Douglas-Rachford deblurring network DN

Require: iteration number T ∈ N, operator γ, scale λ ∈ R+

z0 = Rγ,λ(y)
for all t = 0 → T − 1 do

xt+1 = PNt(zt)
zt+1 = zt +Rγ,λ(2xt − zt)− xt

end for

The initial guess z0 corresponds to the solution of

z0 = argmin
z∈RN

1

2
∥A(γ)z− y∥22 +

λ

2
∥z∥22.

It can be evaluated approximately with a conjugate gradient algorithm run for a few iterations (20 in
our implementation).

The mapping PNt(ξt) : RN → RN can be interpreted as a “proximal neural network”. Proximal
operators [21] have been used massively in the last twenty years to regularize inverse problems. A
popular example is the soft-thresholding operator, which is known to promote sparse solutions. Here, we
propose to learn the regularizer as a neural network denoted PNt, which may change from one iteration
to the next. It corresponds to the green layers in Fig.1.

The parameters ξ that are learned, are the weights ξt defining the t-th proximal neural network
PNt. In our experiments, the networks PNt have the same architecture for all 1 ≤ t ≤ T . We used
the current state-of-the-art network used in plug-and-play algorithms called DRUNet [86, 45]. We set
T = 4 iterations. Each of the 4 proximal networks contain 8, 159, 808 parameters, resulting in a total of
|ξ| = 32, 639, 232 parameters to be trained.

2.3 Training

We propose to first train the identification network IN(θ) alone and then train the deblurring network
DN(ξ) with the output of the identification network as an input parameter. This sequential approach
presents two advantages:

• The memory consumption is lower. The automatic differentiation only needs to store the parame-
ters of the individual networks, instead of both. This reduces the memory footprint.

• The identification network can be used independently of the other and it is therefore tempting to
train it separately. In metrology applications for instance, where the aim is to follow the state
of an optical system through time, the identification network IN is the most relevant brick. In
some applications, such as super-resolution from single molecules, the deblurring network could be
replaced by a more standard total variation-based solver [13], once the operator is estimated.

In what follows, we let X ⊂ RN denote a dataset of admissible images/signals and LX denote a
sampling distribution over X . We let LΓ denote a sampling distribution on the set RK of blur parameters.
In our experiments, the perturbation P in Equation (2) is assumed to be an approximation of the
Poisson-Gaussian noise [34]. We assume that y = A(γ̄)x̄ + b, where b[z] ∼ σ[z]η[z], η ∼ N (0, IM )
and σ[z] =

√
α(A(γ̄)x̄)[z] + β. The parameters α and β are set uniformly at random in the ranges

α ∈ [0, 0.05] and β ∈ [0, 0.15]. In what follows, we let Lb denote the noise distribution that we just
described.

We propose to train both the identification and the deblurring networks using the empirical risk
minimization. First, the identification network is trained by solving:

inf
θ∈R|θ|

E
x∼LX
γ∼LΓ
b∼Lb

[
1

2
∥IN(θ)(A(γ)x+ b)− γ∥22

]
. (4)

Once the identification network IN is trained, we turn to the deblurring network by solving the
following optimization problem:

inf
ξ∈R|ξ|

E
x∼LX
γ∼LΓ
b∼Lb

[
1

2
∥DN(ξ)(y, γ̂)− x∥22

]
, (5)
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where y = A(γ)x+b is the degraded image and γ̂ = IN(θ)(y) is the estimated parameter. Of importance,
notice that we do not plug the true parameter γ in 5, but rather the estimated one γ̂. This way, the
deblurring network DN can learn to correct model mismatches that may occur at the estimation step.

The two problems above consist in constructing minimum mean square estimators (MMSE). At the
end of the training procedure – under technical assumptions [40] – we can consider that the networks
approximate a conditional expectation:

IN(θ)(y) ≈ E[γ|y]
DN(ξ)(y,γ) ≈ E[x|y,γ].

