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Deep-Blur : Blind Identification and Deblurring
with Convolutional Neural Networks

Valentin Debarnot & Pierre Weiss

Abstract—We propose a neural network architecture and a
training procedure to estimate blurring operators and deblur
images from a single degraded image. The key assumption is
that the forward operators can be parameterized by a low-
dimensional vector. The considered models include a description
of the point spread function with Zernike polynomials in the
pupil plane or product-convolution expansions, which allow to
tackle space varying operators. Numerical experiments reveal
that the proposed method recovers the blur parameters robustly
even for large noise levels. This estimate can then used as an
input of an unrolled neural network to deblur the image. It is
trained with a specific sampling procedure adapted to a family
of parameterized operators. This strategy provides a fast and
accurate blind inverse problem solver, requiring nearly no human
interaction once the operator parameterization has been set up.
It adapts to arbirtrary noise levels and considerably improves
alternative blind deblurring softwares in the examples considered
in this paper, especially in the high noise regimes. 1

Index Terms—Blind deblurring, Blind inverse problems, Iden-
tification network, Spatially variant blur, Deep learning, Unrolled
network

I. INTRODUCTION

Image deblurring and super-resolution consist in recovering
a sharp image x̄ from its blurred and sub-sampled version
y = P(Āx̄), where Ā ∈ RM×N is a discretized lin-
ear integral operator describing the acquisition process and
P : RM → RM is some perturbation modelling noise,
quantization, saturation... It plays an important role in bio-
medical and astronomical imaging, where physical phenom-
ena such as diffraction and turbulence strongly reduce the
achievable resolution. It also received a continual attention in
computer vision, where objects that are moving or out-of-focus
create significant artifacts. When the operator Ā describing the
optical system is available, this problem can be solved with
mature variational inverse problem solvers [2] or data-driven
approaches [3].

However, deriving a precise forward model requires specific
calibration procedures, well controlled imaging environments
and/or highly qualified staff. In addition, model mismatches
result in distorted reconstructions. This can lead to dramatic
performance loss, especially for super-resolution applications
[4].

An alternative to a careful calibration step consists in
solving the problem blindly: the forward model Ā is estimated
together with the sharp image x̄. Unfortunately, this blind
inverse problem is highly degenerate. There is no hope to
recover the sharp image without prior assumptions on x̄ and
Ā. For instance, assume that Ā is a discrete convolution

1A preliminary version of this work was published in IEEE ISBI 2021 [1].

operator with some kernel h̄, i.e., y = h̄ ? x̄. Then the
couple (h̄, x̄) can be recovered only up to a large group
of transformations [5]. For instance, the identity and blurred
image are a trivial solution, the image and kernels can be
shifted in opposite directions or scaled with inverse factors.
Therefore, it is critical to introduce regularization terms both
for the operator Ā and the signal x.

The main objective of this work is to design a blind inverse
problem solver under the two assumptions below:
• The operator Ā can be parameterized by a low-

dimensional vector. In what follows, we let A : RK →
RM×N denote the operator mapping and we assume that
Ā = A(γ̄) for some γ̄ ∈ RK .

• The signal x̄ lives in a family X with some known
distribution LX .

We propose a specific convolutional neural architecture and
a training procedure to recover the couple (γ̄, x̄) from the
degraded data y and the mapping A(γ). A first network
identifies the parameterization γ̄, while the second uses this
parameterization to estimate the image ȳ. This results in an
efficient algorithm to sequentially estimate the blur operator
and the sharp image x̄. The network architecture is shown
on Fig. 1. Even though the work can be adapted to arbitrary
inverse problems beyond image deblurring, we showcase its
efficiency for challenging deblurring tasks involving convolu-
tions, but also more advanced space-varying operators.

A. Related works

Solving blind deblurring problems is a challenging task that
started being studied in the 1970’s [6]. Fifty years later, it
seems impossible to perform an exhaustive review of existing
methods and the following description will be lacunary. The
prevailing approach is to estimate the original signal and the
blur operator by solving variational problems of the form:

inf
A∈RM×N , x∈RN

1

2
‖Ax− y‖22 +RA(A) +Rx(x), (1)

where RA : RM×N → R∪{+∞} and Rx : RN → R∪{+∞}
are regularization terms for the operator and the signal re-
spectively. This problem can then be attacked with various
types of alternating minimization procedures [7]. The solutions
can be understood as maximum a posteriori estimates [8].
Before the advent of data-driven approaches, the regularizers
were carefully designed to target specific features. The point
spread functions can be considered as sparse and compactly
supported for motion deblurring [9], [10], [11], [12], [13], [14],
[15], [16]. They are smooth for diffraction limited systems
[17] and can also be parameterized with Zernike polynomials
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Fig. 1: The Deep-Blur architecture. The first part of the network identifies the parameterization γ̂. In this paper, we use a ResNet architecture.
The estimated parameterization γ̂ is given as an input of a second deblurring network. This one is an unrolled Douglas-Rachford algorithm.
The yellow blocks are convolution layers with ReLu and batch normalization. The red ones are average pooling layers. The green ones are
regularized inverse layers of the form xt+1 = (A∗(γ̂)A(γ̂)+λI)−1A(γ̂)y. The violet blocks are UNET like neural networks with weights
learned to provide a sharp image x̂.

in the pupil plane [18], [19], [20], [21], [5]. The images
can be considered as sparse in microscopy and astronomical
imaging [22], [23] or piecewise constant for natural images.
The typical regularizer Rx is then the total variation, or more
advanced priors on the image gradient [17], [24], [25], [13],
[14], [15]. Some authors also advocate for the use of priors
on the image spectrul [26], [27], which allow transforming
the blind deconvolution problem as a phase retrieval problem
under ideal conditions.

The most recent variants of these approaches provide ex-
cellent results for specific applications such as text deblurring,
see e.g., [28]. However, they strongly rely on the detection of
specific features (points, edges, textures) which may be absent
or inaccurate models of the typical image features. In addition,
the problem (1) or its derivatives are usually highly non-convex
and the initialization must be chosen very carefully to ensure
local convergence to the right minimizer. As a result, these
methods need to be carefully tuned for a specific application
fields for success.

