
HAL Id: hal-03687817
https://hal.science/hal-03687817v2

Preprint submitted on 4 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A probabilistic representation of the solution to a 1D
evolution equation in a medium with negative index

Éric Bonnetier, Pierre Etoré, Miguel Martinez

To cite this version:
Éric Bonnetier, Pierre Etoré, Miguel Martinez. A probabilistic representation of the solution to a 1D
evolution equation in a medium with negative index. 2024. �hal-03687817v2�

https://hal.science/hal-03687817v2
https://hal.archives-ouvertes.fr


A probabilistic representation of the solution to a 1D evolution

equation in a medium with negative index

Éric Bonnetier∗ Pierre Etoré(⋆)† Miguel Martinez‡

January 9, 2024

Abstract

In this work we investigate a 1D evolution equation involving a divergence form operator where
the diffusion coefficient inside the divergence is changing sign, as in models for metamaterials. We
focus on the construction of a fundamental solution for the evolution equation, which does not
proceed as in the case of standard parabolic PDE’s, since the associated second order operator is not
elliptic. We show that a spectral representation of the semigroup associated to the equation can be
derived, which leads to a first expression of the fundamental solution. We also derive a probabilistic
representation in terms of a pseudo Skew Brownian Motion (SBM). This construction generalizes
that derived from the killed SBM when the diffusion coefficient is piecewise constant but remains
positive. We show that the pseudo SBM can be approached by a rescaled pseudo asymmetric random
walk, which allows us to derive several numerical schemes for the resolution of the PDE and we report
the associated numerical test results.

Keywords:
Negative Index Materials; Evolution equations; Spectral representation of semigroups; Skew

Brownian motion ; Pseudo processes

1 Introduction

Over the last two decades, negative index materials (NIM) have drawn considerable attention, due to
the spectacular way in which electromagnetic, acoustic or elastic waves may propagate in such media.
Composite materials built as mixtures of NIM’s and classical dielectric material may indeed show
resonant effects when excited at certain frequencies, in which electromagnetic fields may concentrate
near the interfaces, providing a way to channel the fields. The amplitude of the fields may be
enhanced by several orders of magnitude in the neighborhood of particles with negative permittivity
or permeability. The possibility of localizing and concentrating waves has made NIM’s a subject of
great interest for many applications, for instance in communication and medical imaging.

From the point of view of mathematical modeling, a large part of the work on NIM’s has focused
on the so-called electrostatic approximation, for a composite medium made of inclusions (or phases)
of NIM’s embedded into a homogeneous dielectric matrix phase. This means that the time-harmonic
Maxwell system is reduced to a diffusion for one of the components of either the electric or magnetic
fields, provided the geometry of the device is assumed to have a direction of invariance, and provided
the typical dimensions of the inhomogeneities are small with respect to the incident wavelength. In
the simplest case, one remains with a transmission equation of the form{

div(A(x)∇u(x)) = f
+ boundary conditions

(1)
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in a bounded domain D (one could also consider this equation in the whole space), and where
the conductivity A(x) takes negative values in the inclusions of NIM’s and a positive value in the
dielectric medium in which they are embedded.

Because the conductivity changes sign in the domain, the bilinear form associated to the above
PDE

a(u, v) =

∫
D

A(x)∇u(x)∇v(x),

fails to be coercive in the natural Sobolev space H1(D) or in the appropriate subspace H that
accounts for the imposed boundary conditions. Thus, one cannot invoke the Lax-Milgram Lemma
to show existence of solutions to (1). In many cases though, depending on the geometry of the NIM
inhomogeneities, one can show that the form a is T-coercive : there exists an invertible operator
T : H −→ H such that (u, v) ∈ H × H −→ a(u, Tv) is coercive. In this case, applying the Lax-
Milgram Lemma to the latter bilinear form yields well-posedness of the PDE [1, 2, 17], except possibly
for some values of the negative conductivities, for which the associated operator is not invertible and
may even loose its Fredholm character.

T-coercivity is thus a simple way of paliating the lack of coercivity. One of our objectives is to
investigate whether T-coercivity also grants that the operator in (1) shares other characteristics of
elliptic operators. In particular, given the relation of the latter to stochastic processes, we would like
to answer the following questions : Does there exists a probabilistic representation of the solutions
to (1) akin a Feynman-Kac formula ? What is the nature of the underlying stochastic process ? Can
one design Monte Carlo type numerical schemes to approximate the solutions to (1) ?

In this work, we investigate these questions in a simple one-dimensional situation. Since the
probabilistic interpretation of an elliptic PDE is strongly related to the parabolic equation whose
infinitesimal generator is the associated elliptic operator, we consider a parabolic version of (1) of
the form 

A(x)∂tu(t, x) =
1

2
∂x
(
A(x)∂xu(t, x)

)
, x ∈ I, t > 0,

u(0, x) = u0(x) x ∈ I,

u(t,±1) = 0, t > 0,

(2)

where I is the interval (−a, a), and where the conductivity A is defined by

A(x) =

{
k, x ∈ I− := (−a, 0)
1, x ∈ I+ := (0, a).

In other words, we assume that a dielectric with (positive) conductivity 1 fills in the right part of the
interval I, whereas when k < 0, the left part is filled with a negative index material. Note that the
time derivative of u is multiplied by the conductivity A(x), and that weak solutions to (2) satisfy

∂tu(t, x) = 1
2
u′′(t, x), x ∈ (−a, 0) ∪ (0, a), t > 0

u(0, x) = u0(x), x ∈ (−a, a)
u(t, a) = u(−t, a) = 0

(3)

and the transmission conditions at the interface{
u(t, 0−) = u(t, 0+),
k u′(t, 0−) = u′(t, 0+).

(4)

When k > 0, the coefficient in front of the time derivative of u does not bring significant changes
to the usual parabolic setting, and existence and uniqueness of solutions are guaranteed. When k < 0
however, a ‘parabolic’ version of (1) of the form

B(x)∂tu(t, x) =
1

2
∂x
(
A(x)∂xu(t, x)

)
,

with initial datum u0 ∈ L2(I), may only have solutions with finite energy (i.e. in the space
L2(0,∞, H1

0 (I))) if for any x ∈ I, B(x) and A(x) have the same sign [9], so here we simply
choose B = A. Our objective is to construct a fundamental solution for (2) which can be interpreted
as the transition function of a stochastic process, or rather as we explain below, of a pseudo-process.
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We explicitely characterize the associated measure, and inquire how it can be decomposed so as to
build probabilistic-like numerical schemes to compute the solutions to (4).

When k > 0, it is well known that the fundamental solution of (2) can be interpreted as the
transition function of a stochastic process : this can be shown for example by using the stochastic
calculus for Dirichlet forms (see for e.g. [7]). The solution u(t, x) of (3)-(4) can be represented via a
Feynman-Kac formula as the expectation Ex(u0(X̌t)) where X̌ stands for a Skew Brownian motion
(SBM) of parameter β = 1−k

1+k
, killed when reaching −a or a (we have denoted Ex(·) = E(·|X̌0 = x);

see e.g. [10], and [8] for an account on the Skew Brownian motion). Thus the transition probability
density function (transition function, in short) of X̌ provides a fundamental solution of (2).

When k < 0, the skew Brownian motion may not be well defined. However, the above construction
formally provides a solution to (3)-(4) that generalizes the probabilistic representation. With this
perspective, we consider a pseudo expectation involving a pseudo Skew Brownian Motion, which we
properly define as a pseudo process, i.e., as a family of measurable functions Y = (Yt) defined on a
space (Ω,F) endowed with a signed measure P with P(Ω) = 1. The functions Y = (Yt) are called
pseudo-random variables Y = (Yt), and (Ω,F ,P) is referred to as a pseudo-probability space. See [13]
and the references therein for an account on pseudo random variables. A pseudo process is defined
mainly by its transition function, which allows to compute pseudo transition probabilities.

When I = R (a = +∞), the construction of a pseudo SBM can be successfully carried out, taking
advantage of the fact that in the case k > 0, the transition function of the SBM is known ([20]). It
follows that one can indeed construct a fundamental solution of (2) and define a pseudo SBM in the
general case k ∈ R∗ \{−1}. Moreover, the (pseudo) probabilistic representation obtained in this way
naturally lends itself to numerical approximation, via the convergence of pseudo skew random walks
to pseudo skew Brownian motions.

The bounded case, where I = (−a, a), a < +∞, is more involved, since it is not clear how one
could define a ’killed’ pseudo skew Brownian motion as a pseudo-probabilistic process. This is mainly
because ’killing’ is a trajectorial operation, and because the trajectories of a pseudo processes do
not have a clear meaning. We are however able to extend the representation of the solution u(t, x)
of (3)-(4) in terms of the fundamental solution, when k ∈ R∗ \ {−1}. One preliminary step in this
direction, consists in computing the transition function of the killed skew Browian X̌, by probabilistic
arguments in the case k > 0.

This work is organized as follows. In Section 2, we construct solutions to (2) in L2(0,∞, H1
0 (I))

for any k ̸= −1, with the help of the eigenfunctions of the bilinear form a(u, v) =

∫
I

A(x)∂xu∂xv

which are shown to form a basis of the space H1
0 (I). Section 3 focuses on the unbounded case

when I = R (or a = ∞). We show that the solutions to (2) can be obtained as convolutions of the
initial datum with a kernel p̌(t, x, y) which has a pseudo probabilistic interpretation, and to which
we associate a pseudo skew-Brownian motion. We further show that such pseudo skew-Brownian
motion can be approximated by pseudo-skew random walks. In Section 4, we consider the bounded
case (a <∞). Finally, in Section 5, we construct several numerical schemes for solving (2) based on
these developments and report numerical results obtained with these schemes.

2 Spectral representation of the semigroup

In this section, we consider the eigenvalue problem : find λ ∈ C and u ∈ H1
0 (I) such that

−
(
A(x)u′(x)

)
= λ2A(x)u(x), in I, (5)

Seeking a solution to (5) in the form

u(x) =

{
a1 cos(λx) + b1 sin(λx), x ∈ I−,
a2 cos(λx) + b2 sin(λx), x ∈ I+,

(6)

and expressing the transmission and boundary conditions (4), one is led to solving the linear system
1 0 −1 0
0 k 0 −1

cos(λa) − sin(λa) 0 0
0 0 cos(λa) sin(λa)




a1
b1
a2
b2

 = 0,
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from which one obtains the dispersion relation

sin(2λa)(k + 1) = 0. (7)

Assuming k ̸= 1, the associated eigen-elements can be grouped in two families : a set of even functions

fk,n(x) = cos
( (2n− 1)π

2a
x
)
, x ∈ I,

associated to λn =
(2n− 1)π

2a
, n ≥ 1, and the set of functions

gk,n(x) =

 sin(nπ
a
x) if x ∈ I−,

k sin(nπ
a
x) if x ∈ I+,

associated to µn =
nπ

a
, n ≥ 1.