This is – by construction – the best estimators that can be generated in average. This approach is
therefore really different from most alternatives in the literature, which consist in constructing MAP
estimators. MMSE estimators can be expressed as integrals, which depend heavily on the operator
distributions LΓ and on the image distribution LX . They should therefore be constructed carefully
depending on the physical knowledge of the observation system (resp. observed sample). By using the
general computer vision database COCO, our hope is to cover a wide range of image contents, leading
to a wide purpose method for identification. The performance could likely be improved using more
specific databases. For instance, we could simulate the images according to realistic processes for specific
applications such as single molecule localization. This is out of the scope of the present paper. For LΓ,
we sample a large set of realistic parameters uniformly at random in our experiments.

The above optimization problems are solved approximately using stochastic gradient descents type
algorithms. In our experiments, we used the Adam optimizer [47] with the default parameters: the
learning rate is set to 0.001, betas are (0.9, 0.999), epsilon is 1e-8, weight decay is 0, and amsgrad is
False.

3 Results

Let us illustrate the different ideas proposed in this paper. In all our experiments, we trained the neural
networks using the MS COCO dataset [52]. It contains 118,287 images in the training set and 40,670
images in the test set. It is composed of images of everyday scenes, capturing objects in various indoor
and outdoor environments. It presents substantial differences with typical microscopy images, but the
high diversity and quality of the images makes it possible to construct efficient generic image priors.
This was already observed in [76].

3.1 Convolution operators

We evaluate the accuracy of the identification and deblurring networks for convolution (i.e. space invari-
ant) operators. We assess them for images generated with point spread functions expanded in Zernike
polynomial.

3.1.1 Identifying convolution operators

We assess the ability of a residual network to identify the point spread function generated by the Fresnel
diffraction Model 2.3. A similar study was carried out in [75] withK = 3 coefficients. Here, we extend the
study to K = 7 coefficients allowing use to represent the following aberrations in the Noll nomenclature
[62]: defocus, primary astigmatism, primary coma, trefoil and primary spherical.

We generate random PSFs by drawing the coefficients γ[k] (see Model 2.3) uniformly in the range
[−η, η]. The higher η, the more spread and oscillating the PSFs. Hence η can be interpreted as a measure
of PSF complexity. The model was trained for a value of η = 0.15.

In a first experiement, we simply used additive white Gaussian noise (i.e. β = 0) of standard deviation
α. Figure 3 shows the identification results for 3 images taken at random from the test set and 3 operators
taken at random in the operator set. On these examples, the network provides faithful estimates despite
an substantial noise level and images with little contents. To further characterize the network efficiency,
we measure the distribution of signal-to-noise-ratio (SNR) in the noiseless regime. For a kernel h, the

error of the estimated kernel ĥ is defined by:

SNR(h, ĥ) = −10 log10

(
∥ĥ− h∥22
∥h∥22

)
. (6)
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Fig. 4 summarizes the conclusions. In average, the identification network outputs estimates with a
relative error below 5%.

Finally, we study the stability to the noise level α in Fig. 5a – and to the PSF complexity η in Fig.
5b. As can be seen, the identification outputs predictions with less than 10% error with probability
larger than 0.5 up to a large noise level of α = 0.1 for images in the range [0, 1]. The dependency on the
kernel’s complexity, measured through the Zernike polynomials amplitude η is very clear with typical
errors below 2% for η < 0.1 and then a relatively fast increase. It is nonetheless remarkable that the
identification returns estimates with less than 15% error for η = 0.2, which produces more complex PSFs
than those observed during the training phase, showing some ability of the network to genarlize.

(a) Image 1 (b) Blurred 1 (c) Image 2 (d) Blurred 2 (e) Image 3 (f) Blurred 3

(g) True (h) Estimate (i) True (j) Estimate (k) True (l) Estimate

Figure 3: Examples of results for the identification network with convolution kernels defined through Fresnel
approximation. Top: the original and blurred and noisy 400× 400 images. Bottom: the true 31× 31 kernel used
to generate the blurry image and the corresponding estimation by the neural network. Notice that there is a
large amount of white Gaussian noise added to the blurred image. The image boundaries have been discarded
from the estimation process to prevent the neural network from using information that would not be present in
real images
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Figure 4: On the left: a 100 × 100 table representing the SNR of the PSF. In this table we evaluated the
identification network for 100 images (left to right) and 100 kernels (top to bottom) with no noise. As can
be seen, there are horizontal and vertical stripes. This means that some images and some kernels make the
identification problem easier or harder. In the middle: an image making the identification problem hard (column
23). On the right: a kernel making the identification harder (row 65)