In the last five years, machine learning approaches have
emerged and now seem to outperform carefully handcrafted
ones, at least in well controlled conditions. These approaches
can be divided in two categories. The first category concerns
end-to-end methods that directly estimate the reconstructed
image from the observation [29], [30], [31], [32], [33], [34].
The second category contains approaches that produce an
estimation of the blur operator and the original image. These
approaches are specifically tuned for applications in computer
vision [35], [29], [36], [37], [38] (motion and out-of-focus
blurs) or diffraction limited systems [39], [40], [41]. Our work
rather falls in the second category since space varying motion
blurs are hardly captured by a low-dimensional parameteriza-
tion. Notice that while the diversity of motion blurs is higher,
their inversion is typically easier since their Fourier decay is

much slower.
In this list of references, the idea closest to ours is from

Shajkofci and Liebling [40], [41]. Therein, the authors estimate
a decomposition of the point spread function from a single
image using a low dimensional parameterization such as a
decomposition over Zernike polynomials. The spatial varia-
tions are then estimated by splitting the observation domain in
patches where the blur is assumed locally invariant. The image
can then be deblurred using a Richardson-Lucy algorithm
based on the estimated operator.

B. Contributions

In this work, we propose to use a pair of convolutional
neural networks to first estimate the operator parameterization
γ̄ ∈ RK and then use this parameterization to estimate the
sharp image x̄ ∈ RN with a second convolutional neural net-
work. The first network is the popular ResNet [42] as in [40].
The second network has the structure of an unrolled algorithm,
which offers the advantage of adapting to the forward operator
[43], [44], [45]. We call the resulting algorithm Deep-Blur ,
see Fig. 1. This work contains various original features:
• It includes space varying blur operators. In particular, we

show that this approach allows to use the characterization
of an optical system as a low-dimensional subspace of
operators proposed in [46], [47]. Most approaches in the
literature decompose the observation space into patches
and treat each patch independently. In this work, we
consider operators with an impulse response that varies
continuously in the field of view.

• The resulting deblurring network is able to adapt to
different forward models and to handle model mismatches
naturally. This issue is an important concern for the use
of model-based inverse problem solvers [48], [49], [50].
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As will be discussed later, our approach can be seen as
an intermediate step between the plug&play algorithms
[51], [52] and the unrolled algorithms [43].

• To train Deep-Blur , we propose a specific sampling
procedure of parameterized operators, assuming that the
operators parameters live in a compact set.

• We evaluate the efficiency, robustness and stability of
the proposed approach on various challenging problems,
showing that the method is reliable and accurate.

The Python implementation of our method is freely available:
www.github.com/DeepBlur.

C. Outline

In Section III, we introduce and motivate the mathe-
matical framework. In Section IV, we present the Deep-
Blur architecture and learning framework. In Section V, we
validate the method on synthetic examples.

II. NOTATION

The bold font refers to vectors, matrices or vector-valued
functions. The i-th value of a vector x is denoted x[i] or xi, IM
denotes the identity matrix of size M ×M . For two operators
A and B in RM×N , we let 〈A,B〉 def.

= Trace(ATB) and the
Frobenius norm is defined by ‖A‖F =

√
〈A,A〉. A family

of K operators (Ak) ∈ RM×N is said to be orthogonal if

〈Ak,Ak′〉 =

0 if k 6= k′

1 otherwise
.

The Hausdorff distance between two sets X ,Y ⊂ RM is
defined by

dist(X ,Y)
def.
= max

(
sup
x∈X

inf
y∈Y
‖x− y‖2, sup

y∈Y
inf
x∈X
‖x− y‖2

)
.

We let SP−1 = {λ ∈ RP , λp ≥ 0,
∑P
p=1 λp = 1} denote

the unit simplex. Let (γp)1≤p≤P ∈ RK denote a set of P
points in RK , the convex cone generated by these vectors is
defined by

cone (γp, 1 ≤ p ≤ P )
def.
=

{
P∑
p=1

λ[p]γp,λ ∈ RP+

}
.

The convex hull is given by

conv (γp, 1 ≤ p ≤ P )
def.
=

{
P∑
p=1

λ[p]γp,λ ∈ SP−1

}
.

III. FORWARD MODELLING

In this paper, we assume that the degraded signal y ∈ RM
is generated according to the following equation:

y = P(A(γ̄)x̄), (2)

where A(γ) : RN → RM is a linear operator depending on
the unknown parameter γ̄ ∈ RP . The mapping P : RN →
RN can model various deterministic or stochastic perturbations
occuring in real systems such as:

• Additive white Gaussian noise: P(ȳ) = ȳ + b with b ∼
N (0, σ2IM ).

• Poisson noise: In that case, y ∈ NM denotes a number
of photons.

• Quantization: P(ȳ) = 1
∆ by · ∆c, where ∆ > 0 is the

quantization step.
• Clipping: P(ȳ) = min(ȳ, U), where U > 0 denotes a

saturation parameter indicating the maximum available
dynamics of the image.

• Combinations: the above perturbations can be combined
to produde more accurate models.

In this paper, we will focus on the additive white Gaussian
noise only, though all these models can be incorporated easily
in the proposed framework at the learning stage. A critical
aspect of this paper is the parameterization of the forward
operator A. We discuss this aspect below.

A. Linear parameterization

The simplest choice is probably to assume that A belongs to
a subspace of operators. This leads to the linear model below.

Assumption III.1 (Subspace of operators). The forward op-
erator in Problem (2) belongs to a known K-dimensional
subspace of operators:

A(γ)
def.
=

K∑
k=1

γ[k]Ak, (3)

with known elementary operators Ak ∈ RM×N .
Up to a Gram-Schmidt orthogonalization, we can always

assume that the operators (Ak) have unit norm and are
pairwise orthogonal with respect to the Frobenius scalar
product.

The main technical asset of the above model is the following
property.

Proposition III.1. Under Assumption III.1, we have

‖A(γ)‖F = ‖γ‖2 and ‖A(γ)−A(γ′)‖F = ‖γ − γ′‖2
for all γ,γ′ ∈ RP

Proof.

‖A(γ)‖2F =

〈
K∑
k=1

γ[k]A

K∑
k=1

γ[k]Ak

〉

=

K∑
k=1

K∑
k′=1

γ[k]γ[k′] 〈Ak,Ak′〉 =

K∑
k=1

γ[k]2,

by orthogonality of the family (Ak). The second identity
results from the linearity of the parameterization.

