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Measuring 3D-reconstruction quality in probabilistic volumetric maps with
the Wasserstein Distance

Stéphanie Aravecchia1, Antoine Richard2, Marianne Clausel3, Cédric Pradalier1

Abstract— In this study, we address the challenge of measur-
ing 3D-reconstruction quality in large unstructured environ-
ments, when the map is built with uncertainty in the robot
localization. The challenge lies in measuring the quality of
a reconstruction against the ground-truth when the data is
extremely sparse and where traditional methods, such as sur-
face distance metrics, fail. We propose a complete methodology
to measure the quality of the reconstruction, at a local level,
in both structured and unstructured environments. Building
upon the fact that a common map representation in robotics
is the probabilistic volumetric map, we propose, along this
methodology, to use a novel metric to measure the map
quality based directly on the voxels’ occupancy likelihood:
the Wasserstein Distance. Finally, we evaluate this Wasserstein
Distance metric in simulation, under different level of noise
in the robot localization, and in a real world experiment,
demonstrating the robustness of our method.

I. INTRODUCTION

In this work, we are interested in large scale natural
environments, such as parks or forests, sometimes called
“unstructured” ( [1], [2]), in opposition to environments
containing large geometrical shapes, such as buildings, called
“structured”. In a large scale unstructured environment, not
only computing an accurate 3D map, with a 3D-Lidar, is
particularly difficult but also measuring the quality of the
produced map is a challenging task in itself.

When building the map in unstructured environments,
among the main challenges, we can specifically highlight
the sparsity of the data and the robot localization ( [1], [2]).
To begin with the sparsity, the output from an affordable 3D-
Lidar is sparse. For example, the Ouster-16 used in this study
provides only 8,192 points at 10 Hz, whereas the number of
points is generally 100 times higher and the frame rate at
least 3 times higher when considering an RGBD camera or
the point-cloud derived from visual odometry algorithms. In
addition to the sparsity of the laser output, the environment
itself leads to a sparse reconstruction. For example, trees,
by their very structure, are sparse because they offer only an
aggregation of small surfaces to the Lidar. Although the sam-
pling of a trunk from a Lidar could be dense, the sampling of
small branches or leaves, will generally not be high enough
to recover the underlying structure. Moreover, from a laser’s
perspective, trees can behave as semi-transparent structures,
thereby inducing errors in the measurements. The reason is
that when laser-rays – light cones in practice – reach a small
object, like a branch, often only a portion of the energy is
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reflected, causing inaccurate distance readings. Two other
causes of errors in laser measurements, that are particularly
abundant in large scale natural environments, are linked to
the distance to the objects and the incidence angle: the error
increases with each of them [3]. Finally, the localization of
the robot in the map is also a source of errors because the
3D-reconstruction is a probabilistic accumulation of all the
point-clouds transformed in the localization frame.

In a robotic monitoring or inspection task, an important
question to consider is “how accurate is the map locally?”.
With sparse 3D-reconstructions, in unstructured environ-
ments, answering this question is ambiguous. First, because
the definition of ground-truth is not straightforward: how
to acquire the real ground-truth of a park-like environ-
ment? Furthermore, because most classical methods, based
on statistics on surface distances, require a reconstructed
surface to measure the distance between the reconstruction
and the ground-truth. We will show that for natural envi-
ronments, attempting to reconstruct surfaces that match the
actual surfaces of trees, trunks, small branches and leaves
is doomed to fail. We circumvent this issue by measuring
the quality of the reconstruction not on the surfaces, but
directly on the probabilistic map. We propose to measure
the “distance” between the occupancy likelihood in the 3D-
reconstruction and the occupancy likelihood in the ground-
truth. This measure is given by the Wasserstein Distance.

Finally, to obtain local information about the quality of the
3D-reconstruction, we propose a methodology to compare
reconstruction to ground-truth at a local level. The code to
reproduce the method and experiments is open-source 1.