3.1.2 Evaluating the deblurring network

We evaluate the performance of the proposed deblurring network for convolution operators defined using
the Fresnel approximation. Figures 6, 7, 8 display some deconvolution results for different methods. The
corresponding image quality measures are displayed in Table 1.

Notice that this problem is particularly involved: there is complete loss of information in the high
frequencies since the convolution kernels are bandlimited and we treat different noise levels up to rather
high values (here α = 0.12, β = 0.24 for images in the range [0, 1]). Despite this challenging setting, it
can be seen both perceptually and from the SSIM (Structural Similarity Index Measure) that the image
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Figure 5: Stability of the kernel estimation with respect to noise level (left) and amplitude of the Zernike
coefficients in the noiseless regime(right)

quality is improved whatever the noise level. It is also remarkable to observe that the proposed network
architecture allows us to treat images with different noise levels. This is an important feature of the
DRUNet used as a proximal network [86].

We also propose some comparisons with other methods from the literature. Whenever possible, we
optimized the hyperparameters by hand for each noise level to produce the best possible output. We
chose the following methods:

• The ℓ0-gradient prior [65, 66]. This method is one of the state-of-the-art handcrafted blind deblur-
ring method. An efficient implementation was recently proposed in [5].

• In [37], the authors proposed a kernel estimation method based on the assumption that the image
spectrum amplitude has a specific decaying distribution in the Fourier plane. The kernel estimation
then boils down to a phase retrieval problem. An efficient implementation was recently proposed
in [4].

• We also tested two state-of-the art neural network approaches. The first one was a past leader of
the Go-Pro deblurring challenge called NAFNET [19].

The deep learning method is re-trained on the same dataset as our method. As can be seen from the
tables and the perceptual results, Deep-Blur outperforms the other ones by a large margin. The PSF is
recovered with an average accuracy varying between 12.9dB in the noiseless regime to 7.9dB in the high
noise regime using Deep-Blur. The image quality is improved in terms of SSIM by 0.1 in the noiseless
regime to 0.2 in the high-noise regime.

All the other methods yield negative SNR for the PSF. At a perceptual level, handcrafted methods
(Goldstein-Fattal and ℓ0 gradient prior) still recover the PSF shape approximately. The recovered image
is also sharpened, but its SSIM quality is actually lowered by more than 0.1 in the noiseless regime, and
improved by 0.1 in the high noise regime. The SSIM is always lower than the one of Deep-Blur.

α = 0, β = 0 α = 0.025, β = 0.12 α = 0.05, β = 0.24

SSIM x̂

y 0.76± 0.17 0.31± 0.10 0.19± 0.07

Deep-Blur 0.85± 0.16 0.53± 0.16 0.40± 0.16

[5] 0.48± 0.27 0.33± 0.13 0.27± 0.11

[4] 0.64± 0.2 0.21± 0.08 0.21± 0.08

[19] 0.66± 0.2 0.43± 0.16 0.33± 0.13

SNR ĥ

Deep-Blur 12.9± 4.4 10.8± 4.3 7.9± 3.7

[5] −6.6± 2.4 −3.6± 1.6 −3.1± 1.3

[4] −5.7± 1.9 −1.6± 0.6 −1.26± 0.45

Table 1: Reconstruction results for different noise levels and different methods. The standard deviation is given
after the symbol ±
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Figure 6: Deep-Blur in action in the noiseless setting. Quantitative evaluations are reported in Table 1. When
available, the estimated blur kernel is displayed at the bottom-right. First row: original images. Second row:
blurry-noisy images. Third row: Deep-Blur. Fourth row: [5] Fifth row: [4] Sixth row: [19]