To further improve the identifiability of the problem, we
will sometimes assume the following:

Assumption III.2. The parameter γ belongs to a known
convex cone Γ ⊂ RK , defined with P extreme rays:

Γ = cone(γp, 1 ≤ p ≤ P ). (4)

Let us now discuss how these assumptions can be used in
practice for real imaging systems.

www.github.com/DeepBlur
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1) Convolution models and eigen-PSF bases: By far the
most wide-spread blurring model in imaging is based on
convolution operators: the point spread function is identical
whatever the position in space. This model is accurate for
small fields of view, which are widespread in applications.
Assuming that there is no sub-sampling in the model, we can
set M = N and Ax = h ? x for some unknown convolution
kernel h.

The convolution model strongly simplifies the blur identifi-
cation problem since we are now looking for a vector of size N
instead of a huge N ×N matrix. Yet, the blind deconvolution
problem is known to suffer from many degeneracies and
possesses a huge number of possible solutions, see e.g. [5]. To
further restrict the space of admissible operators and therefore
improve the identifiability, we can expand the kernel h in an
eigen-PSF basis. This leads to the following low dimensional
model.

Model III.1 (Convolution and eigen-PSFs ). We assume that

A(γ) =

K∑
k=1

γ[k]ek ? x,

where (ek) is an orthogonal family of convolution kernels
coined eigen-PSF basis. This amounts to setting

Akx = ek ? x

in the frame of Assumption III.1.

In the above model the elementary operators (Ak) are pair-
wise orthogonal since the basis (ek) is orthogonal. Defining
an eigen-PSF basis can be achieved by computing a principal
component analysis of a family of observed or theoretical
point spread functions [53]. The authors recently developed
the Fiji plugin Eigen-PSF extractor to this end. An example
of experimental eigen-PSF basis is shown on Figure 2, top.

Let (hp)1≤p≤P define a set of P point spread functions
in RN . They can be decomposed over the basis (ek), and
represented by vectors γp of size K. The set Γ of admissible
parameterization can then be defined as the conical hull gener-
ated by the projection coefficients (γp) as in (4). This method
nicely captures some physical properties of the point spread
functions. For instance, non-negativity and smoothness are
preserved by taking convex combinations. Hence, computing
a conical hull is a natural way to learn models of impulse
responses and interpolate between them.

2) Space variant models and product-convolution expan-
sions: The convolution model III.1 can only capture space
invariant impulse responses. When dealing with large field of
views, this model becomes inaccurate. One way to overcome
this limitation is to use product-convolution expansions [54],
[55], [47], which efficiently encode space-varying systems.

Model III.2 (Product-convolution expansions ). Let (ei)1≤i≤I
and (fj)1≤j≤J define two orthogonal families of RN . For k =
(i, j), we define the k-th elementary operator Ak by

Akx = ei ∗ (fj � x),∀x ∈ RN , (5)

where � indicates the coordinate-wise (Hadamard) product.

In the above model, the basis (ei) can still be interpreted
as an eigen-PSF basis. Indeed, we have for all locations z ∈
{1, . . . , N}:

A(γ)δz =

I∑
i=1

 J∑
j=1

γ[i, j]fj [z]

 ei[ · − z].

Hence, we see that each impulse response is expressed in
the basis (ei). The basis (fj) on its side, can be interpreted
as an eigen-space variation basis: it describes how the point
spread functions can vary in space. In optical devices such as
microscopes, the estimation of the families (ei) and (fj) can
be accomplished by observing several images of micro-beads
[56], [47].

An example of experimental product-convolution family is
shown in Figure 2 for a wide-field microscope. In that case, the
dimension K of the subspace is K = I · J = 16. Again, taking
the conical hull of observed decompositions is an efficient way
to restrict the family.

B. Nonlinear parameterization and Zernike polynomials

In the previous paragraph, we considered linear parameter-
izations which have many assets. They are easy to implement
and can lead to convex models if one variable (γ̄ or x̄) has
to be estimated while the other is fixed. In addition, they are
quite natural models that can be efficiently estimated from
experimental data.

However, noise on the data may lead to inaccuracies making
it impossible to capture some fine features of the point spread
functions. An alternative is to use theoretical ones, leading
to the nonlinear world. A popular and effective model in
microscopy and astronomy consists in using the Fresnel ap-
proximation and to approximate the pupil function with a finite
number of Zernike polynomials [57], [18]. This model leads to
some of the state-of-the-art algorithms for blind deconvolution
and super-resolution in microscopy and astronomy [21], [20],
[58], [59].

Model III.3 (Fresnel approximation and a Zernike basis).
We assume that the forward model is a convolution with
a continuous 3D kernel h(x, y, z). The 3D kernel can be
expressed through the 2D pupil function φ as:

h(x, y, z) =
∣∣∣ ∫ φ(w1, w2) exp(2iπzd(w1, w2))

exp(2iπ(w1x+ w2y))dw1dw2

∣∣∣2
with

d(w1, w2) =
√

(n/λ)2 − (w1 + w2)2,

where n is the refractive index of the immersion medium and
λ is the wavelength of the observation light.

The complex pupil function φ can be expanded with Zernike
polynomials Zk:

φ = exp

(
2i

K∑
k=1

γ[k]Zk

)
,
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Fig. 2: Examples of eigen-PSF and eigen-space variation bases for a wide-field microscope [47].

where the coefficients γ[k] ∈ R are real numbers 2.

A few examples of slices of point spread functions generated
with Model III.3 are displayed in Figure 4. In that case, we
used K = 7 Zernike polynomials and set the coefficients γ
as uniform random variables with amplitude less than 0.15.
As can be seen, a rich variety of impulse responses can be
generated with this low dimensional model.

C. The limits of a low-dimensional parameterization

The above models are sufficiently rich to describe most
optical devices accurately. In microscopy, they can capture
defocus, refractive index mismatches, changes of temperature,
tilts of optical components, usual optical abberations with a
parameter dimension K smaller than 20.

Notice however that some phenomena can hardly be mod-
elled by low-dimensional parameterizations. In microscopy for
instance, diffraction by the sample itself can lead to extremely
complicated and diverse forward models better described by
nonlinear equations, see e.g., [60]. Similarly, in computer
vision, motion and defocus blurs can vary abruptly with the
movement and depth of the objects. The resulting operators
would likely require a large number of parameters, which is
out of the scope of this paper.

Overall, we see that the proposed contribution is well
adapted to the fine characterization of optical systems, but
probably do not extend easily to variations induced by the
observed objects themselves.

IV. THE PROPOSED METHODOLOGY

In this section, we discuss the core of our contribution: we
first detail the neural network architecture and then explain
how to train it.