To summarize, our contributions are:
• a methodology to compare locally 3D-reconstruction

and ground-truth, applicable to both structured or un-
structured environments;

• a metric to measure the quality of a sparse 3D-
reconstruction, also applicable to both structured or
unstructured environments: the Wasserstein Distance.

II. RELATED WORK

A. Map building

The most common ways to represent maps are volumetric
maps, i.e. 3D-grids, and meshes, i.e. 3D-surface maps.

Meshes are generally obtained from either a Lidar point-
cloud or from the point-cloud derived from visual odometry.
In a mesh, the surface is described by connected triangles.

1https://github.com/stephanie-aravecchia/
3d-reconstruction-metrics.git
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An optimization algorithm is applied on the point-cloud to
build the mesh. Among the most widely used techniques,
we can cite Ball-Pivoting Algorithm [4], Poisson Surface
Reconstruction [5] or Delaunay triangulations [6]. Although
results on the meshing of a single object is widely shown
in the literature, meshing large scale natural environments
is still a problem which is not solved. Some meshes can
be derived, but they are generally a rough approximation of
trees and bushes.

In this paper, we focus on a more common map rep-
resentation for outdoor robotics: volumetric maps. Such a
map is a discretization of the space in voxels, each voxel
containing some information, such as its occupancy likeli-
hood. [7] presented Octomap, a method to build and store an
octree instead of a 3D-grid, saving memory and computation.
The open-source Octomap library implements the complete
probabilistic map building process. The map is constructed
in a given map frame, and every point-cloud in the Lidar
frame updates the map. For each point in the point-cloud,
a ray-casting operation is performed. Between the robot and
the returned point, the probability of occupancy of the leaves
in the octree is decreased. The returned points are updated
as occupied, their probability of occupancy is increased. A
thorough update process has been implemented to be robust
to noise in the Lidar’s point-cloud. We use Octomap to build
the probabilistic volumetric map denoted as “reconstruction”
in this paper.

It is also important to note that the quality of the map
is intrinsically linked to the precision of the robot localiza-
tion and that solving the localization in large scale natural
environment is still challenging. Since the point-clouds are
expressed in the Lidar frame (which is based on the robot’s
localization), any error in the transformation from the Lidar
frame to the map frame will lead to errors in the map [1].
For those reasons, we evaluate the robustness of our method
with respect to the localization precision, with different level
of noise in simulation, and with a real experiment.

B. 3D-reconstruction metrics

In the context of 3D-reconstruction, several metrics exists
to measure the quality of the 3D-reconstruction.

Generally, when considering 3D-reconstruction, the objec-
tive is to compare two surfaces: the mesh generated from the
3D-point cloud, and the ground-truth mesh. The traditional
metrics in that case are based on surface distance errors. They
consist in calculating, for all surface points of one surface,
the distance to the closest on the other surface. Statistical
metrics are then extracted, among which we typically see the
Hausdorff Distance, the Root Mean Square Error (RMSE) or
the MAE (Mean Average Error) ( [8]–[10]).

In the context of robotics, the surface coverage is derived
from those surface distance errors, and applied either on
the meshes or on the 3D-grids. In that case, if the distance
between a ground-truth point and its closest reconstructed
point is less than a registration distance, the ground-truth
point is considered as observed. The metric is the proportion
of such points ( [11], [12]).

The fact that those metrics aim at measuring the quality of
a dense reconstruction, i.e. reconstructing dense objects with
high density point-clouds, is their main limitation. In the
context of unstructured environments, the 3D-reconstruction
tends to remain sparse, because only a few voxels will reach
the threshold probability for them to be considered occupied.
Therefore, in a sparse reconstruction, of an unstructured
environment, the level of information is not sufficient to
recover a surface, as we will also show later. This means that
none of the previously seen metrics are adequate to evaluate
sparse 3D-reconstructions of unstructured environments. Fur-
thermore, those methods solely focus on the reconstruction
of occupied voxels, and not on empty space. In the context of
large scale environments with sparse objects, a large portion
of the volume corresponds to empty space. Therefore, it is
also interesting to measure how well the empty space has
been reconstructed.