Experiments on real images In Fig. 9, we provide a few Deep-Blur results on real microscopy
images from the dataset [42]. We used the sample images available on the following link. As can be
seen, the reconstructed images are denoised and have a better visual contrast In this experiment, we
do not have a ground-truth deblurred result and the quality can only be assessed by visual inspection.
Validating the estimation requires careful optics experiments, which we leave as an open topic for now.
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Figure 7: Deep-Blur in action with a medium noise level (α = 0.025, β = 0.05). Quantitative evaluations are
reported in Table 1. When available, the estimated blur kernel is displayed at the bottom-right. First row:
original images. Second row: blurry-noisy images. Third row: Deep-Blur. Fourth row: [5] Fifth row: [4] Sixth
row: [19]

Training on the true or estimated operators At training time, we can feed the unrolled deblurring
network with the operator that was used to synthesize the blurry image, or the one estimated using the
identification network. The potential advantage of the second option is to train the proximal networks
to correct model mismatches. We tested both solutions on two different operator families. It turns out
that they led to nearly indistinguishable results overall in average. The most likely explanation for this
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Figure 8: Deep-Blur in action in a high noise regime (α = 0.12, β = 0.24). Quantitative evaluations are reported
in Table 1. When available, the estimated blur kernel is displayed at the bottom-right. First row: original
images. Second row: blurry-noisy images. Third row: Deep-Blur. Fourth row: [5] Fifth row: [4] Sixth row: [19]

phenomenon is that the model mismatches produced by the identification network cannot be corrected
with the proximal networks.

Memory and computing times The model contains about 11 · 106 parameters for the identification
part and 32 · 106 parameters for the deblurring part. This is a total of 43 · 106 trainable parameters.
This size is comparable to the usual computer vision models available in TorchVision. For example, it is
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Figure 9: Blind deblurring examples on real images taken from [42], see the samples for more details. In this
experiment, only the noise level was set manually, the rest of the process is fully automatized. For this experiment,
no ground truth is available and the results have to be assessed by visual inspection

slightly smaller than a ResNet101 classifier. The Deep-Blur model uses about 1Gb of GPU memory at
test time, which can be considered lightweight, since it fits on most consumer graphics cards.

After training, it takes 0.3 seconds to identify a kernel and deblur an image of size 400 × 400 on
an Nvidia RTX 8000 with 16 TFlops. For comparison, the handcrafted models used in our numerical
comparisons take between 5 seconds and a few minutes to perform the same task on the CPU. No GPU
implementation is provided.
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3.2 Product-convolution operators

To finish the numerical experiments, we illustrate how the proposed ideas perform on product-convolution
operators.

We first illustrate the performance of the identification network. We trained the identification network
on natural images from the MS COCO dataset, but evaluate it on biological images from microscopes.
We selected 6 images: ImBio 1 is an histopathology of angiolipoma [22], ImBio 2 is an histopathology
of reactive gastropathy [23], ImBio 3&4 are actin filaments within a cell [24], ImBio 5 is an slice of a
spheroid from [53] and ImBio 6 is a crop of a podosome obtain on a wide-field microscope [12].

The blur operators are generated by Model 2.2 using K = 16 parameters. The blur model is obtained
following the procedure described in [28]. To compute the product-convolution decomposition described
in Model 2.2, we collected 18 stacks of 21 images of microbeads spaced by 200nm on a wide-field micro-
scope with a ×100 objective lens (CFI SR APO 100XH NA 1,49 DT 0,12 Nikon) mounted on a Nikon
Eclipse Ti-E and a Hamamatsu sCMOS camera (ORCA FLASH4.0 LT). Fig. 10 shows the identification
results. The blur coefficients predicted by the Deep-Blur identification are accurate estimates in all cases.
In average, the SNR is much higher than in the previous experiment, which can likely be explained by
a smaller dimensionality of the operators’ family. In all cases, the image quality is improved despite an
additive white Gaussian noise with α = 1 · 10−2 and β = 0. This is remarkable since this type of images
is different from the typical computer vision images found in the MS COCO dataset.