A. The Deep-Blur architecture

We propose to train two different neural networks sequen-
tially:
• The first one denoted IN is an identification network. It

depends on weights θ. The mapping IN(θ) : RM → RK

2In this model, only the phase of the pupil function varies. In all generality,
the amplitude could vary as well at a slower rate. Most models in the literature
assume a constant amplitude.

takes as an input a degraded image y ∈ RM and provides
an estimate γ̂ of γ̄ in RK .

• The second one denoted DN is a deblurring net-
work. It depends on weights ξ. The mapping DN(ξ) :
(RM ,RK) → RN takes as input parameters the blurry
image y and an operator parameterization γ. It outputs
an estimate x̂ of the sharp image x̄.

1) The identification network: Traditional estimation of
a blur kernel relies on the detection of cues in the image
such as points (direct observation), edges in different orienta-
tions (Radon transform of the kernel [9]) or textures (power
spectrum) followed by adapted inversion procedures. This
whole process can be modelled by a set of linear operations
(filtering) and nonlinear operations (e.g., thresholding). A
convolutional neural network, composed of similar operations,
should therefore be expressive enough to estimate the blur
parameters. This is the case for the Deep-Blur identification
architecture, a ResNet encoder [42] shown on Fig. 1, left.
It consists of a succession of convolutions, ReLu activation,
batch normalization and average pooling layers, allowing to
sequentially reduce the image dimensions. The last layer is
an adaptive average pooling layer, mapping the output of the
penultimate layer to a vector of size K. The weights θ to be
trained are the convolution kernels in the convolution layers
and the biases. The encoder structure has been proven to be
particularly effective for a large panel of signal processing
tasks. It is a basic block of the U-Net architecture [61]. In our
experiments, the vector θ has size |θ| = 11, 178, 448.

2) The deblurring network: The proposed deblurring net-
work mimics a Douglas-Rachford algorithm [62]. It is some-
times called an unrolled or unfolded network. This type of
network currently achieves near state-of-the-art performance
for a wide range of inverse problems (see e.g., [45]). It
has the advantages of having a natural interpretation as an
approximate solution of a variational problem and naturally
adapts to changes of the observation operators.

a) Deep unrolling: For λ > 0, let Rγ,λ denote the
following regularized inverse:

Rγ,λ = (A(γ)TA(γ) + λI)−1A(γ)T .

For a parameter γ describing the forward operator and an input
image y, the Douglas-Rachford algorithm can be described
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by the following sequence of operations, ran from t = 0 to
t = T − 1 with T ∈ N.

Algorithm 1 The Douglas-Rachford deblurring network DN

Require: iteration number T ∈ N, operator γ, scale λ ∈ R+

z0 = Rγ,λ(y)
for all t = 0→ T − 1 do

xt+1 = PNt(zt)
zt+1 = zt + Rγ,λ(2xt − zt)− xt

end for

The initial guess z0 corresponds to the solution of

z0 = argmin
z∈RN

1

2
‖A(γ)z− y‖22 +

λ

2
‖z‖22.

It can be evaluated approximately with a conjugate gradient
algorithm run for a few iterations (10 in our implementation).

The mapping PNt(ξt) : RN → RN can be interpreted as
a “proximal neural network”. Proximal operators [62] have
been used massively in the last twenty years to regularize
inverse problems. A popular example is the soft-thresholding
operator, which is known to promote sparse solutions. Here,
we propose to learn the regularizer as a neural network denoted
PNt, which may change from one iteration to the next. It
corresponds to the green layers in Fig.1.

The parameters ξ that are learned, are the weights ξt
defining the t-th proximal neural network PNt. In our ex-
periments, the networks PNt have the same architecture for
all 1 ≤ t ≤ T . We used the current state-of-the-art network
used in plug-and-play algorithms called DRUNET [52], [63].
We set T = 4 iterations. Each of the 4 proximal networks
contain 8, 159, 808 parameters, resulting in a total of |ξ| =
32, 639, 232 parameters to be trained.

b) Differences with plug&play and deep unrolling:
The proposed architecture follows closely the usual unrolled
algorithms [43], [44], [45], [64], [38]. There is however a
major difference: traditionally, these unrolled architectures are
trained to invert a single operator. In this paper, we train the
network with a family of operators. We recently showed in
[65] that this approach only results in marginal performance
loss for a given operator if the family is sufficiently small,
while providing a massive improvement in adaptivity to all the
operators. In a sense, the proposed approach can be seen as
an intermediate step between the plug&play priors which are
designed to adapt to all possible operators, and the traditional
unrolled algorithm adapted to a single one.

B. Designing the objective functions

Now that the neural network architectures have been de-
scribed, let us turn to the description of the training procedure
for the weights θ and ξ.

We propose to first train the identification network IN(θ)
alone and then train the deblurring network DN(ξ) with the
output of the identification network as an input parameter. This
sequential approach presents two advantages:
• First, the memory consumption is lower. The automatic

differentiation only needs to store the parameters of the

individual networks, instead of both. This significantly
reduces the memory footprint.

• Second, the identification network can be used indepen-
dently of the other and it is therefore tempting to train it
separately. In metrology applications for instance, where
the aim is to follow the state of an optical system through
time, the identification network IN is the most relevant
brick. In some applications, such as super-resolution
from single molecules, the deblurring network could be
replaced by a more standard total variation based solver
[66], once the operator is estimated.

In what follows, we let X ⊂ RN denote a dataset of admis-
sible images/signals and LX denote a sampling distribution
over X . We let LΓ denote a sampling distribution supported
on the set Γ ⊂ RK . In our experiments, the perturbation P in
Equation (2) is assumed to be additive white Gaussian noise
N (0, σ2IM ) with a fixed noise amplitude σ2.

1) Training the identification network: Motivated by Propo-
sition III.1, the estimation error for the parameter γ can be
measured by the `2-norm in RK . This leads to the following
empirical risk minimization:

inf
θ∈R|θ|

E
x∼LX
γ∼LΓ

b∼N (0,σ2IM )

[
1

2
‖IN(θ)(A(γ)x + b)− γ‖22

]
. (6)

Problem (6) can be attacked using stochastic gradient de-
scents type algorithms. In our experiments, we used the Adam
optimizer [67] with the default parameters.