When k > 0, the bilinear form u, v →
∫
I

A(x)u(x)v(x) dx is a scalar product in L2(I), while the

form

u, v ∈ H1
0 (I) → a(u, v) =

∫
I

A(x)u′(x)v′(x) dx,

is coercive and symmetric in H1
0 (I), and it is well-known that the solutions to (5) form a basis of

L2(I) and of H1
0 (I). The next Proposition shows that this is still the case when k < 0.

Proposition 2.1. When k < 0, the functions (fk,n, gk,n)n≥1 form a Hilbert basis of L2(I) and of
H1

0 (I).

Proof. Let k < 0. In view of the above remark, the functions (f−k,n, g−k,n)n≥1 are a basis of L2(I),
and one has the orthogonal decomposition (with respect to the scalar product associated to −k)

L2(I) = Hf ⊕Hg,

where Hf (resp. Hg) is the vector space generated by the f−k,n’s (resp. by the g−k,n’s). Consider
the mapping T : L2(I) −→ L2(I) defined by

Tu(x) =


u(x) if u ∈ Hf ,
u(x) if u ∈ Hg and x ∈ I−,

−u(x) if u ∈ Hg and x ∈ I+.

As T ◦ T = I, T is an isomorphism, thus the basis (f−k,n, g−k,n) is transformed into a basis of
L2(I). It is easy to check that (Tf−k,n, T g−k,n) = (fk,n, gk,n). The same arguments show that the
(fk,n, gk,n)’s form a basis of H1

0 (I).

From now on, we assume that k ∈ R∗ \ {−1}, and we drop the index k in the notation of the
basis functions fk,n and gk,n. Note that the functions fn, gn, n ≥ 1 satisfy the following relations:

λ2
p

∫
I

A(x)fp(x)φ(x) =

∫
I

A(x)f ′
p(x)φ

′(x) = 0,

for φ = fq, q ̸= p or φ = gq, q ≥ 1, and similarly

µ2
p

∫
I

A(x)gp(x)φ(x) =

∫
I

A(x)g′p(x)φ
′(x) = 0,

for φ = gq, q ̸= p or φ = fq, q ≥ 1. This corresponds to orthogonality or pseudo-orthogonality
properties, depending on the sign of k.

It follows that any function u0 ∈ L2(I) can be written in the form

u0(x) =
∑
n≥1

anfn(x) + bngn(x), (8)

where the coefficients an and bn are given by

an =

∫
I

A(x)u0(x)fn(x) dx∫
I

A(x)|fn(x)|2 dx
, bn =

∫
I

A(x)u0(x)gn(x) dx∫
I

A(x)|gn(x)|2 dx
. (9)
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In particular, one can check that∫
I

A(x)|fn(x)|2 dx =
a(k + 1)

2
,

∫
I

A(x)|gn(x)|2 dx =
ak(k + 1)

2
. (10)

Remark 2.2. Note that if k = −1 it is impossible to provide the forthcoming representations (11)
and (13), with the an’s and bn’s computed by (9) and (10). Therefore our assumption k ∈ R∗ \{−1}.

We now focus on the evolution problem (2) assuming that u0 ∈ L2(I). Decomposing u0 on the
basis of eigenfunctions as in (8), it is easy to check that

u(t, x) = Ptu0(x) =
∑
n≥1

ane
−λ2

nt/2fn(x) + bne
−µ2

nt/2gn(x), (11)

is a weak solution to (2) in the sense that u ∈ L2(0,∞, H1
0 (I)), ∂tu ∈ L2(0,∞, H−1(I)) and

∀ v ∈ H1
0 (I),

∫
I

2A(x)∂tu(t, x)v(x) +

∫
I

A(x)∂xu(t, x)∂xv(x) = 0, (12)

and u(0, x) = u0(x), a.e. x ∈ I. With this definition, using the fn, gn’s as test functions, the weak
solution to (2) is easily seen to be unique. Note that the family (Pt) forms a semigroup on L2(I).
Finally, the expression (11) can be rewritten as

u(t, x) =

∫
I

u0(y)p̄(t, x, y) dy,

where the kernel has the form

p̄(t, x, y) =
∑
n≥1

A(y)
( 2

a(k + 1)
fn(y)fn(x) e

−λ2
nt/2 +

2

ak(k + 1)
gn(y)gn(x) e

−µ2
nt/2

)
. (13)

We give a probabilistic derivation of the fundamental solution for (2) in the next sections.

3 A probabilistic construction of the fundamental solu-
tion for the evolution equation on R
In this section, we consider the case when I = R, and obtain the expression of the fundamental
solution to (2) following a probabilistic construction. More precisely, we consider the Cauchy problem

2A(x)∂tu(t, x) = (A(x)u′(t, x))′, t > 0, x ∈ R
u(0, x) = u0(x),
u(t, ·) ∈ H1(R) and Au′(t, ·) ∈ H1(R) t > 0,

(14)

or equivalently the PDE

∂tu(t, x) =
1

2
u′′(t, x), x ∈ (−∞, 0) ∪ (0,∞), t > 0,

with the initial condition u(0, x) = u0(x), x ∈ R and the radiation and transmission conditions{
lim|x|→∞ u(t, x) = 0,
u(t, 0−) = u(t, 0+) ku′(t, 0−) = u′(t, 0+).

(15)

We first introduce a few notations.

Notations. We denote by g(t, x, y) = 1√
2πt

exp
(
− |y−x|2

2t

)
the density of a N (x, t).

Let b < c ∈ R. The transition density of the Brownian motion killed at the points b or c is given
by

p
(b,c)
W (t, x, y) :=

∞∑
n=−∞

[
g(t, x, y − 2n(c− b))− g(t, x, 2b− y − 2n(c− b))

]
(16)

(see [4], Appendix I, Nı̈¿½ 6). Note that one has for any y ∈ (b, c),

lim
x−→

>
b
p
(b,c)
W (t, x, y) = 0 and lim

x−→
<

c
p
(b,c)
W (t, x, y) = 0 (17)
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3.1 The fundamental solution when k > 0

We first assume that k > 0, so that equation (2) is parabolic. It is known that in this case, under
mild assumptions on the initial condition u0 (for example u0 is continuous and bounded, see [15])
the solution to the above Cauchy problem is given by

u(t, x) = Ex[u0(Xt)], (18)

where X is the SBM with parameter β = 1−k
1+k

∈ (−1, 1). We refer to the survey [15] for the definition
and main properties of the SBM. In particular X solves the Stochastic Differential Equation (SDE)
with local time

dXt = dWt + βdL0
t (X), (19)

where W denotes a standard Brownian motion driving the SDE, and where L0
t (X) is the symmetric

local time at the point zero and at time t of X. Note that |β| < 1 ensures the existence of X, see
e.g. [15]. The SBM behaves like a Brownian motion, except at the times when it touches zero, at
which its dynamics are biased by the term of local time in (19). In particular we have:

Lemma 3.1. [Walsh, [20]] Let β ∈ (−1, 1) and let X be the solution to (19). Under P0 one has:
i) The process |X| is distributed as a reflecting Brownian motion |W | (starting from zero).
ii) The processes (sign(Xt)) and (|Xt|) are independent.
In addition, for any t > 0 one has P0(Xt > 0) = 1+β

2
.

From this Lemma and the reflection principle for the Brownian motion, Walsh was able to give
an explicit expression of the transition probability density p(t, x, y) of the SBM, in the form [20]

p(t, x, y) =



(1− β)g(t, x, y) if x ≥ 0, y < 0

g(t, x, y) + βg(t, x,−y) if x > 0, y > 0

(1 + β)g(t, x, y) if x ≤ 0, y > 0

g(t, x, y)− βg(t, x,−y) if x < 0, y < 0.

(20)

Note that (20) can also be written as

p(t, x, y) =



(1− β)g(t, x, y) if x ≥ 0, y < 0

−β[g(t, x, y)− g(t, x,−y)] + (1 + β)g(t, x, y) if x > 0, y > 0

(1 + β)g(t, x, y) if x ≤ 0, y > 0

β[g(t, x, y)− g(t, x,−y)] + (1− β)g(t, x, y) if x < 0, y < 0.

(21)

where g(t, x, y)−g(t, x,−y) =: ǧ(t, x, y), x, y > 0 (resp. x, y < 0) can be interpreted as the transition
function of a Brownian motion on (0,∞) (resp. (−∞, 0)) killed at zero (see [4] and Remark 4.2).

Yet another way to rewrite (20) is to consider ĝ(t, x, y) := g(t, x, y) + g(t, x,−y), x, y > 0, the
transition function of a reflected Brownian motion on [0,∞) (see [4]), which yields

p(t, x, y) =



(1− α)[ĝ(t, x,−y)− ǧ(t, x,−y)] if x ≥ 0, y < 0

αĝ(t, x, y) + (1− α)ǧ(t, x, y) if x > 0, y > 0

α[ĝ(t,−x, y)− ǧ(t,−x, y)] if x ≤ 0, y > 0

(1− α)ĝ(t,−x,−y) + αǧ(t,−x,−y) if x < 0, y < 0,

(22)

where we have set

α = (1 + β)/2 = 1/(1 + k). (23)

It follows from (18) that

u(t, x) = Ex[u0(Xt)] =

∫
R
u0(y)p(t, x, y)dy, (24)

so that p(t, x, y) identifies with the fundamental solution of (14).
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This fact also follows by mere computation: indeed one can easily check that the function p,
defined by (20), satisfies for any y ∈ R

∂tp(t, x, y) =
1

2
∂2
xxp(t, x, y), ∀x ∈ (−∞, 0) ∪ (0,∞). (25)

Using ∂xg(t, x, y) =
y−x
t
g(t, x, y) one can check the transmission conditions

p(t, 0−, y) = p(t, 0+, y), k∂xp(t, 0−, y) = ∂xp(t, 0+, y), (26)

and the radiation condition is also easy to check:

lim
|x|→∞

p(t, x, y) = 0. (27)

Taking derivatives of the integral on the right-hand side of (24) and using (25)-(27) shows that p is
indeed the fundamental solution of (14).