4 Discussion

We proposed an efficient and lightweight network architecture for solving challenging blind deblurring
problems in optics. An encoder first identifies a low dimensional parameterization of the optical sys-
tem from the blurry image. A second network with an unrolled architecture exploits this information
to efficiently deblur the image. The performance of the overall architecture compares favorably with
alternative approaches designed in the field of computer vision. The principal reason is that our net-
work is trained using fine physical models obtained using Fresnel diffraction theory or experimental data
providing accurate space varying models. A second reason is that the unrolled architecture proposed
herein emerges as a state-of-the-art competitor for a wide range of inverse problems. Overall we believe
that the proposed network, trained carefully on a large collection of blurs and images could provide a
universal tool to deblur microscope images. In the future, we would like to carry out specific optical
experiments to ensure that the results obtained with synthetic data are reproducible and trustworthy
with real images. The initial results, obtained without reference images for comparisons are however
really encouraging.

Differences with Plug & Play and deep unrolling The proposed unrolled architecture follows
closely the usual unrolled algorithms [1, 2, 58, 51, 50]. There is however a major difference: traditionally,
these unrolled architectures are trained to invert a single operator. In this paper, we train the network
with a family of operators. The results we obtain confirm some results obtained in [40]: this approach
only results in marginal performance loss for a given operator if the family is sufficiently small, while
providing a massive improvement in adaptivity to all the operators. In a sense, the proposed approach
can be seen as an intermediate step between the Plug & Play priors (related to diffusion models [41])
which are designed to adapt to all possible operators, and the traditional unrolled algorithm adapted to
a single one.

The limits of a low-dimensional parameterization The models considered are sufficiently rich to
describe most optical devices accurately. In microscopy, they can capture defocus, refractive index mis-
matches, changes of temperature, tilts of optical components, usual optical aberrations with a parameter
dimension K smaller than 20.

Notice however that some phenomena can hardly be modeled by low-dimensional parameterization.
In microscopy for instance, diffraction by the sample itself can lead to extremely complicated and diverse
forward models better described by nonlinear equations, see e.g. [70]. Similarly, in computer vision,
motion and defocus blurs can vary abruptly with the movement and depth of the objects. The resulting
operators would likely require a large number of parameters, which is out of the scope of this paper.

Overall, we see that the proposed contribution is well adapted to the correction of systems with slowly
varying point spread functions, but probably do not extend easily to fast variations that can be induced
by some complex biological samples.
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ImBio 1 ImBio 2 ImBio 3 ImBio 4 ImBio 5 ImBio 6

y: 0.59 0.54 0.45 0.42 0.77 0.54

x̂: 0.93 0.92 0.86 0.87 0.94 0.84

h

ĥ: 32.2dB 30.5dB 25.7dB 22.5dB 8.8dB 25.4dB

Figure 10: Deep-Blur applied to spatially varying blur operators on microscopy images (not seen during training).
The blur operators are sampled from a family estimated using a real wide-field microscope. First row: the original
images. Second row: blurry-noisy images. Third row: the blind deblurring result with Deep-Blur. The SSIM
of the resulting deblurred image is displayed below. Fourth row: The true blur operator. We display 4 evenly
spaced impulse responses in the field of view. Fifth row: The estimated blur operator. The SNR of the estimated
kernel is displayed in the caption in dB

5 Conclusion

We proposed a specific neural network architecture to solve blind deblurring problems where distortions
come from the optical elements. We evaluated its performance carefully on blind deblurring problems
with space invariant and space varying operators. A key assumption is to have access to a forward model
that depends on a set of parameters. The network first estimates the unknown parameters describing
the forward model from the measurements with a ResNet architecture. In a second step, an unrolled
algorithm solves the inverse problem with a forward model that was estimated at the previous step.
After designing a careful training procedure, we showed a advantage of the proposed approach in terms
of robustness to noise levels and adaptivity to a vast family of operators and conditions not seen during
the training phase.
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[11] Jérôme Bolte, Shoham Sabach, and Marc Teboulle. Proximal Alternating Linearized Minimization
for Nonconvex and Nonsmooth Problems. Mathematical Programming, 146(1):459–494, 2014.
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