2) Training the deblurring network: Once the identification
network IN is trained, we turn to the deblurring network.
Similarly, we propose to minimize the following empirical
risk:

inf
ξ∈R|ξ|

E
x∼LX
γ∼LΓ

b∼N (0,σ2IM )

[
1

2
‖DN(ξ)(y, γ̂)− x‖22

]
, (7)

where y = A(γ)x + b is the degraded image and γ̂ =
IN(θ)(y) is the estimated parameter. Of importance, notice
that we do not plug the true parameter γ in 7, but rather
the estimated one γ̂. This way, the deblurring network DN
can learn to correct model mismatches that may occur at the
estimation step.

3) Sampling: Applying the stochastic gradient machinery
requires to design the distributions LX and LΓ, i.e., to find a
way to draw the images x and the parameters γ.

For LX , we simply use a uniform distribution over a large
database of images. Another option could be to simulate the
images according to realistic processes for specific applica-
tions such as single molecule localization.

C. Sampling a compact set of operators

A nonconventional aspect of this work is the need for a sam-
pling distribution over the parameters in Γ. The easiest way
to sample operators is to proceed as with images: take them
uniformly at random among a discrete set of observations.
Unfortunately, this approach is not always recommendable or
even feasible. First, the distribution of observations might be
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uneven, leading to bad recovery performance for rare oper-
ators. In addition, estimating an operator from experimental
data can be complicated and time consuming.

To overcome these issues, we first propose to interpolate
a few observed operators, to construct a richer set. We then
sample the resulting set as evenly as possible with a strategy
described hereafter. An example of set was justified in para-
graph III-A1 with the convex hull of observations. Alternatives
might exist, such as using generative models [68] to describe
the space of admissible parameters. We do not explore this
possibility in this paper.

a) MaxiMin and MaxiSumMin: In what follows, we
assume that γ lives in a compact set Γ ⊂ RK . Our objective
is to cover the set Γ as uniformly as possible with a fixed
budget of L ∈ N points. This problem is tightly related to the
sphere packing problem and is known to be extremely hard to
solve exactly (see e.g., [69], or the 7-th problem of Smale’s
list for the XXIst century). One possible way to express it is
the maximin formulation [70], [71]:

sup
∆=(δ1,...,δL)∈ΓL

min
l′ 6=l
‖δl − δl′‖2. (8)

The idea is to spread the points as much as possible while
keeping them within the constraint set Γ. The cost function
is nonconvex and non-differentiable. It typically possesses a
huge number of critical points. As far as we know, there is
currently no available software to solve this problem – even
approximately – for the dimensions of our problem [71]. In
what follows, we propose an original optimization approach
scaling well to dimensions of the order D > 100 and a number
of sampling points L > 10000.

Problem (8) could possibly be solved with a projected
subgradient approach. Unfortunately, the convergence would
be extremely slow: only the two closest points in the set ∆
would move at each time step. To accelerate the convergence,
we propose to solve instead:

sup
∆=(δ1,...,δL)∈ΓL

F (∆)
def.
=

L∑
l=1

min
l′ 6=l
‖δl − δl′‖2. (9)

The interest of solving (9) instead of (8) can be seen when
looking at the expression of the subgradient:

∂lF (∆) =
δl − δl∗(l)

‖δl − δl∗(l)‖2
, (10)

where l∗(l) is the index of the point closest to δl. The sign
= can be replaced by 3 to obtain an element of the Clarke
subdifferential. Assuming that a projector ΠΓ onto the set Γ is
available, we can then attack (9) with as subgradient algorithm:

∆t+1 = ΠΓL(∆t + τt∂F (∆t)), (11)

where (τt) is a sequence of step-sizes and ∂F (∆t) is the
vector with coordinates given by (10). Contrarily to (8), we see
that at each iteration, all the points will move simultaneously
in a direction opposite to their closest neighbour.

The usual theories [72] for subgradient descents recommend
a decaying step-size such as τt = c√

t
. In this work, we

experimented various choices (e.g., Barzilai-Borwein) and

finally opted for a constant step-size for this nonconvex,
non differentiable function. Such a choice does not lead to
a convergent sequence (∆t) in general. It typically finishes
oscillating around a local maximizer of the energy with a
radius that depends on the step-size. This is sufficient for our
application since we - in any cases - end up close to a local
maximizer only and do not require a precise solution.

b) Handling convex hulls: In the specific case where Γ =
conv(γp, 1 ≤ p ≤ P ), we have Γ = ΓSP−1, where Γ =
[γ1, . . . ,γP ] is the matrix formed by concatenating all the
vectors γp. Computing the orthogonal projection on Γ is non-
trivial. To solve this issue, we propose to replace (9) by

sup
Λ=(λ1,...,λL)∈SL

P−1

F (ΓΛ), (12)

and use a subgradient descent as well:

∆k+1 = ΠSL
P−1

(Λk + τkΓ
T∂F (ΓΛk)). (13)

The projection on the simplex ΠSP−1
can be evaluated exactly

in O(P ) operations using dynamic programming [73]. The
algorithm is stopped when the minimal distance between all
pairs of points do not vary significantly after 10 iterations.

Letting Λ̂ = (λ̂1, . . . , λ̂L) denote the last iterate of the
algorithm, the points δl in the previous formulation are given
by δl = Γλ̂l.

c) Evaluating the subgradient: The most complicated
part of the code is to find the closest neighbor of each point δl.
A naive implementation would result in a complexity O(L2),
which is not viable for large L (say larger than 10, 000).
Hopefully, finding nearest neighbors efficiently is a problem
of high importance and a very efficient implementation was
proposed in [74]. The authors propose a CPU/GPU implemen-
tation returning approximate or exact nearest neighbors scaling
up to hundreds of billion vectors in high dimension.

d) Examples: To conclude this section, we provide a
simple example of the algorithm dynamics in Fig. 3 in 2D.

(a) (0, 2.4 · 10−4) (b) (103, 2.5 · 10−2) (c) (104, 3.4 · 10−2)

Fig. 3: Dynamics of the maxisummin algorithm for L = 500 points.
The pair of numbers below the figures are the iterate number and the
distance between the closest pair of points in the design. As can be
seen, after 10,000 iterations, the points are near perfectly spread in
the convex hull of 8 points. Here, we set τt = 10−3.