3.2 The fundamental solution in the case k < 0 and the pseudo SBM

When k ∈ R∗
− \ {−1}, setting β = 1−k

1+k
, we may again define a function p as in (20). It is easy to

check that this function solves (25)-(27), so that

u(t, x) =

∫
R
u0(y)p(t, x, y) dy,

is a solution to the Cauchy problem (14). Consequently, p(t, x, y) is a fundamental solution to (14)
also in the case k ∈ R∗

− \ {−1}. Note that β is not in (−1, 1), so that p(t, x, y) dy is only a signed
measure, and (19) does not define a SBM (see e.g. [14]). Stochastic Differential equations of the type

dXt = σ(Xt)dWt + βdL0
t (X) (28)

with β /∈ (−1, 1) have been addressed for example in [12]. But this latter work does not allow
to take σ ≡ 1, β /∈ (−1, 1) and to get a weak solution to (28) (indeed to touch β /∈ (−1, 1) the
coefficient σ has to be different from 1). However, we can still define a function p(t, x, y) by (20)
or (21), to which we can associate a pseudo SBM, as we describe below.

By pseudo-random variable, we mean a measurable function defined on a space (so-called pseudo-
probability space) endowed with a signed measure with a total mass equal to 1. We observe that
in the case k ∈ R∗

− \ {−1}, the signed asymmetric heat-type kernel p(t, x, y) defined in (21) is no
longer positive everywhere, however it integrates to 1 w.r.t. dy. In view of (21), this is clearly the
case when x = 0. When x > 0, we have∫ +∞

−∞
p(t, x, y)dy = −β

∫ +∞

0

[g(t, x, y)− g(t, x,−y)]dy + (1 + β)

∫ +∞

0

g(t, x, y)dy + (1− β)

∫ 0

−∞
g(t, x, y)dy

= β

∫ +∞

0

g(t, x,−y)dy +
∫ +∞

0

g(t, x, y)dy + (1− β)

∫ 0

−∞
g(t, x, y)dy

=

∫ +∞

−∞
g(t, x, y)dy + β

∫ +∞

0

g(t, x,−y)dy − β

∫ 0

−∞
g(t, x, y)dy

= 1 + β

(
−
∫ −∞

0

g(t, x, z)dz −
∫ 0

−∞
g(t, x, y)dy

)
= 1.

A similar computation applies to the case x < 0. One may also check that the Chapman-Kolmogorov
idendity for the family of transition kernels (p(t, x, y)dy)x∈R is also preserved in this case k < 0, k ̸=
−1.

Hence, in accordance to the usual Markov rules, we may define the pseudo-skew Brownian motion
as the pseudo-Markov process ‘(Xt)t≥0’ associated with the signed asymmetric heat-type kernel
p(t, x, y)dy defined in (21) – which is the fundamental solution to (14) also in the case k ∈ R∗

− \{−1}
– by : for t > 0 and 0 = t0 < t1 < . . . tm and x = x0, x1, . . . , xm, y ∈ R,

Px (Xt ∈ dy) = p(t, x, y)dy

and

Px (Xt1 ∈ dx1, . . . , Xtm ∈ dxm) =
m∏
i=1

p(ti − ti−1, xi−1, xi)dxi.
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Note that since pseudo-Markov processes are defined in terms of a signed measure, it is not clear
how one could generalize the definition of the skew Brownian motion over all t ≥ 0 in this context.
In particular, from a strict probabilistic point of view, the notion of trajectory for pseudo Markov
processes indexed by continuous time does not have a clear meaning.

For more results on pseudo-Markov processes, we refer to e.g. [13].

We now give a definition, inspired from [13], for the convergence of a family of pseudo-processes
((Y ε

t )t≥0)ε>0 towards a pseudo-process (Yt)t≥0.

Definition 3.2. Let ((Y ε
t )t≥0)ε>0 denote a family of pseudo-processes and (Yt)t≥0 a pseudo-process.

We write
(Y ε

t )t≥0
pseudo-w−−−−−−→

ε↘0
(Yt)t≥0

if

∀ℓ ∈ N∗, ∀t1, . . . , tℓ ≥ 0, ∀u1, . . . , uℓ ∈ R, E

[
exp

(
i

ℓ∑
j=1

ujY
ε
tj

)]
−−−→
ε↘0

E

[
exp

(
i

ℓ∑
j=1

ujYtj

)]
.

(29)

Remark 3.3. Note that in (29), the left hand side expectation symbol might depend on ε. But
in order to avoid cumbersome notations, and as it will cause no ambiguity in the proofs, we simply
denote it by E.

3.3 Convergence of the scaled pseudo asymmetric random walk to
the pseudo SBM

In this section, we assume that k ∈ R∗ \ {−1}, and define α as in (23). If k > 0 then α ∈ (0, 1) and
we deal with true processes and random walks. If k ∈ R∗

− \{−1} then α ∈ R\ (0, 1) and we deal with
pseudo processes and pseudo random walks. Our computations englobe both cases, but the results
are new for the case α ∈ R \ (0, 1) (for the case α ∈ (0, 1) see e.g. [8]).

Before getting deeper into our subject, let us give here a brief account of the several notations
that we are going to use in the remaining of this section.

∗ Regarding processes :

− W stands for a standard Brownian motion (classical symmetric).

− M stands for a standard symmetric random walk on Z.
− S stands for the pseudo random walk on Z that is α-skewed at 0.

− Xn stands for the properly normalized pseudo random walk α-skewed at 0.

− X denotes the pseudo-process under study.

− The superscript † denotes killing at zero: this path operation will be only performed for
classical processes (either the symmetric random walk M or the Brownian motion W ).

For example, it should be clear that W † denotes a standard Brownian motion killed when it hits
zero for the first time.

∗ Regarding functions :

− The subscript 0 (or superscript 0) will always refer to a quantity concerning the classical
standard symmetric Z-valued random walk M .

− The hat superscript ’ˆ’ will always refer to quantities that are related to a reflected process
at 0 (the standard symmetric random walk on Z or the standard Brownian motion).

− The check superscript ’ˇ’ will always refer to quantities that are related to a process with
killing at 0 (the standard symmetric random walk on Z or the standard Brownian motion).

− The letters ψ, Ψ denote characteristic functions.

− The order of variables in a characteristic function will always be : time / starting point /
argument.

For example, it should be plain that ψ̌0(j;m0, v) refers to the characteristic function of the classical
standard symmetric random walk killed at zero and starting from m0, taken at time j and evaluated
at v, namely Em0 [exp(ivM†

j )].

These notations will be recalled when needed below.
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Letm0 ∈ Z denote an arbitrary integer. Constructed on some pseudo probability space (Ω,F ,Pm0)
we consider (Sn)n≥0 the pseudo skewed random walk on the integers starting Pm0 -a.s. from S0 = m0

with pseudo transition probabilities given by

Pm0 (Sn+1 = Sn + 1|S0, . . . , Sn) =

{
α if Sn = 0
1/2 otherwise.

(30)

Pm0 (Sn+1 = Sn − 1|S0, . . . , Sn) =

{
1− α if Sn = 0
1/2 otherwise.

(31)

We attach to (Sn)n≥0 its natural filtration
(
FS

n

)
n≥0

defined by FS
n := σ (Sk : k ≤ n) for n ≥ 0.

The pseudo random sequence (Sn)n≥0 constructed likewise is a pseudo markovian random walk.

Remark 3.4. Note that – contrary to the case of pseudo processes in continuous time – any FS
n

adapted functional of the pseudo skewed random walk (Sk)k≥0 can be expressed as a functional of
(S0, S1, . . . , Sn), hence a finite dimensional pseudo distribution functional. Consequently, there is no
ambigüıty in what is meant by the pseudo law under Pm0 of a pseudo skewed random walk on the
whole path set ZN.

The following reflection principle is the key to get to the main result of this section.

Lemma 3.5. For all j ∈ N∗ and m ∈ Z∗,

P0 (Sj = m) =


αP0 (|Sj | = m) if m > 0

(1− α)P0 (|Sj | = |m|) if m < 0.

(32)

Moreover, for any integer m0 > 0

Pm0 (Sj = m) =


αPm0 (|Sj | = m) + (1− α)Pm0 (|Sj | = m ; ∀n ∈ [[1, j]], |Sn| ̸= 0) if m > 0

(1− α)
(
Pm0 (|Sj | = |m|)− Pm0 (|Sj | = m ; ∀n ∈ [[1, j]], |Sn| ≠ 0)

)
if m < 0

and for any integer m0 < 0,

Pm0 (Sj = m) =


(1− α)P|m0| (|Sj | = |m|) + αP|m0| (|Sj | = |m| ; ∀n ∈ [[1, j]], |Sn| ≠ 0) if m < 0

α
(
P|m0| (|Sj | = m)− P|m0| (|Sj | = |m| ; ∀n ∈ [[1, j]], |Sn| ̸= 0)

)
if m > 0.

Proof. We only treat the case where the pseudo random walk starts from 0. The other cases, although
tedious, can be analysed in the same fashion.

Let n ∈ N∗ and m ∈ Z∗ fixed.
Let us introduce Gn = sup (j ≤ n : Sj = 0) = sup (j ≤ n : |Sj | = 0) that is an FS

n -measurable
functional on the path space. It is easy to check that the pseudo-path (SGn+j)j∈{0,...,n−Gn} has

the same pseudo-law under the pseudo conditional probability P0 (.|SGn+1 = 1) as the pseudo-path
(|SGn+j |)j∈{0,...,n−Gn} under the original pseudo probability P0 (this assertion makes sense remem-

bering Remark 3.4). Observe also that P0 (SGn+1 = 1) = α.
If m > 0, then a.s. on the set {Sn = m}, the value of Gn cannot be equal to n, so that Gn ≤ n−1

a.s. conditionally on this set. Hence, for m > 0 we have

P0 (Sn = m) = P0 ({Sn = m} ∩ {SGn+1 = 1})

= P0 (SGn+(n−Gn) = m | SGn+1 = 1
)
P (SGn+1 = 1)

= P0 (|SGn+(n−Gn)| = m
)
P0 (SGn+1 = 1)

= αP0 (|Sn| = m) .