C. Comparing probabilities

Since we are building a probabilistic volumetric map with
Octomap, we could take advantage of that framework to
measure the quality of the map. Each voxel in the proba-
bilistic map has a probability of occupancy between 0%, the
absolute certainty that the voxel is empty, and 100%, the
absolute certainty that the voxel is occupied. Leveraging the
probabilities inside a 3D-grid is not a novelty, and has been
explored in [11]. However, they do not propose a mean to
compare the reconstructed volume to a reference one. In this
paper, we propose a methodology to compare two volumetric
maps with probabilistic values. Something that, to the best
of our knowledge, has not been done before.

Different methods allow comparing probabilities. The
most common is probably the Kullback-Leibler divergence
(DKL): a measure of how different two probability distri-
butions are. Nonetheless, since we are considering a grid of
probabilistic voxels, we have access to another information:
the Euclidean distance between voxels. As an example, if
a point is erroneously reconstructed 5 cm away from an
actual object, the reconstruction is better than if the erroneous
point is 50 cm away. The DKL is not sensitive to this
difference. An alternative solution is then to calculate the
Optimal Transport plan, linking one probability distribution
to another one, with a cost function depending on the
geometry [13]. From this Optimal Transport plan, we can
calculate a distance, the Wasserstein Distance which is a
generalization of the concept of Earth Mover’s Distance
(EMD). To bypass computational issues, [14] regularizes
the optimal transport problem by adding an entropic term,
and solves it using a Sinkhorn’s fixed point iteration. [15]
has implemented an open source Python library providing
several solvers for Optimal Transport problems, including
[14]’s algorithm. With the Wasserstein Distance, or its reg-
ularized variants, we can measure the quality of the 3D-
reconstruction, comparing not only the ground-truth and
reconstructed values of probabilistic maps but also taking
into account the Euclidean distances in the errors.



III. METHOD

The objective of our method is to compare 3D-
reconstruction to ground-truth, and to measure the quality
of the reconstruction at a local level. To do so, we discretize
the space into cuboid regions and calculate a reconstruction
metric for each cuboid.

A. Cuboid region comparison

This section explains how we compare the reconstruction
to the ground-truth locally, on cuboid regions. To enable this
local comparison, we discretize the volume the reconstruc-
tion and the ground-truth represent into two 3D-grids, of the
same resolution RES and in the same reference frame Rf . A
local region is then a cuboid C. To compare the two local
regions, we compute metrics between intersecting cuboids.
Alg. 1 summarizes this section.

The 3D-reconstruction is obtained from the full probability
map constructed by Octomap, the ground-truth is either the
mesh of the scene used in simulation, or the point-cloud ob-
tained when scanning the area with a Total Station (Sec. IV-
A). For the ground-truth, in the simulated environment, we
first slice the ground-truth mesh with horizontal planes, with
a vertical space of res, our spatial resolution (with res <
RES). In each plane, we then calculate the intersection of
the mesh and the plane, and we store it in a 3D matrix of
voxel size res. Each voxel on the intersection is occupied
and has a value of 1.0, all the remaining voxels are empty
and a value of 0.0. In the real experiment, we construct a 3D
matrix of voxel size res containing zeros. We iterate on the
point-cloud from the Total Station, and for each point, we
set the value of the corresponding voxel to 1.0. Our ground-
truth dataset, Dgt, is then a 3D matrix of size (h1,w1,n1).
Its associated volume in space, in the reference frame Rf ,
is the bounding-box Bbox1 . For the reconstruction, we first
create a full probability map with Octomap in the same
reference frame Rf , and with the same resolution res. From
this octree, and its bounding-box in Rf , we initialize a 3D
matrix as unknown space, i.e. values of 0.5, corresponding to
the equal probability of the voxel to be occupied or empty.
We then iterate on all the leaves in the octree. For each
leaf, we set the probability of its associated voxels in the
3D matrix to the probability of the leaf (the unknown space
is implicitly described in Octomap with absent leaves). We
finally obtain the reconstruction dataset, Drec, a 3D matrix
of size (h2,w2,n2), with a voxel resolution res, with its
associated bounding-box, Bbox2 , in the same reference frame,
Rf .