V. NUMERICAL EXPERIMENTS

In this section, we illustrate the different ideas proposed
in this paper. In all our experiments, we trained the neural
networks using the MS Coco dataset [75]. It contains 118,287
images in the training set and 40,670 images in the test set.
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A. The interest of operator space sampling

We illustrate the importance of carefully sampling the set
of admissible operators using the method described in Section
IV-C. To this end, we use the blur operator generated by Model
III.2. The functions (ei)1≤i≤I and (fj)1≤j≤J are generated
from a real wide-field fluorescence microscope. The dimension
of the subspace is K = 4 × 4 and the cone Γ is defined by
400 operators. Details about this construction can be found in
[47]. We use Equation (13) to generate a set of 10,000 well
spread admissible operators. The coefficients γ are then drawn
uniformly at random among this set. We also add Gaussian
noise with amplitude σ = 0.01.

We first train the identification network IN with operators
among the discretization of the cone Γ containing 10,000
points. We train a second network with a more naive approach
where IN is trained using only the 400 blur operators defining
the set Γ. After training over 150,000 iterations with batches
of 16 images, we evaluate the results on 100 images and
100 operators randomly sampled from the discretization of Γ,
bringing the total number of test samples to 10,000. We report
the SNR between the true operators and the estimations by the
network IN in Table I. Sampling from the discretization of the
set Γ comes with almost no additional computational cost and
allows to significantly increase the SNR of the estimated blur
operators.

MaxiSumMin Extreme points

27.6± 3 22.4± 4

TABLE I: Importance of sampling the cone Γ of admissible operators.
SNR between the true operator and the one estimated by IN for two
different set of operators used during training.

B. Convolution operators

In this section, we evaluate the accuracy of the identification
and deblurring networks for convolution (i.e. space invariant)
operators. We assess them for images generated with point
spread functions expanded in Zernike polynomial.

1) Identifying convolution operators: In this paragraph, we
assess the ability of a residual network to identify the point
spread function generated by Model III.3. A similar study
was carried out in [41] with K = 3 coefficients. Here,
we extend the study to K = 7 coefficients allowing to
represent the following aberrations in the Noll nomenclature
[76]: defocus, primary astigmatism, primary coma, trefoil and
primary spherical.

We generate random PSFs by drawing the coefficients γ[k]
(see Model III.3) uniformly in the range [−η, η]. The higher
η, the more spread and oscillating the PSF. Hence η can be
interpreted as a measure of PSF complexity. The model was
trained for a value of η = 0.15.

Figure 4 shows the identification results for 3 images taken
at random from the test set and 3 operators taken at random
in the operator set. On these examples, the network provides
faithful estimates despite an important noise level and images
with little contents.

To further characterize the network efficiency, we measure
the distribution of signal-to-noise-ratio (SNR) in the noiseless
regime. For a kernel h, the error of the estimated kernel ĥ is
defined by:

SNR(h, ĥ) = −10 log10

(
‖ĥ− h‖22
‖h‖22

)
. (14)

Fig. 5 summarizes the conclusions. In average, the identifi-
cation network outputs estimates with a relative error below
5%.

Finally, we study the stability to the noise level σ in Fig. 6a
– and to the PSF complexity η in Fig. 6b. As can be seen, the
identification outputs predictions with less than 10% error with
probability larger than 0.5 up to a large noise level of σ =
0.1. The dependency on the kernel’s complexity, measured
through the Zernike polynomials amplitude η is very clear with
typical errors below 2% for η < 0.1 and then a relatively fast
increase. It is nonetheless remarkable that the identification
returns estimates with less than 15% error for η = 0.2, which
produces significantly more complex PSFs than those observed
during the training phase, showing some ability of the network
to extrapolate.

2) Evaluating the deblurring network: In this section, we
evaluate the performance of the proposed deblurring network
for convolution operators defined using the Fresnel approxi-
mation. Figures 7, 8, 9 display some deconvolution results for
different methods. The corresponding image quality measures
are displayed in Tables II, III, IV.

Notice that this problem is particularly involved: there is
complete loss of information in the high frequencies since
the convolution kernels are bandlimited and we treat different
noise levels up to rather high values (here σ = 0.05 for images
in the range [0, 1]). Despite this challenging setting, it can be
seen both perceptually and from the SSIM (Structural Simi-
larity Index Measure) that the image quality is significantly
improved whatever the noise level. It is also remarkable to
observe that the proposed network architecture allows to treat
images with different noise levels. This is an important feature
of the DRUNET used as a proximal network [52].

We also propose some comparisons with other methods
from the literature. Whenever possible, we optimized the
hyperparameters by hand for each noise level to produce the
best possible output. We chose the following methods:
• The `0-gradient prior [28], [82]. This method is one of the

state-of-the-art handcrafted blind deblurring method. An
efficient implementation was recently proposed in [77].

• In [27], the authors proposed a kernel estimation method
based on the assumption that the image spectrum ampli-
tude has a specific decaying distribution in the Fourier
plane. The kernel estimation then boils down to a phase
retrieval problem. An efficient implementation was re-
cently proposed in [78].

• In [79], the authors propose a regularized version of the
`0-gradient prior allowing to treat blurred images con-
taining higher noise levels. This method also implements
the FFDNET [83] as a pre-processing step to remove the
noise prior to the estimation.
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(a) Image 1 (b) Blurred 1 (c) Image 2 (d) Blurred 2 (e) Image 3 (f) Blurred 3

(g) True ker. 1 (h) Est. Ker. 1 (i) True ker. 2 (j) Est. Ker. 2 (k) True ker. 3 (l) Est. Ker. 3

Fig. 4: Examples of results for the identification network with convolution kernels defined through Fresnel approximation. Top: the original
and blurred and noisy 400x400 images. Bottom: the true 31x31 kernel used to generate the blurry image and the corresponding estimation
by the neural network. Notice that there is a significant amount of white Gaussian noise added to the blurred image. The image boundaries
have been discarded from the estimation process to prevent the neural network from using information that would not be present in real
images.
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Fig. 5: On the left: a 100x100 table representing the SNR of the PSF. In this table we evaluated the identification network for 100 images
(left to right) and 100 kernels (top to bottom) with no noise σ = 0. As can be seen, there are horizontal and vertical stripes. This means that
some images and some kernels make the identification problem easier or harder. In the middle: an image making the identification problem
hard (column 23). On the right: a kernel making the identification harder (row 65).
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(b) Zernike amplitude

Fig. 6: Stability of the kernel estimation with respect to noise level
(left) and amplitude of the Zernike coefficients in the noiseless
regime(right).