The case m < 0 is proved in a similar way. We have P0 (SGn+1 = 1) = k/(1 + k) and it is easily
checked that the pseudo-path (SGn+j)j∈{0,...,n−Gn} has the same pseudo-law under the conditionnal

probability P0 (.|SGn+1 = −1) as the pseudo-path (−|SGn+j |)j∈{0,...,n−Gn} under P0 (again, this
assertion makes sense because of Remark 3.4).

For an arbitrary m0 ∈ Z, we denote by (Mk)k≥0 a standard symmetric random walk on Z
constructed on (Ω,F ,Pm0) such that M0 = m0 Pm0 -a.s.
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Let bE (Z,C) denote the set of bounded complex valued functions defined on Z. We introduce
the following family of operators

(
T 0
j

)
j∈N acting from bE (Z,C) to bE (Z,C) and defined by

T 0
j f : m 7→

αE
mf(|Mj |) + (1− α)Emf(−|Mj |) + (1− α)

(
Emf(|M†

j |)− Emf(−|M†
j |)
)
if m ≥ 0

αE|m|f(|Mj |) + (1− α)E|m|f(−|Mj |) + α
(
E|m|f(−|M†

j |)− E|m|f(|M†
j |)
)

if m < 0.

(33)

We have the following lemma.

Lemma 3.6. For any function f ∈ bE (Z,C),

Em(f(Sj)) = T 0
j f(m).

Proof. Let m0 ∈ N arbitrary. It is plain from the definition of the transitions of the pseudo skewed
random walk (Sn)n≥0 (given in (30)) that (|Sn|)n≥0 and (|Mn|)n≥0 share the same pseudo law on

the path space NN under Pm0 : this assertion makes sense recalling Remark 3.4. In particular, we are
allowed to rewrite the equalities of Lemma 3.5 in the following manner

Pm0 (Sj = m) =


αPm0 (|Mj | = m) + (1− α)Pm0 (|Mj | = m ; ∀n ∈ [[1, j]], |Mn| ≠ 0) if m > 0

(1− α) (Pm0 (|Mj | = |m|)− Pm0 (|Mj | = |m| ; ∀n ∈ [[1, j]], |Mn| ̸= 0)) if m < 0.

(34)

For the same reasons, we also have Pm0 (Sj = 0) = Pm0 (|Sj | = 0) = Pm0 (|Mj | = 0).
The announced equality follows then easily by taking the expectation for f ∈ bE (Z,C). Indeed,

we have

Em0(f(Sj)) =
∑
m∈Z

f(m)Pm0 (Sj = m)

= f(0)Pm0 (Sj = 0) +
∑

m∈N∗

f(m)Pm0 (Sj = m) +
∑

m∈N∗

f(−m)Pm0 (Sj = −m) .

Now using (34) (and the definition of killing), we find

Em0(f(Sj)) = f(0)Pm0 (|Mj | = 0) + α
∑

m∈N∗

f(m)Pm0 (|Mj | = m) + (1− α)
∑

m∈N∗

f(−m)Pm0 (|Mj | = m)

+ (1− α)

( ∑
m∈N∗

f(m)Pm0

(
|M†

j | = m
)
−
∑

m∈N∗

f(−m)Pm0

(
|M†

j | = m
))

= T 0
j f(m0).

The same kind of arguments may be invoqued for negative m0 and the result of the lemma
follows.

Analogously to the above, let us introduce (Wt)t≥0 a standard Brownian motion constructed on
(Ω,F ,Px) starting from x (i.e. W0 = x, Px-a.s).

Let bE (R,C) stand for the set of Borel bounded complex valued functions defined on R. Similarly
as before, we introduce the following family of operators (Tt)t≥0 acting from bE (R,C) to bE (R,C)
and defined by

Ttf : x 7→

αE
xf(|Wt|) + (1− α)Exf(−|Wt|) + (1− α)

(
Exf(|W †

t |)− Exf(−|W †
t |)
)
if x ≥ 0

αE|x|f(|Wt|) + (1− α)E|x|f(−|Wt|) + α
(
E|x|f(−|W †

t |)− E|x|f(|W †
t |)
)

if x < 0.

(35)

Lemma 3.7. For any f ∈ bE (R,C),

Ex(f(Xt)) = Ttf(x).
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Proof. Suppose x > 0. We use (22) and check at once that

Ex(f(Xt)) =

∫ +∞

−∞
f(y)p(t, x, y)dy

= α

∫ +∞

0

f(y)ĝ(t, x, y)dy + (1− α)

∫ +∞

0

f(y)ǧ(t, x, y)dy

+ (1− α)

(∫ 0

−∞
f(y)ĝ(t, x,−y)dy −

∫ 0

−∞
f(y)ǧ(t, x,−y)dy

)
= α

∫ +∞

0

f(y)ĝ(t, x, y)dy + (1− α)

∫ +∞

0

f(y)ǧ(t, x, y)dy

+ (1− α)

(∫ +∞

0

f(−y)ĝ(t, x, y)dy −
∫ +∞

0

f(−y)ǧ(t, x, y)dy
)

= Ttf(x). (36)

The same type of arguments may be invoqued for negative x and the result of the lemma follows.

The main result of this section is the following statement.

Proposition 3.8. The rescaled asymmetric random walk converges in the sense of Definition 3.2 to
the pseudo SBM :

Xn :=
(
n−1/2S⌊nt⌋

)
t≥0

pseudo-w−→ (Xt)t≥0 as n→ +∞.

Proof. Our main concern is to ensure that all arguments for the convergence in the classical case
still hold true in our pseudo probability context. Since we deal with pseudo stochastic processes, the
difficulties are two fold:

− we are not allowed to use a Skorokhod embedding, a tool that is often used for the convergence
of random walks;

− we are not allowed to perform transformations directly on the path space such as reflection or
killing for pseudo processes.

Note also that, except in the case α = 1/2, the skewed random walk and the skewed Brownian
motion (classical or pseudo) do not have independent increments. Following [8] in the classical case
where α ∈ (0, 1), the idea is to observe the similarity of structure shared by the family of operators
(T 0

j ) and (Tt) (whose definition involve only classical processes) and take advantage of known results
concerning the convergence of random walks.

We only give the main arguments of the proof and leave the computational details to the reader.

Let us fix x ≥ 0, t ≥ 0, u ∈ R and set mn := ⌊
√
nx⌋.

As mentionned above, in the whole proof

ψ̂0(j;mn, u) := Emn (exp (iu |Mj |)) , resp. ψ̌0(j;mn, u) := Emn(exp(iu|M†
j |))

stands for the characteristic function of the classical standard symmetric random walk on Z reflected
at 0 (resp. killed at 0) starting from ⌊

√
nx⌋ and taken at time j and evaluated at u.

Similarly

ψ̂(t;x, u) := Ex(eiu|Wt|), resp. ψ̌(t;x, u) := Ex(eiu|W
†
t |) (37)

stands for the characteristic function of a standard Brownian motion (Ws) reflected at 0 on [0,∞)
(resp. killed at 0) at time t and evaluated at u.

Let us denote hu ∈ bE (R,C) the function defined by

hu : z 7→ exp(iu z).

From the result of Lemma 3.7 we infer that

Ex (exp (iu Xt)) = Tthu(x)

= αψ̂(t;x, u) + (1− α)ψ̂(t;x,−u) + (1− α)
(
ψ̌(t;x, u)− ψ̌(t;x,−u)

)
(38)
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Similarly, from the result of Lemma 3.6, we have

Emn

(
exp

(
iu n−1/2S⌊nt⌋

))
= T 0

⌊nt⌋hn−1/2u(mn)

= αψ̂0(⌊nt⌋;mn, n
−1/2u) + (1− α)ψ̂0(⌊nt⌋;mn,−n−1/2u)

+ (1− α)
(
ψ̌0(⌊nt⌋;mn, n

−1/2u)− ψ̌0(⌊nt⌋;mn,−n−1/2u)
)
. (39)

Classical results regarding the convergence of characteristic functions for normalized symmetrized
random walks reflected at 0 (resp. killed at 0) towards the characteristic functions of the stan-

dard Brownian motion reflected at 0 (resp. killed at 0) ensure that ψ̂0

(
⌊nt⌋;mn, n

−1/2u
)

(resp.

ψ̌0

(
⌊nt⌋;mn, n

−1/2u
)
) converges simply to ψ̂(t;x, u) (resp. to ψ̌(t;x, u)) as n tends to infinity.

By comparison of (39) with (38) and by the linearity of the convergence, we get

Emn

[
exp

(
iu n−1/2S⌊nt⌋

)]
−−−−−→
n→+∞

Ex [exp (iuXt)] .

Similar arguments show that this convergence also holds for x < 0 and x = 0. Recasting this
convergence using our operators writes: for any x ∈ R,

T 0
⌊nt⌋hn−1/2u(mn) −−−−−→

n→+∞
Tthu(x). (40)

We leave it to the reader to check using very close arguments that we have also

T 0
⌊nt⌋+1hn−1/2u(mn) −−−−−→

n→+∞
Tthu(x). (41)

Let us now turn to the convergence of the characteristic function for joint pseudo distributions.
As above, let x ≥ 0, 0 ≤ t1 < t2, u1, u2 ∈ R and set mn = ⌊

√
nx⌋. Applying the Markov property

of the pseudo random walk and the result of Lemma 3.6 gives

Ψ0(⌊nt1⌋, ⌊nt2⌋;mn, u1, u2)

:= Emn

[
exp

(
iu1 n

−1/2S⌊nt1⌋ + iu2 n
−1/2S⌊nt2⌋

)]
= Emn

[
exp

(
iu1 n

−1/2S⌊nt1⌋

)
ES⌊nt1⌋

[
exp

(
iu2 n

−1/2S⌊nt2⌋−⌊nt1⌋

)]]
= T 0

⌊nt1⌋
[
j 7→ hn−1/2u1

(j)T 0
⌊nt2⌋−⌊nt1⌋hn−1/2u2

(j)
]
(mn). (42)

Note that (⌊nt2⌋ − ⌊nt1⌋) ∈ {⌊n(t2 − t1)⌋, ⌊n(t2 − t1)⌋+ 1}. As before, we are in position to use
standard convergence results regarding the characteristic functions of normalized classical symmetric
random walks.