Finally, we do the comparison in Bbox1 ∩Bbox2 . First, we
load the intersection of both datasets in two 3D matrices,
Mgt and Mrec: a voxel vijkgt from Mgt corresponds to the
same volume in Rf than vijkrec from Mrec. Second, we go
through both 3D matrices, and compare cuboid region by
cuboid region, the reconstruction and the ground truth. A
cuboid region is a group of n × n × n voxels in each 3D
matrix, and is noted Cgt or Crec. Those cuboid regions are
in fact large voxels of size RES = n × res, in the 3D-grid
Bbox1 ∩ Bbox2 , in Rf , and each element in Crec and Cgt

stores the occupancy likelihood of its corresponding voxel
of size n in Rf .

B. Comparison metrics

This section explains how, for each cuboid region, we
compute different metrics to indicate the quality of the
reconstruction (Alg. 2).

Since this method is developed with the objective to work
also on large scale environments with sparse objects, the
reconstructed volume may contain more empty space than
actual objects to reconstruct. A measure that would give
information on occupied space only may not be represen-
tative of the complete volume. For this reason, we found it
interesting to measure not only how well objects have been
reconstructed, but also how well the empty space has been
reconstructed. To do so, we first define two sets: Uocc, the
set of the cuboids regions containing at least one occupied
voxel in Cgt and Uempty , its complement. Then, we measure
the quality of reconstruction of the cuboids with a different
metric in each set: the Wasserstein Distance for the cuboids
in Uocc, the L1 norm for the cuboids in Uempty .

Furthermore, because measuring the quality of reconstruc-
tion of unknown space is pointless, we consider a threshold
before calculating our metrics. If all the probabilities in Crec

are close to the unknown (0.5±0.1), we do not calculate the
metrics, but set them to the maximum values WDmax

occ and
Lmax
1 .
1) Wasserstein Distance: The Wasserstein Distance is

derived from the optimal transport plan to “move” the
mass distribution from a query vector to match the mass
distribution of a reference vector. The cost of moving the
mass being a function of the Euclidean distance it has to
be moved by. Here, we calculate the Wasserstein Distance
between two cuboid regions.

First, we remap all the elements of Cgt and Crec into
two vectors of doubles, Vgt and Vrec, such that ∀(i, j, k) ∈
J0, nK, V∗(i · n2 + j · n+ k) = C∗(i, j, k)

Second, we derive from each vector, two different vectors.
From Vgt, we derive V occ

gt = max (2Vgt − 1, 0) and V free
gt =

max (1− 2Vgt, 0). They contain respectively the probability
of an element to correspond to an occupied voxel, and the
probability of an element to correspond to an empty voxel.
We then normalize each vector by their sum and obtain
two vectors of probability distributions P occ

gt and P free
gt .

Similarly, from Vrec, we obtain P occ
rec and P free

rec . We do
this partition between occupancy and emptiness because we
observed that the Wasserstein Distance between P occ

rec and
P occ
gt , which embeds in each element the distance from its

probability of occupancy to the unknown, contains more
signal. Moreover, this corresponds better to what we intend
to measure with this metric, that is how well the occupied
space has been reconstructed.

Finally, we calculate WDocc, the Wasserstein Distance
between P occ

rec and P occ
gt , using the Sinkhorn algorithm de-

scribed in [14], following the implementation of [15]. The
cost matrix is set to contain the squared Euclidean distance
between the voxels associated to the element of each vector.