• We also tested two state-of-the art neural network ap-
proaches. The first one is the current leader (as of May
15, 2022) of the Go-Pro deblurring challenge called

NAFNET [80].
• The second one is the Deblur-Gan V2 [84], [81].

As can be seen from the tables and the perceptual results,
our method (Deep-Blur ) outperforms the other ones by a
really significant margin. This is particularly true for the
deep learning approaches, which are unable to improve the
sharpness significantly and even fail completely for high noise
levels. The comparisons are somewhat unfair since we test
our method for the conditions it was trained for (diffraction
blurs and grayscale images), while the two other deep learning
methods were trained on motion blurs and color images. This
probably illustrates the lack of robustness of neural network
when using conditions escaping the ones used during the
training approach. The handcrafted methods (Goldstein-Fattal
and `0 gradient prior) significantly improve the image quality
in the low noise regime, but fail to do so for high noise levels.

https://paperswithcode.com/sota/deblurring-on-gopro challenge
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im 1 im 2 im 3 im 4 im 5 im 6

SSIM x̂

y 0.49 0.46 0.41 0.52 0.47 0.50
ours 0.73 0.87 0.83 0.86 0.87 0.90
[77] 0.51 0.52 0.56 0.58 0.58 0.55
[78] 0.45 0.38 0.57 0.66 0.53 0.54
[79] 0.57 0.46 0.44 0.54 0.51 0.48
[80] 0.50 0.48 0.44 0.54 0.48 0.51
[81] 0.52 0.44 0.37 0.41 0.44 0.60

SNR ĥ

ours 8.99 14.05 13.46 11.67 11.35 14.79
[77] -1.85 1.38 -0.46 -1.99 2.26 2.57
[78] 0.21 1.78 0.49 -0.25 2.44 4.50
[79] 0.27 3.45 0.33 -0.31 3.62 3.06

TABLE II: Reconstruction results in the noiseless setting σ = 0.

im 1 im 2 im 3 im 4 im 5 im 6

SSIM x̂

y 0.47 0.43 0.40 0.50 0.46 0.49
ours 0.58 0.84 0.67 0.81 0.79 0.81
[77] 0.53 0.63 0.53 0.52 0.53 0.64
[78] 0.55 0.54 0.53 0.71 0.55 0.58
[79] 0.52 0.52 0.43 0.54 0.50 0.48
[80] 0.50 0.48 0.45 0.54 0.49 0.52
[81] 0.52 0.42 0.38 0.39 0.43 0.56

SNR ĥ

ours 8.66 14.48 13.38 11.62 12.19 15.80
[77] -5.28 -0.25 -1.08 -2.61 1.83 2.60
[78] 0.94 1.19 0.59 0.20 0.83 2.25
[79] -0.28 1.37 0.57 -0.36 3.57 2.85

TABLE III: Reconstruction results σ = 10−2.

im 1 im 2 im 3 im 4 im 5 im 6

SSIM x̂

y 0.29 0.25 0.25 0.29 0.31 0.36
ours 0.52 0.50 0.52 0.72 0.60 0.58
[77] 0.47 0.48 0.41 0.49 0.53 0.39
[78] 0.36 0.36 0.32 0.41 0.40 0.36
[79] 0.49 0.53 0.38 0.56 0.53 0.47
[80] 0.0 0.32 0.0 0.0 0.0 0.0
[81] 0.32 0.27 0.25 0.30 0.31 0.38

SNR ĥ

ours 7.05 15.00 12.88 11.03 13.01 19.63
[77] -7.66 -4.85 -3.01 -6.81 -0.21 -3.50
[78] 0.32 0.42 0.38 0.50 0.71 0.62
[79] -1.63 -0.53 0.94 -2.83 2.50 2.83

TABLE IV: Reconstruction results σ = 5 · 10−2.

a) Training on the true or estimated operators?: At
training time, we can feed the unrolled deblurring network
with the operator that was used to synthetize the blurry
image, or the one estimated using the identification network.
The potential advantage of the second option is to train the
proximal networks correcting model mismatches. We tested
both solutions on two different operator families. It turns
out that they led to near undistinguishable results overall in
average. The most likely explanation for this phenomenon
is that the model mismatches produced by the identification
network cannot be corrected with the proximal networks.

b) The interest of training on a family: The proposed de-
blurring algorithm can be seen as an intermediate step between
the plug&play priors which are designed to solve arbitrary
inverse problems and the traditional unrolled networks, which
are designed for a specific operator. In this paragraph, we
investigate the merits of these different approaches empirically.
This study is closely related to the one in the preprint [65] for
a different application.

To this end, we construct a plug&play deblurring algorithm
using the Douglas-Rachford structure described in Algorithm
1. The proximal networks are all identical and correspond
to the state-of-the-art DRUNET denoisers used in plug&play
approaches [52]. It was trained specifically for denoising white
Gaussian noise. The parameters of the algorithm are the
number of iterations, the scaling parameter λ and a standard
deviation for the noise level σ. Those parameters were tuned
by hand to obtain the best possible signal-to-noise ratio.
This optimum is attained with 8 iterations, λ = 10−1 and
σ = 10−1.

We also trained our deblurring network DN for a single
convolution operator with a Airy pattern. This pattern is
obtained by setting γ = 0 in Model III.3.

We then test each deblurring network for 100 differents
pairs of images and operators and display the average gain
and standard deviation in Table V.

All 3 deblurring networks depend on the operator pa-
rameterization γ. We evaluate the quality of the networks
independently of the possible model mismatches and therefore
feed all the networks with the true parameter used to synthetize
the blurry images.

As can be seen in Table V, the plug&play approach takes
significantly more time than the lighter deblurring networks
we chose for this paper. The reason is twofold: first we
use 4 iterations in our deblurring networks instead of 8 for
the plug&play approach. Second, the DRUNET used in [85]
contains significantly more parameters than the one used in
our implementation. In both cases, memory issues justify this
choice. We could likely increase the image quality of Deep-
Blur further using more iterations and more parameters in the
DRUNET, but this would come at a higher memory/energy
cost.

Second, the deblurring network trained specifically on a
Airy pattern outperforms the two other methods when tested
on a Airy pattern, which is to be expected. However, the gain
is anecdotic compared to the same deblurring network trained
on a family of operators. In contrast, the deblurring network
trained on a family of operators signicantly outperforms the
one trained on the Airy disk when tested on multiple operators.
This study therefore confirms the findings in [65], where it
was shown that the price of adaptivity to different operators
was affordable. The plug&play approach on its side performs
remarkably well for a “universal” method. Its main downsides
are the computing times as well as a slight performance
decrease.