Using (40) and (41), we prove that Ψ0(⌊nt1⌋, ⌊nt2⌋;mn, u1, u2) converges as n tends to infinity
to

Ψ(t1, t2;x, u1, u2) := Tt1 [y 7→ hu1(y)Tt2−t1hu2(y)] (x).

Note that from the definitions of the operators (T 0
j )j∈N and (Tt)t≥0 this convergence results from the

properties of the weak convergence of classical symmetric random walks (reflected or killed) towards
their corresponding standard Brownian motion (reflected or killed).

It remains to check that

Ψ(t1, t2;x, u1, u2) = Ex [exp (i(u1Xt1 + u2Xt2)] (43)

in order to conclude our proof. But, exactly as before this last equality is easily verified by the use
of the Markov property for the pseudo-process (Xt) at time t1 (which itself derives directly from the
Chapman-Kolmogorov identity). Indeed, by application of Lemma 3.7 and the definition of hu, we
have

Ψ(t1, t2;x, u1, u2) := Tt1 [y 7→ hu1(y)Tt2−t1hu2(y)] (x)

= Ex
[
exp (iu1Xt1)E

Xt1 (exp (iu2Xt2−t1))
]

= Ex [exp (i(u1Xt1 + u2Xt2)]
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which gives (43).
Hence,

lim
n→+∞

Emn

[
exp

(
i
(
u1 n

−1/2S⌊nt1⌋ + u2 n
−1/2S⌊nt2⌋

))]
= Ex [exp (i (u1Xt1 + u2Xt2))] .

Finally, we may extend the previous limit result by induction to prove that for any ℓ ∈ N∗,
u1, . . . , uℓ ∈ R and times 0 ≤ t1 < · · · < tℓ,

lim
n→+∞

Emn

[
exp

(
i

ℓ∑
j=1

uj n
−1/2S⌊ntj⌋

)]
= Ex

[
exp

(
i

ℓ∑
j=1

ujXtj

)]
.

The proof is completed.

4 The evolution equation on a finite interval

In this section we assume 0 < a <∞.
Again, we first address the case k > 0, in which we compute the transition function of the skew

Brownian motion killed at the end-points of I = (−a, a), then we treat the general case k ∈ R∗\{−1}.

4.1 The transition function of the SBM killed at −a or a (case k > 0)

In the same manner as for (18), it can be shown that the solution to the parabolic problem (2) on
(−a, a)× R can be represented as

u(t, x) = Ex[u0(X̌t)] (44)

where X̌ is the SBM of parameter β = 1−k
1+k

, killed at −a or a. This process behaves like the SBM
X as long as it does not exit from (−a, a). When it touches −a or a it is sent at a cemetery point ∂.
By convention, for any function f one has f(∂) = 0, which ensures that the homogeneous Dirichlet
boundary condition in (4) is satisfied.

Let us assume that x ∈ (−a, a) and let Ť(−a,a) = inf{t ≥ 0 : X̌t /∈ (−a, a)}. We compute

Ex[u0(X̌t)] = Ex[u0(X̌t); Ť(−a,a) ≤ t] + Ex[u0(X̌t); Ť(−a,a) > t]

= Ex[u0(∂); Ť(−a,a) ≤ t] + Ex[u0(X̌t); Ť(−a,a) > t]

= Ex[u0(Xt); T(−a,a) > t],

(45)

where X is the SBM considered in Section 3.2 and T(−a,a) = inf{t ≥ 0 : Xt /∈ (−a, a)}.
We first derive the expression of the kernel p̌(t, x, y) that satisfies Px(Xt ∈ dy; T(−a,a) > t) =

p̌(t, x, y)dy, i.e. the fundamental solution to (2) :

Proposition 4.1. Let β ∈ (−1, 1). Let X be the solution of (19), i.e. the SBM of parameter β. Let
a > 0.

For any x, y ∈ (−a, a), any t > 0, one has Px(Xt ∈ dy; T(−a,a) > t) = p̌(t, x, y)dy with

p̌(t, x, y) =



(1− β)p
(−a,a)
W (t, x, y) if x ≥ 0, y < 0

−βp(0,a)W (t, x, y) + (1 + β)p
(−a,a)
W (t, x, y) if x > 0, y > 0

(1 + β)p
(−a,a)
W (t, x, y) if x ≤ 0, y > 0

βp
(−a,0)
W (t, x, y) + (1− β)p

(−a,a)
W (t, x, y) if x < 0, y < 0.

(46)

Proof of Proposition 4.1. We use Lemma 3.1 and take advantage of the symmetry of the space in-
terval (−a, a): then it is possible to adapt the arguments in [20], using for example in particular the
transition function of the Brownian motion killed at −a or a instead of the transition function of the
Brownian motion. We detail all the steps for the sake of completeness.

We set T0 = inf{t ≥ 0 : Xt = 0} and remark that T(−a,a) = inf{t ≥ 0 : Xt /∈ (−a, a)} = inf{t ≥
0 : |Xt| = a}. We denote τ0 = inf{t ≥ 0 : Wt = 0} and τ(−a,a) = inf{t ≥ 0 : |Wt| = a}. In
the computations below, by a slight abuse of notation we may denote by Px either P(·|X0 = x) or
P(·|W0 = x). This will be clear from the context.
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Let t > 0. We first treat the case x > 0, y < 0. Using the fact that Px(Xt ∈ dy;T0 > t) = 0, and
using the strong Markov property of X, it follows that

Px(Xt ∈ dy; T(−a,a) > t)

= Px(Xt ∈ dy;T0 ≤ t; T(−a,a) > t) + Px(Xt ∈ dy;T0 > t; T(−a,a) > t)

= Ex
[
1T0≤tPx(Xt ∈ dy; T(−a,a) > t|FT0)

]
=
∫ t

0
P0(X̃t−u ∈ dy; T̃(−a,a) > t− u)fx

T0
(u)du,

where X̃ is another SBM of parameter β, starting from zero under P0, T̃(−a,a) = inf{t ≥ 0 : |X̃t| = a}
and fx

T0
(u)du is the law of T0 under Px.

From Lemma 3.1 we have

P0(X̃t−u ∈ dy; T̃(−a,a) > t− u)

= P0(|X̃t−u| ∈ −dy; T̃(−a,a) > t− u; X̃t−u < 0)

= 1−β
2

P0(|W̃t−u| ∈ −dy; τ̃(−a,a) > t− u)

= 1−β
2

(
P0(W̃t−u ∈ −dy; τ̃(−a,a) > t− u) + P0(−W̃t−u ∈ −dy; τ̃(−a,a) > t− u)

)
= (1− β)P0(W̃t−u ∈ dy; τ̃(−a,a) > t− u)

where W̃ is a Brownian motion starting from zero under P0 and τ̃(−a,a) = inf{t ≥ 0 : |W̃t| = a}.
Thus denoting by fx

τ0(u)du the law of τ0 under Px, noticing that fx
T0
(u) = fx

τ0(u), and using this
time the strong Markov property of W , we calculate

Px(Xt ∈ dy; T(−a,a) > t)

= (1− β)
∫ t

0
P0(W̃t−u ∈ dy; τ̃(−a,a) > t− u)fx

τ0(u)du,

= (1− β)Px(Wt ∈ dy; τ0 ≤ t; τ(−a,a) > t)

= (1− β)Px(Wt ∈ dy; τ(−a,a) > t)

= (1− β)p
(−a,a)
W (t, x, y)dy,

and obtain the first line of (46).
Next, we treat the case x > 0 and y > 0. We have

Px(Xt ∈ dy; T(−a,a) > t)

= Px(Xt ∈ dy;T0 ≤ t; T(−a,a) > t) + Px(Xt ∈ dy;T0 > t; T(−a,a) > t)

As 0 < x, y < a, the term Px(Xt ∈ dy;T0 > t; T(−a,a) > t) corresponds to the transition of a
Brownian motion killed at 0 or a, or in other words,

Px(Xt ∈ dy;T0 > t; T(−a,a) > t) = p
(0,a)
W (t, x, y)dy.

As for the term Px(Xt ∈ dy;T0 ≤ t; T(−a,a) > t), we use similar computations as in the case x > 0,
y < 0. Since Xt is positive this time, we obtain

Px(Xt ∈ dy;T0 ≤ t; T(−a,a) > t) = (1 + β)Px(Wt ∈ dy; τ0 ≤ t; τ(−a,a) > t).

Notice also that

Px(Wt ∈ dy; τ0 ≤ t; τ(−a,a) > t)

= Px(Wt ∈ dy; τ(−a,a) > t)− Px(Wt ∈ dy; τ0 > t; τ(−a,a) > t)

= p
(−a,a)
W (t, x, y)dy − p

(0,a)
W (t, x, y)dy.
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Putting all the pieces together yields

Px(Xt ∈ dy; T(−a,a) > t) =
[
p
(0,a)
W (t, x, y) + (1 + β){p(−a,a)

W (t, x, y)− p
(0,a)
W (t, x, y)}

]
dy

=
[
− βp

(0,a)
W (t, x, y) + (1 + β)p

(−a,a)
W (t, x, y)

]
dy,

and thus, the second line of (46). The remaining cases can be treated in a similar manner.

Remark 4.2. Note the consistence of (21) with (46), as a→ ∞ in (46).

Remark 4.3. Note that as ∫ a

−a

p̌(t, x, y)dy = Px(T(−a,a) > t),

p̌(t, x, ·) does not necessarily integrate to 1. The definition of a genuine family of transition probability
measures from p̌(t, x, y)dy would require combining this density measure with a Dirac measure that
charges ∂ with probability Px(T(−a,a) ≤ t), see [19], p84.

Still by a slight abuse of language we call this kernel the transition function of X̌.
Note that in the hereafter examined case of a negative coefficient, the integrals of p̌(t, x, ·) do not

even necessarily correspond to true probabilities.

4.2 The fundamental solution to (2) in the general case k ∈ R∗ \{−1}
When k > 0, the transition function yields a fundamental solution to the evolution equation. When
k < 0, k ̸= −1, as in the case when I = R, we check that its expression also yields a fundamental
solution.