2) L1 norm: In a cuboid region of the ground-truth in
Uempty , all the voxels have a probability of occupancy
of 0. Therefore, when comparing the reconstruction to the
ground-truth, we are comparing a vector containing some
probabilities of occupancy Vrec to a vector of the same
size containing only zeros (absolute certainty of emptiness).
Calculating the optimal transport plan makes little sense,
because there is no mass distribution on the reference vector.
Hence, the Euclidean Distance the mass has to be moved by
is not relevant, as long as the mass is evenly distributed
to a uniform distribution at the end. Furthermore, what is
interesting is only how different the emptiness likelihood is
from actual emptiness. Such a measure is given by the L1

norm of Vrec: the distance between Vrec and the vector of
zeros that represent the empty space.

Algorithm 1 Reconstruction and ground-truth comparison
// Dgt and Drec are the datasets
Dgt(Bbox1 , (h1, w1, n1), Rf ), Drec(Bbox2 , (h2, w2, n2), Rf )
Bbox ← Bbox1 ∩Bbox2
Mgt ← Dgt(Bbox),Mrec ← Drec(Bbox)
for all cuboid ∈ Bbox do:

Cgt ←Mgt(cuboid), Crec ←Mrec(cuboid)
if isObserved(Crec) then:

if cuboid ∈ Uocc then:
cuboid.metrics← computeWD(Crec, Cgt)

else:
cuboid.metrics← computeL1(Crec)

end if
else:

cuboid.metrics← maxMetrics
end if

end for

Algorithm 2 Metric Computation

Vgt, Vrec ← getVectorsFromCubes(Cgt, Crec)
if cuboid ∈ Uocc then:

V occ
rec , V

free
rec ← getFreeAndOccVectors(Vrec)

V occ
gt , V free

gt ← getFreeAndOccVectors(Vgt)
P occ
rec , P

occ
gt ← normalizeToDistribution(V occ

rec , V
occ
gt )

cuboid.metrics←WassersteinDistance(P occ
rec , P

occ
gt )

else
cuboid.metrics← L1(Vrec)

end if

C. Evaluation Methodology

In order to evaluate our metric WDocc, we first assess that
the metric is meaningful. Then, we compare WDocc against
a traditional metric: the surface coverage.

To calculate the surface coverage, we apply the classical
methodology in a 3D-grid: all the points in the 3D-grid
are considered belonging to the surface if their occupancy
likelihood is above a threshold. We calculate the Euclidean
distance between a ground-truth point S and the closest
reconstructed point P . If the distance SP is below a reg-
istration distance, the point is considered reconstructed. The
total number of ground-truth points is nS , the total number of

considered reconstructed points is nrec. The surface coverage
is then cov = nrec/nS .

First, to assess that WDocc is meaningful and is a distance
that actually measures the 3D-reconstruction quality, we
select randomly n cuboids Cgt from the ground-truth con-
taining at least one occupied point. We then simulate several
“ideal” reconstructions: we apply to Cgt a 3D Gaussian con-
volution, with different kernel size and sigmas, and then add
a uniform noise. We also simulate a random reconstruction.
Finally, we calculate WDocc on those cuboids. If the value
of WDocc is significantly smaller for an ideal reconstruction
than from a random reconstruction, we can conclude that
WDocc is a meaningful metric of 3D-reconstruction quality.

Second, to compare WDocc and cov, we compare their
ability to measure 3D-reconstruction quality. To assess if
a metric is able to measure the reconstruction quality, we
simply consider if the metric contains or does not contain
information. Here, we do not consider the quality of the
reconstruction in itself, but the ability of the metric to
measure this quality. For cov, we simply consider that if
cov > 0, it contains information. For WDocc, we consider
that if WDocc < WD∗

occ, then it contains information. We set
the limit WD∗

occ to the mean of the values calculated before
with random reconstructions, in the same environment. Then,
we calculate, for each metric, the proportion of cuboids for
which the metric contains information in Uocc. The higher
the proportion, the more informative the metric.