C. Product-convolution operators
To finish the numerical experiments, we illustrate how the

proposed ideas perform on product-convolution operators.
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Plug&Play DN trained family DN trained Airy

Airy kernel 0.29± 0.05 0.45± 0.09 0.46± 0.08

Random kernel 0.39± 0.1 0.43± 0.1 0.26± 0.05

Time per image 2.21” 0.25” 0.25”

TABLE V: Average SSIM gain for the different networks. The gain
was evaluated on 100 random test images.

We first illustrate the performance of the identification
network. We trained the identification network on natural
images from the MS Coco dataset, but evaluate it on biological
images from microscopes. We selected 6 images: Image 1
is an histopathology of angiolipoma [86], Image 2 is an
histopathology of reactive gastropathy [87], Image 3&4 are
actin filaments within a cell [88], Image 5 is an slice of a
spheroid from [89] and Image 6 is a crop of a podosome
obtain on a wide-field microscope [90].

The blur operators are generated by Model III.2 using
K = 16 parameters. This model was estimated using a real
optical system [47]. Fig. 10 shows the identification results.
The blur coefficients predicted by the Deep-Blur identification
are accurate estimates in all cases. In average, the SNR is much
higher than in the previous experiment, which can likely be
explained by a smaller dimensionality of the operators’ family.
In all cases, the image quality is significantly improved despite
an additive white Gaussian noise with σ = 1 · 10−2. This is
remarkable since this type of images is really different from
the typical computer vision images found in the MS COCO
dataset.

VI. CONCLUSION

We proposed a specific neural network architecture to solve
arbitrary blind inverse problems. We evaluated its performance
carefully on blind deblurring problems with space invariant
and space varying operators. A key assumption is to have
access to a forward model that depends on a set of parameters.
The network first estimates the unknown parameters describing
the forward model from the measurements with a ResNet
architecture. In a second step, an unrolled algorithm solves the
inverse problem with a forward model that was estimated at
the previous step. After designing a careful training procedure,
we showed a significant advantage of the proposed approach
in terms of robustness to noise levels and adaptivity to a vast
family of operators and conditions not seen during the training
phase. The deblurring network can be seen as an intermediate
step between a plug&play algorithm which solves any inverse
problems and the traditional unrolled algorithms which solve
a specific one.
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[43] Jonas Adler and Ozan Öktem. Solving ill-posed inverse problems using
iterative deep neural networks. Inverse Problems, 33(12):124007, 2017.
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[77] Jérémy Anger, Gabriele Facciolo, and Mauricio Delbracio. Blind Image
Deblurring using the l0 Gradient Prior. Image Processing On Line,
9:124–142, 2019. https://doi.org/10.5201/ipol.2019.243.
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[79] Jérémy Anger, Mauricio Delbracio, and Gabriele Facciolo. Efficient
blind deblurring under high noise levels. In 2019 11th International
Symposium on Image and Signal Processing and Analysis (ISPA), pages
123–128. IEEE, 2019.

[80] Liangyu Chen, Xiaojie Chu, Xiangyu Zhang, and Jian Sun. Simple
baselines for image restoration. arXiv preprint arXiv:2204.04676, 2022.

[81] Orest Kupyn, Tetiana Martyniuk, Junru Wu, and Zhangyang Wang.
Deblurgan-v2: Deblurring (orders-of-magnitude) faster and better. In
Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 8878–8887, 2019.

[82] Jinshan Pan, Deqing Sun, Hanspeter Pfister, and Ming-Hsuan Yang.
Blind image deblurring using dark channel prior. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages
1628–1636, 2016.

[83] Kai Zhang, Wangmeng Zuo, and Lei Zhang. Ffdnet: Toward a fast and
flexible solution for cnn-based image denoising. IEEE Transactions on
Image Processing, 27(9):4608–4622, 2018.

[84] Orest Kupyn, Volodymyr Budzan, Mykola Mykhailych, Dmytro
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Fig. 7: Deep-Blur in action in the noiseless setting. Quantitative evaluations are reported in Table II. When available, the estimated blur
kernel is displayed at the bottom-right. First row: original images. Second row: blurry-noisy images. Third row: Deep-Blur. Fourth row: [77]
Fiveth row: [78] Sixth row: [79] Seventh row: [80] Eith row: [81]



15

O
ri

gi
na

l
B

lu
rr

y-
no

is
y

D
ee

pB
lu

r
B

ID
l0

[7
7]

G
ol

ds
te

in
Fa

tta
l

[7
8]

H
ig

h
N

oi
se

[7
9]

N
A

FN
E

T
[8

0]
D

eb
lu

rG
an

v2
[8

1]

Fig. 8: Deep-Blur in action with additive white Gaussian noise and σ = 10−2. Quantitative evaluations are reported in Table II. When
available, the estimated blur kernel is displayed at the bottom-right. First row: original images. Second row: blurry-noisy images. Third row:
Deep-Blur. Fourth row: [77] Fiveth row: [78] Sixth row: [79] Seventh row: [80] Eith row: [81]
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Fig. 9: Deep-Blur in action with additive white Gaussian noise and σ = 5 · 10−2. Quantitative evaluations are reported in Table II. When
available, the estimated blur kernel is displayed at the bottom-right. First row: original images. Second row: blurry-noisy images. Third row:
Deep-Blur. Fourth row: [77] Fiveth row: [78] Sixth row: [79] Seventh row: [80] Eith row: [81]
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Image1 Image 2 Image 3 Image 4 Image 5 Image 6

y: 0.59 0.54 0.45 0.42 0.77 0.54

x̂: 0.93 0.92 0.86 0.87 0.94 0.84

h

ĥ: 32.2dB 30.5dB 25.7dB 22.5dB 8.8dB 25.4dB

Fig. 10: Deep-Blur applied to spatially varying blur operators on microscopy images (not seen during training). The blur operators are
sampled from a family estimated using a real wide-field microscope, as described in Paragraph V-A. First row: the original images. Second
row: blurry-noisy images. Third row: the blind deblurring result with Deep-Blur . The SSIM of the resulting deblurred image is displayed
below. Fourth row: The true blur operator. We display 4 evenly spaced impulse responses in the field of view. Fifth row: The estimated blur
operator. The SNR of the estimated kernel is displayed in the caption in dB.
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