Lemma 4.4. Let k ∈ R∗ \ {−1} and define β = 1−k
1+k

. The kernel p̌(t, x, y) defined by (46) is the
fundamental solution to (3)-(4), or to (2). Equivalently it satisfies for any y ∈ (−a, a),

∂tp̌(t, x, y) =
1

2
∂2
xxp̌(t, x, y), ∀x ∈ (−a, 0) ∪ (0, a), (47)

and
p̌(t, 0−, y) = p̌(t, 0+, y), (48)

k∂xp̌(t, 0−, y) = ∂xp̌(t, 0+, y), (49)

and
lim

x→±a
p̌(t, x, y) = 0. (50)

Proof. If a kernel q(t, x, y) is a fundamental solution to (3)-(4), then by definition, the function

(t, x) 7→ u(t, x) =

∫ a

−a

u0(y)q(t, x, y)dy (51)

solves (3)-(4) for any u0 ∈ C∞
c (−a, a). As

∂tu(t, x) =

∫ a

−a

u0(y)∂tq(t, x, y)dy, ∂xu(t, x) =

∫ a

−a

u0(y)∂xq(t, x, y)dy,

and ∂2
xxu(t, x) =

∫ a

−a

u0(y)∂
2
xxq(t, x, y)dy,

letting u0 vary in C∞
c (−a, a), it is easy to see that q(t, x, y) satisfies (47)-(50). Conversely, if (47)-

(50) hold for q(t, x, y), one may check that the function defined by (51) solves (3)-(4). Thus the
equivalence.

Consider first k > 0 and β = 1−k
1+k

. From (44), (45) and Proposition 4.1, it is clear that the kernel
p̌(t, x, y) defined by (46) is the fundamental solution to (3)-(4), and therefore satisfies (47)-(50).

Considering (47) and for example the first line of (46) it is clear that for x < 0 and y > 0 one has

∂tp
(−a,a)
W (t, x, y) =

1

2
∂2
xxp

(−a,a)
W (t, x, y) (52)

(of course this fact can formally be seen from (16); see also Remark 4.5 below).

Consider now k ∈ R∗
− \ {−1}, set β = 1−k

1+k
, and define the kernel p̌(t, x, y) by (46). From the first

line of (46), and (52) it is clear that (47) holds for x < 0 and y > 0. The other cases can be treated
similarly, so that p̌(t, x, y) solves (47) for any y ∈ (−a, a), x ∈ (−a, 0) ∪ (0, a).
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Concerning the transmission conditions, we first note that when y > 0, Eq. (49) can be rewritten

(1 + β)∂xp̌(t, 0+, y) = (1− β)∂xp̌(t, 0−, y) (53)

or equivalently, using the definition of p̌(t, x, y) in (46) (with y < 0)

(1− β2)∂xp
(−a,a)
W (t, 0−, y) = (−β − β2)∂xp

(0,a)
W (t, 0+, y) + (1 + 2β + β2)∂xp

(−a,a)
W (t, 0+, y),

which in turn, due to the continuity of ∂xp
(−a,a)
W (t, 0, y) at x = 0, is equivalent to

∂xp
(0,a)
W (t, 0+, y) = 2∂xp

(−a,a)
W (t, 0, y). (54)

Note that condition (54) only bears on the properties of p
(−a,a)
W and p

(0,a)
W , and is equivalent to (49)

whatever the sign of k, provided k ̸= −1. Thus we know from the case k > 0 that (54) holds,
and thus (49) must hold for all k ̸= −1. The same argument applies to y < 0. Equation (48) is a

consequence of (17) and of the continuity at x = 0 of the kernel p
(−a,a)
W (t, x, y).

Finally, the Dirichlet condition (50) follows from (17) and the form of p̌(t, x, y). We conclude
that the latter is indeed the fundamental solution of (3)-(4) when k < 0, k ̸= −1.

Remark 4.5. In fact it is possible to start from (46), and to use (16) in order to formally check (47)-
(49), for any k ∈ R∗ \ {−1}. We especially want to explain how one can derive the transmission
condition in (49).

As we have already seen in the proof of Lemma 4.4, it is enough to check (54). On one hand one
has

∂xp
(0,a)
W (t, 0+, y)

=

∞∑
n=−∞

{y − 2na

t
g(t, 0, y − 2na)− −y − 2na

t
g(t, 0,−y − 2na)

}

=

∞∑
n=−∞

{y − 2na

t
g(t, 0, y − 2na) +

y + 2na

t
g(t, 0, y + 2na)

}

= 2

∞∑
n=−∞

y + 2na

t
g(t, 0, y + 2na)

On the other hand one has

∂xp
(−a,a)
W (t, 0, y)

=

∞∑
n=−∞

{y − 4na

t
g(t, 0, y − 4na)− 2a− y − 4na

t
g(t, 0, 2a− y − 4na)

}

=

∞∑
n=−∞

{y − 4na

t
g(t, 0, y − 4na) +

y + 4na− 2a

t
g(t, 0, y + 4na− 2a)

}

=

∞∑
n=−∞

{y − 2(2n)a

t
g(t, 0, y − 2(2n)a) +

y + 2(2n− 1)a

t
g(t, 0, y + 2(2n− 1)a)

}

=

∞∑
n=−∞

y + 2na

t
g(t, 0, y + 2na).

Therefore (54).

Note that in the case k ∈ R∗
− \ {−1} the kernel p̌(t, x, y) defined by (46) is not positive: indeed

in that case β > 1 and it suffices to examine the first line of (46).
So even if we complement the density measure p̌(t, x, y)dy with Dirac measures in order to obtain

a family of transition pseudo probability measures (see our Remark 4.3), the latter will not define a
Markov process. One could however introduce the pseudo-process associated to this family, in the
spirit of Section 3.2.
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Remark 4.6. We end up this section by noticing that as expected, the form of the kernel (46)
coincides with (13). Indeed, the transition density of the Brownian motion on an interval (a, b),
killed at a or b has the following spectral representation (see Appendix 1 in [4])

p
(a,b)
W (t, x, y) =

2

b− a

∑
n≥1

exp
(
− n2π2

2(b− a)2
t
)
sin
( nπ

b− a
(x− a)

)
sin
( nπ

b− a
(y − a)

)
.

Thus one has

p
(−a,a)
W (t, x, y) =

1

a

∑
n≥1

exp
(
− n2π2

8a2
t
)
sin
(nπ
2a

(x− a)
)
sin
(nπ
2a

(y − a)
)
.

Regrouping the terms with odd and even indices, the above expression rewrites, when x ≥ 0 and
y < 0

p
(−a,a)
W (t, x, y) = +

1

a

∑
q≥1

exp
(
− q2π2

2a2
t
)
sin
(qπ
a
(x− a)

)
sin
(qπ
a
(y − a)

)
+
1

a

∑
q≥1

exp
(
− (2q − 1)2π2

8a2
t
)
cos
( (2q − 1)π

2a
(x− a)

)
cos
( (2q − 1)π

2a
(y − a)

)
=

1

a

∑
q≥1

[ 1
k
e−µ2

qt/2 gq(x)gq(y) + e−λ2
qt/2 fq(x)fq(y)

]
Multiplying by 1− β = 2k

k+1
to retrieve the first line of (46), one easily recovers the expression (13)

when x ≥ 0 and y < 0. A similar calculation applies for the other possible choices of x and y.

5 Various numerical schemes for the PDE (2)

In this section we want to construct several numerical schemes for the approximation of the solution
u of (2), inspired by the theoretical results of the previous sections.

In Section 5.1 we construct a scheme ūN
spec inspired by the spectral representation of the semigroup

of Section 2.
In Section 5.2 we explain how we can infer a finite difference type scheme ūn

RW from the scaled
pseudo asymmetric random walk X̂n of Section 3.3.

In Section 5.3 we construct a scheme ūh,N
fund, which is inspired by the fact that the fundamental

solution p̌(t, x, y) computed in Section 4.1 involves transition functions of killed Brownian motions,
which can be seen as the fundamental solutions of simple heat equations, with homogeneous Dirichlet
boundary conditions.

An initial condition u0 is given (in Section 5.1 it is of class L2(I), in Sections 5.2 and 5.3 we can
imagine it is continuous and bounded).

We have k ∈ R∗ \ {−1} and set β = 1−k
1+k

and α = 1+β
2

.
In the case k ∈ (0,∞) several numerical schemes are available (one can for example first perform

a finite element discretization w.r.t. the space variable, and then a Crank-Nicholson scheme, e.g.
[18]), including probabilistic ones (e.g. [5], [16], [6]). Thus, for this well explored case the schemes
presented hereafter may provide additional methods (up to our knowledge they have never been
proposed in this form).

Their main interest is that they allow to handle the case k ∈ R∗
− \ {−1}, for which in particular

classical probabilistic methods (e.g. [5], [16], [6]) cannot be applied. In the case k > 0 the latter
deeply rely on stochastic simulations of the trajectories of the SBM of parameter β ∈ (−1, 1).
When k ∈ R∗

− \ {−1} one can define a pseudo-SBM, but it proves difficult to define associated
trajectories. Note also that the techniques for proving the convergence of deterministic schemes do
not apply in the case k ∈ R∗

− \ {−1}.

5.1 Scheme inspired by the spectral representation of the semi-
group

We assume that u0 ∈ L2(I) and fix a truncation order N ∈ N∗. Then ūN
spec is defined by

ūN
spec(t, x) =

N∑
n=1

ane
−λ2

nt/2fn(x) + bne
−µ2

nt/2gn(x)
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where the λn’s, µn’s, gn’s and fn’s are as in Section 2, and the an’s and bn’s are defined as in (9).
That is to say ūN

spec(t, x) is obtained by keeping the first N terms in the spectral representation (11)
of u(t, x).

Of course in order to use this method we have to be able to compute the an’s and bn’s. In Section 6
we consider two examples where these computations can be done explicitly. If this is not the case
we can resort to numerical integration. We sum up hereafter the proposed algorithm (Algorithm 1).

ALGORITHM 1: Computation of ūN
spec(t, x).

Parameters of the method: A time 0 ≤ t <∞ at which we want to compute the approached solution.
A truncation order N ∈ N∗.
Remember that the λn’s, µn’s, gn’s and fn’s are as in Section 2.

Algorithm: 1) Compute

an =

∫
I

A(x)u0(x)fn(x) dx∫
I

A(x)|fn(x)|2 dx
, bn =

∫
I

A(x)u0(x)gn(x) dx∫
I

A(x)|gn(x)|2 dx

(either exactly or by numerical integration).

2) Return

ūN
spec(t, x) =

N∑
n=1

ane
−λ2

nt/2fn(x) + bne
−µ2

nt/2gn(x).