Finally, we want to compare WDocc and cov on their
ability to discriminate different reconstruction qualities, but
also on their robustness. For each “ideal” reconstruction
introduced before, we calculate the median of the quality of
reconstruction with WDocc and cov on all the cuboids. Let
m be this median. We now consider µb = (1/n)

∑i=n
i=1 mi,

with n the number of experiments, an b the level of blur
and noise applied to the ground truth to obtain the “ideal”
reconstruction. The ability of the metric to discriminate the
reconstruction is then shown by ∆k = (µbk − µb1)/µb1 ,
with k the number of different level of blur and noise
considered. When we increase the level of noise and blur
in the reconstruction, we expect that ∆k increases, but not
too significantly because even blurred and with some noise,
all the considered reconstructions are very good.

IV. EXPERIMENTS AND RESULTS

Our experiments are done in simulation and in the field.
In both cases, we use the ROS framework and the robot is a
Clearpath Husky, equipped with a 3D Lidar Ouster OS1-16
(16 planes of 512 points).

A. Experimental Setup in Simulation

The simulator is Gazebo. A mixture of noise is applied
to the Lidar to simulate better the behavior of a Lidar in
outdoor natural environments.

We generate randomly several environments. Each envi-
ronment is a plane of dimension 60m × 60m on which
we place assets with a Poisson Cluster Point Process 2, to

2https://pointpats.readthedocs.io/
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reproduce the natural implantation of trees. The assets can
be either rectangular cuboids or randomly selected in our
15-trees library, where simulated trees are created with a
space colonization algorithm 3. Due to computational con-
siderations in Gazebo, we create only trees without leaves. A
random scaling factor is applied on the x, y and z dimensions
of the assets, as well as on their orientation.

With the same point process generation, we create two
different synthetic environments. The first one contains only
rectangular cuboids: the structured environment. The second
one contains only trees: the unstructured environment. With
the open-source Blender software, we create a single shape-
file (.stl) for each environment. This ensures that the mesh we
slice to obtain the 3D-grid ground-truth is the same used in
Gazebo to infer the collisions of the Lidar, hence to construct
the map.

Next, we run a simulation for each environment where the
robot is following the same list of waypoints, set manually.

Since the quality of the reconstruction is directly linked to
the localization of the robot, we incrementally add noise in
this localization. For each noise level, we build a probabilistic
map with Octomap. To obtain the different noise levels, we
use the perfect localization from Gazebo on which we apply
a Gaussian noise on the position and on the orientation. The
noise levels presented here are (with σp, standard deviation
on position, in m, σq , on orientation, in rad):

• noise 0: perfect localization;
• noise 1: σp = 0.005, σq = 0.005;
• noise 2: σp = 0.05, σq = 0.01.

Errors in the orientation estimation lead to large errors in
the position of far away points (i.e a 0.01 radian error in the
orientation leads to a 0.25m error in the position of a 25m
distant point in the Lidar point-cloud).

We generate 6 environments (3 different asset distribution
with 1 structured, 1 unstructured each). For each environ-
ment, and for each of the 3 noise levels, we build two 3D-
grids with Octomap (max-range 25m), one with resolution
res = 0.05m, the other res = 0.1m. In total, we have 36
reconstructions to compare to 6 ground-truths.

B. Experimental Setup in the field

The experimental field is a small park containing trees, of
an approximate area of 1500m2. Although it is not possible
to acquire the ground-truth of such an environment, we
consider that the 3D point-cloud obtained from the scan of
the environment with a Total Station Leica TS60 is precise
and dense enough to be considered as ground truth. The
horizontal and vertical angular resolution of the scanning is
set to 0.05 degrees. To scan the area, the Total Station is
placed on three different locations, to have different point of
views on the trees. Each scan takes 40 to 60 minutes. At
the end, we obtain a single consistent point-cloud from the
area. To localize the robot in this area, we track it with the
Total Station. The robot is equipped with a prism, that is
localized by the Total Station with centimeter accuracy. In a

3https://github.com/dsforza96/tree-gen

post-processing phase, we recover the orientation by fusing,
in an Extended Kalman Filter, the localization from the Total
Station, the wheel odometry of the robot, and the IMU. To
avoid large errors due to large uncertainty in the orientation,
we filter out the Lidar scans associated to turning motions
of the robot when we build the map with Octomap. With
this setup, we can consider we have a “good” localization
for an outdoor robotics application. For this experiment, we
obtain two reconstructions with Octomap (max-range 10m):
one with resolution res = 0.05m and one with res = 0.1m:
we have two reconstructions to compare to one ground-truth.

Ultimately, the volumetric maps are compared to the
ground-truth as described in III, with a cuboid resolution
of RES = 10 × res. In the experiments, we are interested
in comparing the reconstruction of salient objects, not the
ground. To enforce it, we apply a threshold on the Z
coordinates of the bounding-box on which we perform the
comparison.

C. Results

After processing the data as explained in III, we obtain for
each cuboid region in Uocc the reconstruction quality metric
WDocc and other metrics we will compare our method to.

Fig. 1: Challenges with meshing: (a) the real tree, (b) the point-
cloud from the Total Station (c) an example of mesh failing to
describe the actual surface of the fine elements of the tree.

1) Surface Distance Metrics: The underlying idea behind
our method stems from the issues we encountered when
trying to use surface distance metrics. Fig. 1 illustrates the
difficulties when trying to reconstruct the surface of a tree.
The point-cloud used here is the point-cloud from the Total
Station (i.e our ground-truth). As we can see, it is dense
on the trunk of the tree and on the larger branches, but
really sparse on the small branches and on the leaves, where
the sampling is not sufficient to recover the surface. As a
consequence, classic meshing methods are able to reconstruct
the surface of the trunk, but fail when it comes to the
rest of the tree (i.e. the unstructured part). The example
shown in Fig. 1 is the mesh reconstructed with the pivoting-
ball algorithm with the open-source software MeshLab. We
tried all the meshing algorithms available in MeshLab, with
default parameters, and that mesh is the best result. We do
not claim that there is no solution to compute a better mesh,
but we illustrate the difficulties with off-the-shelf algorithms.
This mesh, although computed on a single tree with the
point-cloud from a Total Station, is also representative of the
challenges involved when reconstructing meshes with robot-
mounted Lidars in a natural environment. For these reasons,
we cannot apply directly any surface distance metric (such as
the RMSE) on the reconstruction of that type of environment.

https://github.com/dsforza96/tree-gen


In the context of 3D-grids, a common solution to circum-
vent the meshing is to calculate the distances not between
surfaces but between points. We calculate the surface cover-
age cov, as described in III-C, with the following parameters
(p, the occupancy likelihood; d, the registration distance):

• cov 1: p = 0.8, d = 0.05m (as in [11], [12]);
• cov 2: p = 0.8, d = 0.1m ;
• cov 3: p = 0.7, d = 0.1m;
• cov 4: p = 0.7, d = 0.15m.

Doing so, we have surface coverages with different levels of
permissiveness to compare our metric to.

2) Our metric: First, we demonstrate, as described in
Sec. III-C, that our metric is meaningful.

From each ground truth, we generate three “ideal” recon-
structions, where we first blur the ground truth, and then add
a uniform noise:

• b1: blurred with kernel size 5, σ 0.07, no uniform noise,
• b2: blurred with kernel size 7, σ 0.08, uniform noise

0.05,
• b3: blurred with kernel size 11, σ 0.2, uniform noise

0.1.

Then, we compute WDocc from those “ideal” reconstruc-
tions to the ground truth, and from a random reconstruction
to the ground truth. Fig. 2 shows the distribution of the
calculated WDocc. For visualization purposes on the “ideal”
reconstruction, we only display the results for b3. The other
results are similar. This figure shows that that WDocc is close
to zero when the reconstruction is close to an ideal recon-
struction. Conversely, WDocc is large when the reconstruction
is random. It shows that our proposed metric is relevant to
measure the 3D-reconstruction quality: it is small when the
reconstruction is similar to the ground-truth, large if not.
Additionally, the figure also shows that the distribution of
WDocc when a random reconstruction is compared to the
ground-truth is dependent on the environment. However, this
dependence is not significant with regard to the 3D-grid
resolution.