As the series in (11) is normally convergent we get immediately the following convergence result.

Proposition 5.1. Let us consider u the solution of (2). Let t ≥ 0 and let us consider for any
N ∈ N∗ the function ūN

spec(t, ·) defined by Algorithm 1. We have

||u(t, ·)− ūN
spec(t, ·)||L2(I) −−−−→

N→∞
0.

5.2 Scheme inspired by the scaled pseudo asymmetric random walk

Let u0 : R → R be continuous and bounded and consider first (14). Let us fix n ∈ N∗ a discretization
order.

From Proposition 3.8, u(T, x) = Ex[u0(XT )] is approached by Ex[u0(X̂
n
T )] = Ex[u0(n

−1/2S⌊nT⌋)].
We recall that the expectation symbols have to be understood as pseudo expectations, and that X
is the pseudo SBM of Section 3.2.

Let T > 0 and let us assume that nT = N , an integer. Denoting un
0 the function defined by

un
0 (z) = u0(n

−1/2 z), z ∈ Z, one has

Ex[u0(X̂
n
T )] ≈ E⌊

√
nx⌋[un

0 (SN )]

where the expectation in the right hand side is computed under P⌊
√
nx⌋ s.t. P⌊

√
nx⌋(S0 = ⌊

√
nx⌋) = 1.

Let us denote vN = un
0 . Using the (pseudo) Markov property of the (pseudo) random walk S we

get

E⌊
√

nx⌋[un
0 (SN )] = E⌊

√
nx⌋[E[ vN (SN ) |S0, . . . , SN−1 ]

]
= E⌊

√
nx⌋[ vN−1(SN−1)

]
(55)

where we have denoted vN−1(z) = E[ vN (SN ) |SN−1 = z ], z ∈ Z. In fact, defining more generally,

vm−1(z) = E[ vm(Sm) |Sm−1 = z ], z ∈ Z, 1 ≤ m ≤ N,

and proceeding to further conditionings in (55) we get

E⌊
√
nx⌋[un

0 (SN )] = E⌊
√

nx⌋[ vN−2(SN−2)
]
= . . . = E⌊

√
nx⌋[ v0(S0)

]
= v0(⌊

√
nx⌋).

Note that from the (possibly pseudo) transition probabilities of the random walk S we have for any
1 ≤ m ≤ N ,

vm−1(z) =
1

2
[vm(z + 1) + vm(z − 1)]1z ̸=0 + [αvm(z + 1) + (1− α)vm(z − 1)]1z=0, z ∈ Z.
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To sum up, one may approach Ex[u0(X̂
n
T )] by computing v0(⌊

√
nx⌋) through the dynamical pro-

gramming procedure

vN (z) = un
0 (z), ∀z ∈ Z

vm−1(z) =
1

2
[vm(z + 1) + vm(z − 1)]1z ̸=0 ∀z ∈ Z, ∀1 ≤ m ≤ N.

+[αvm(z + 1) + (1− α)vm(z − 1)]1z=0,

(56)

The algorithm (56) is written in a recursive form. We now rewrite it in an iterative form -using also
a new set of notations, in order to stress the fact that it is very similar to an explicit finite difference
scheme, with space step h = n−1/2 and time step δt = n−1.

Let us consider the space grid {xj}j∈Z defined by xj = j/
√
n for any j ∈ Z, and the scheme

{Um
j }, for j ∈ Z, 0 ≤ m ≤M , defined by

U0
j = un

0 (j) = u0(xj), j ∈ Z (57)

and, for 0 ≤ m ≤ N − 1,

Um+1
j =

1

2
Um

j+1 +
1

2
Um

j−1 for j ̸= 0, (58)

Um+1
0 = αUm+1

1 + (1− α)Um+1
−1 . (59)

It is obvious that (57)-(59) is equivalent to (56), in other words UM
j = v0(j) for any j ∈ Z.

Let us explain briefly why we may interpret (57)-(59) as an explicit finite difference scheme. The
simplest way is to examine the case k = 1. Then α = 1

2
and (58)-(59) becomes

Um+1
j =

Um
j+1 + Um

j−1

2
for any j ∈ Z. (60)

Besides (14) becomes simply the heat equation

∂tu(t, x) =
1

2
u′′(t, x), x ∈ R, t > 0

u(0, x) = u0(x) x ∈ R
(61)

Performing an explicit finite difference scheme with space step h and time step δt for Eq. (61)
amounts to considering a space grid {xhj }j∈Z defined by xhj = jh for any j ∈ Z, and to compute
{Um

j }, for j ∈ Z, 0 ≤ m ≤M , by

U0
j = u0(x

h
j ) j ∈ Z

and
Um+1

j − Um
j

δt
=
Um

j+1 − 2Um
j + Um

j−1

2h2
for any j ∈ Z

for any 0 ≤ m ≤ N − 1. Taking h = n−1/2 and δt = n−1 (note that this corresponds to touching
the bound giving the CFL condition, see e.g. [3]) we get (57) and (60). Therefore the interpretation.
In fact it seems that the transition (pseudo) probabilities of the random walk S suggests how to
take into account the transmission condition in (15) in a finite difference scheme for (14), leading to
condition (59).

Note that by applying the scheme (57)-(59) we get for any j ∈ Z, and any 0 ≤ m ≤ N an
approximation Um

j of u(m
n
, xj = j√

n
).

For computational purposes we have to consider a PDE problem with a bounded space domain,
and this is our PDE of interest (2).

Firstly, the domain [−a, a] is discretized with a grid {xj}Na
j=−Na

with Na =
√
na (we assume this

quantity is an integer) and xj = j/
√
n for −Na ≤ j ≤ Na.

Secondly, we have to adapt (57) and (59) to a bounded domain (see Algorithm 2 just hereafter) and
thirdly, we have to take into account the Dirichlet boundary conditions by imposing Um

−Na
= Um

Na
= 0

for 1 ≤ m ≤ N .
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ALGORITHM 2: Computation of ūn
RW (t, x).

Parameters of the method: A time horizon 0 < T <∞ and a discretization order n ∈ N∗.
We set N = nT and Na =

√
na and assume this quantities are integers.

We set xj = j/
√
n for −Na ≤ j ≤ Na.

Algorithm: 1) Set U0
j = u0(xj) for any −Na + 1 ≤ j ≤ Na − 1.

2) For 0 ≤ m ≤ N − 1, compute

Um+1
j =

1

2
Um

j+1 +
1

2
Um

j−1 for −Na + 1 ≤ j ≤ Na − 1

Um+1
0 = αUm+1

1 + (1− α)Um+1
−1

with the convention that Um
−Na

= Um
Na

= 0.

3) Return a piecewise constant function ūn
RW (t, x) satisfying

ūn
RW (

m

n
, xj) = Um

j , ∀ −Na + 1 ≤ j ≤ Na − 1, ∀0 ≤ m ≤M,

and
ūn
RW (

m

n
,±a) = 0, ∀1 ≤ m ≤M.

It should be possible to adapt the results of Proposition 3.8 to prove convergence of the above
scheme. This would require considering the trajectories of killed scaled pseudo asymmetric random
walks, which presents difficulties we have decided not to address in the present paper.

Nevertheless, we suspect that the function ūn
RW : [0, T ] × [−a, a] → R defined by Algorithm 2

should converge towards u the solution of (2):

sup
(t,x)∈[0,T ]×[−a,a]

|u(t, x)− ūn
RW (t, x)| −−−−→

n→∞
0. (62)

This will be illustrated by the numerical experiments of Section 6.

5.3 Scheme inspired by the expression of the fundamental solution
involving the transition function of the killed Brownian motion

Let u0 ∈ C(I;R). We denote u+
0 = u01R+ and u−

0 = u01R∗
−
. Let x ∈ (0, a), from Lemma 4.4 and

Eq. (46) we have

u(t, x) =

∫ a

−a

u0(y)p̌(t, x, y)dy

= (1− β)

∫ a

−a

u−
0 (y)p

(−a,a)
W (t, x, y)dy + (1 + β)

∫ a

−a

u+
0 (y)p

(−a,a)
W (t, x, y)dy

−β
∫ a

0

u+
0 (y)p

(0,a)
W (t, x, y)dy

= (1− β)u1(t, x) + (1 + β)u2(t, x)− βu3,+(t, x),

(63)

where the functions u1, u2 and u3,+ are respectively solution of the following heat equations:
∂tu1(t, x) =

1

2
∂2
xxu1(t, x), x ∈ I, t > 0,

u1(0, x) = u−
0 (x) x ∈ I,

u1(t,±a) = 0, t > 0,


∂tu2(t, x) =

1

2
∂2
xxu2(t, x), x ∈ I, t > 0,

u2(0, x) = u+
0 (x) x ∈ I,

u2(t,±a) = 0, t > 0,
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and 
∂tu3,+(t, x) =

1

2
∂2
xxu3,+(t, x), x ∈ (0, a), t > 0,

u3,+(0, x) = u+
0 (x) x ∈ (0, a),

u3,+(t, 0) = u3,+(t, a) = 0, t > 0.

Indeed p
(−a,a)
W (t, x, y) (resp. p

(0,a)
W (t, x, y)) may be viewed as the fundamental solution of the heat

equation with half Laplacian on the domain (−a, a) (resp. (0, a)), with homogeneous Dirichlet
boundary conditions ([4], Appendix I, Nı̈¿½ 6).

In the same manner, for x < 0 we have

u(t, x) = (1− β)u1(t, x) + (1 + β)u2(t, x) + βu3,−(t, x), (64)

with u1 and u2 as before and u3,− the solution of
∂tu3,−(t, x) =

1

2
∂2
xxu3,−(t, x), x ∈ (−a, 0), t > 0,

u3,−(0, x) = u−
0 (x) x ∈ (−a, 0),

u3,−(t,−a) = u3,−(t, 0) = 0, t > 0.

Our idea is to perform finite different schemes for u1, u2, u3,± and to combine them through (63)(64)
in order to get a scheme for the approximation of u. We sum up the procedure in Algorithm 3 where
we use implicit finite different schemes, which are known to be unconditionably stable ([3]). In the
present case they are also consistent and therefore convergent by Lax principle.

ALGORITHM 3: Computation of ūh,N
fund(t, x).

Parameters of the method: A time horizon 0 < T <∞.
A time dicretization order N is given and we set δt = T/N .
A space step h is given and we set Na = a/h (we assume this is an integer).
We set xj = jh for −Na ≤ j ≤ Na.

Algorithm: 1) Set U0
1,j = u−

0 (xj) for any −Na + 1 ≤ j ≤ Na − 1.
Set U0

2,j = u+
0 (xj) for any −Na + 1 ≤ j ≤ Na − 1.

Set U0
3+,j = u+

0 (xj) for any 1 ≤ j ≤ Na − 1.
Set U0

3−,j = u−
0 (xj) for any −Na + 1 ≤ j ≤ −1.

2) For 0 ≤ m ≤ N−1, compute the vectors Um+1
1, , Um+1

2, , Um+1
3±, by applying the implicit finite difference schemes

Um+1
1,j − Um

1,j

δt
=

Um+1
1,j+1 − 2Um+1

1,j + Um+1
1,j−1

2h2
for −Na + 1 ≤ j ≤ Na − 1

Um+1
2,j − Um

2,j

δt
=

Um+1
2,j+1 − 2Um+1

2,j + Um+1
2,j−1

2h2
for −Na + 1 ≤ j ≤ Na − 1

Um+1
3+,j − Um

3+,j

δt
=

Um+1
3+,j+1 − 2Um+1

3+,j + Um+1
3+,j−1

2h2
for 1 ≤ j ≤ Na − 1

Um+1
3−,j − Um

3−,j

δt
=

Um+1
3−,j+1 − 2Um+1

3−,j + Um+1
3−,j−1

2h2
for −Na + 1 ≤ j ≤ −1

with the conventions that Um+1
1,±Na

= Um+1
2,±Na

= Um+1
3+,Na

= Um+1
3+,0 = Um+1

3−,−Na
= Um+1

3−,0 = 0.

3) Return a piecewise constant function ūh,N
fund(t, x) satisfying

ūh,N
fund(mδt, xj) = (1− β)Um

1,j + (1 + β)Um
2,j − βUm

3+,j , ∀1 ≤ j ≤ Na − 1, ∀0 ≤ m ≤M,

ūh,N
fund(mδt, xj) = (1− β)Um

1,j + (1 + β)Um
2,j + βUm

3−,j , ∀ −Na + 1 ≤ j ≤ −1, ∀0 ≤ m ≤M,

ūh,N
fund(mδt, 0) = (1− β)Um

1,0 + (1 + β)Um
2,0, ∀0 ≤ m ≤M,

and
ūh,N
fund(mδt,±a) = 0, ∀1 ≤ m ≤M.
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From the convergence of the finite difference schemes we immediately get the following conver-
gence result.

Proposition 5.2. Let us consider u the solution of (2). Let 0 < T < 0 and let us consider for
any N ∈ N∗ and any h ∈ (0, a) the function ūh,N

fund : [0, T ]× [−a, a] → R defined by Algorithm 3. We
have

sup
(t,x)∈[0,T ]×[−a,a]

|u(t, x)− ūh,N
fund(t, x)| −−−−−−−→

h↓0, N→∞
0.

Remark 5.3. In fact we could infer several other numerical schemes from Eq. (46). For example,
consider x > 0 and t > 0. Eq. (63) also implies that

u(t, x) = (1− β)Ex[u−
0 (Wt); t < τ(−a,a)] + (1 + β)Ex[u+

0 (Wt); t < τ(−a,a)]− βEx[u+
0 (Wt); t < τ(0,a)].

So we could consider approaching each of the above expectations by Monte Carlo sums involving
samples of independent Brownian motions and the corresponding stopping times τ(−a,a) or τ(0,a) (see
e.g. [11]).

However, as the space dimension is one, we know that this Monte Carlo method would be slower
than the finite difference approach described in Algorithm 3. Nevertheless such an approach could
be interesting if we would address the problem in a space of higher dimension.

6 Numerical experiments

Example 1. We take I = (−1, 1) (i.e. a = 1) and k = −0.5. We choose the following initial
condition

u0(x) =
10x3 − 3x2 − 9x+ 4

2
, ∀x ∈ I.

Indeed in order to use Algorithm 1 we have to compute the an’s and bn’s, through Eq. (9). By the
polynomial nature of the initial condition u0 these coefficients will be made explicit, providing thus
a benchmark for the finite difference scheme inspired algorithms (Algo. 2 and 3).

Remember that the quantites
∫
I
A(x)|fn(x)|2 dx and

∫
I
A(x)|gn(x)|2 dx in Eq. (9) are given by

Eq. (10). Besides one can compute∫ 1

−1

A(x)fn(x)u0(x) dx

=
k

(2n− 1)4 π4

(
−528 (n− 1/2)π (−1)n − 480− 72 (n− 1/2)2 π2)

+
1

(2n− 1)4 π4

(
−528π

(
1/33 (n− 1/2)2 π2 − 9

11

)
(n− 1/2) (−1)n + 480 + 72 (n− 1/2)2 π2

)
and ∫ 1

−1

A(x)gn(x)u0(x) dx = −
k (−1)n

(
π2n2 − 60

)
π3n3

.

Recalling that here λn = (2n−1)π
2

and µn = nπ, n ≥ 1, we have everything at hand to perform
Algorithm 1.

For performing Algorithms 2 and 3 no previous computation is needed.

Figure 1 represents the graphs of ū200
spec(T, ·), ū2.5×105

RW (T, ·) and ū2×10−3 , 500
fund (T, ·) at T = 0.4 with

the following choices of parameters: N = 200 for Algorithm 1, n = 2.5×105 for Algorithm 2, a space
step h = 2× 10−3 and a time discretization order N = 500 for Algorithm 3.

We see a very good concordance between the three methods (which actually can be observed for
coarser discretizations).

In particular we can numerically check the convergence of the Algorithm 2 announced in Eq.
(62). To that aim we consider ū200

spec(T, ·) as the reference solution and report in Table 1 the value of

sup
x∈[−a,a]

∣∣ū200
spec(T, x)− ūn

RW (T, x)
∣∣

for increasing values of n, up to n = 2.5× 105. Convergence is indeed observed.
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Figure 1: Plot of an approximation of the function u(T = 0.4, ·), by ū200
spec(T, ·), ū2.5×105

RW (T, ·) and

ū2×10−3 , 500
fund (T, ·), for the initial condition u0(x) = (10x3 − 3x2 − 9x+ 4)/2.

Figure 2: Plot of the initial condition u0 and of an approximation of the function u(t, ·), by

ū2×10−3 , 500
fund (t, ·), at times t = 8 × 10−4, t = 0.12 and t = 0.4, for the initial condition u0(x) =

(10x3 − 3x2 − 9x+ 4)/2.
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n supx∈[−a,a]

∣∣ū200
spec(T, x)− ūn

RW (T, x)
∣∣

100 4.56× 10−2

625 9.53× 10−3

104 4.4× 10−4

2.5× 105 1.7× 10−5

Table 1: Approximation error supx∈[−a,a]

∣∣ū200
spec(T, x) − ūn

RW (T, x)
∣∣ in function of n (the function

ū200
spec(T, ·) is considered as the benchmark).

On Figure 2 we check another interesting phenomenon. We plot the initial condition u0 and an
approximation of u(t, ·) by ūh,N

fund(t, ·) (we keep the same parameters h = 2 × 10−3 and N = 500 as

previously) at times t = 8× 10−4, t = 0.12 and t = 0.4. Note that t = 8× 10−4 = T/N corresponds
to the first time step in the finite difference scheme.

Observe that the transmission condition destroys the regularity of the initial datum. Also observe
that the slope of the graph of u(t, ·) is of negative sign at 0−, but twice bigger in absolute value than
the positive slope at 0+. This is what we expect as k = −0.5.

Example 2. In this second example we keep I = (−1, 1) and k = −0.5, but choose the following
initial condition

u0(x) = 1x<0 − 0.5, ∀x ∈ I. (65)

Indeed we want to test the robustness of our numerical schemes to a non smooth initial condition,
especially if this initial condition presents a discontinuity at the interface point x = 0.

Of course for Algorithm 1 the initial condition can be taken in L2(I) so one knows that the
algorithm converges if we take u0 defined by (65).

The analysis of probabilistic schemes such as Algorithm 2 usually relies on arguments of con-
vergence in pseudo law, which are usually valid only for smooth functions. We suspect that the
smoothing properties of the operator 1

2A
∇ · (A∇ ) could be used to prove convergence of Algorithm

2, even for non smooth initial conditions.

In order to use Algorithm 1 we have to compute the an’s and bn’s again, the µn’s and λn’s
remaining unchanged. Easy computations show that

an = − (−1)n2(k − 1)

(2n− 1)π(k + 1)

and

bn =
4

nπ(k + 1)
1n is odd,

for n ≥ 1.
We take again an order of truncation N = 200 for Algorithm 1.
Again for the Algorithm 2 we take a discretization order n = 2.5× 105, and for the Algorithm 3

we take a space step h = 2× 10−3 and a time discretization order N = 500.

Figure 3 depicts the graphs of ū200
spec(T, ·), ū2.5×105

RW (T, ·) and ū2×10−3 , 500
fund (T, ·) for T = 0.4 and

again shows very good agreement between the results of the three schemes.

On Figure 4 we plot the initial condition u0 and an approximation of u(t, ·) by ūh,N
fund(t, ·) (we keep

the same parameters h = 2×10−3 andN = 500 as previously) at times t = 0.012, t = 0.12 and t = 0.4.
In particular, the plot illustrates the fact that the solution u(t, x) does not satisfy a maximum
principle, one of the main arguments classically used in the numerical analysis of deterministic finite
difference schemes for parabolic equations.

Fundings
This research has been supported by the IRS projects ”FKSC” and ”Spectral properties of graphs

with negative index materials” (for E. Bonnetier and P. Étoré) and by the Bézout Labex, funded by
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Figure 3: Plot of an approximation of the function u(T = 0.4, ·), by ū200
spec(T, ·), ū2.5×105

RW (T, ·) and

ū2×10−3 , 500
fund (T, ·), for the initial condition u0(x) = 1x<0 − 0.5.

Figure 4: Plot of the initial condition u0 and of an approximation of the function u(t, ·), by

ū2×10−3 , 500
fund (t, ·), at times t = 0.012, t = 0.12 and t = 0.4, for the initial condition u0(x) = 1x<0 − 0.5.
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de einstein à black-scholes, Mathématiques appliquées, Les éd. de l’École polytechnique, 2011.
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