Fig. 2: Left: distribution of WDocc when random and ideal re-
constructions are compared to ground truth, for an unstructured
environment in simulation, on 500 cuboids, with the values of the
medians. Right: summary of the medians of WDocc on random and
ideal reconstructions on all our environments. The dashed-lines are
the limits for each environment (WD∗

occ) (used later).

Next, we demonstrate that our metric WDocc is able to
measure 3D-reconstruction quality in both structured and
unstructured environments, whereas the more classic surface
coverage cov tends to fail in unstructured environments,
specifically when the robot localization is uncertain.

Before going further, we would like to illustrate the
previous statement with a more concrete example, where we
show at the same time the ability of WDocc to measure and
discriminate different reconstructions, and the lower ability
of cov at doing so.

Fig. 3 shows three cuboids: on the first line, the ground-
truth, on the second and third lines, the 3D-reconstructions
obtained from two different driving motions. On the second
line (rec 1), the robot drives in a straight line towards the
object. On the third line (rec 2), the robot drives in a straight
line with the object on the side. The reconstructions are
obtained with a perfect localization. The object of interest
is a different geometric shape than what is presented so far:
a cross extruded shape. The idea of this experiment is to
demonstrate the impact of the occlusions on the quality of
reconstruction, and on its measure. In both reconstruction
cuboids, two slices (6 and 8) remain unknown: the Lidar
used in this study is a 16-plane Lidar, and those slices
remain situated between two of those planes during the
two experiments. Also, in this particular experiment, for
illustration purposes, the cuboid contains the ground-plane
(this is not the case in the other cuboids in this section, where
we are interested only in salient objects). We can see in the
figure that the reconstruction rec 2 is better than rec 1. Due
to the occlusion, in rec 1 half of the shape is hidden from
the robot. The measure of the quality of reconstruction with
WDocc and cov are shown in Table I. The variation of WDocc

between the two reconstructions is close to 80%, whereas
the variation of cov remains under 50%. This shows, on
this example, that WDocc is better than cov at discriminating
between the two reconstructions.

Fig. 3: Example of cuboids (10x10x10 voxels). Each line corre-
spond to a different cuboid: (1) the ground-truth, (2) and (3) two
different reconstructions. Each row corresponds to a slice of the
cuboid. The figure displays 10 slices, each a 10x10 pixels image.
The first row corresponds to the ground-plane, the height increases
with the rows. The color depends on the occupancy likelihood.

rec1 rec2 δ
WDocc 14.39 3.01 -79.10%
cov1 0.25 0.44 -44.35%
cov2 0.44 0.80 -45.18%
cov3 0.44 0.81 -45.31%
cov4 0.52 0.95 -45.01%

TABLE I: Quality of reconstruction of the two cuboids shown
Fig. 3, measured with different metrics. The last column is the
variation of the metric from its maximum.

To demonstrate the behavior shown in this single example,
we compare WDocc and cov, following Sec. III-C, that is,
we compare the proportion of cuboids for which the metric
is informative. WD∗

occ is set to the values shown in Fig. 2.



Fig. 4: Proportion of cuboids for which the metric is informative.
Columns 1,2: results for the same point process simulation environ-
ment (1: structured, 2: unstructured), Column 3: real experiment.
One line per map resolution (1: 0.05m/vox, 2: 0.10m/vox). Blue
is the proportion of informative cuboids with our proposed metric
(WDocc), orange with different surface coverage (cov). The results
are grouped by noise level.

The results are shown in Fig. 4 for a single environment
in simulation (structured and unstructured), and for the real
experiment. The results for all the other simulated envi-
ronments are similar. We can see that, as expected, cov is
generally working in structured environments, although it is
sensitive to uncertainty in the robot localization and to the
map resolution. Additionally, in unstructured environments,
with noise in the localization, the proportion of cuboids
for which cov is informative is low. On the contrary, our
proposed metric WDocc is working both in structured and
unstructured environments and is less sensitive than cov to
map resolution or to noise in the localization. If we consider
the map resolution of 0.05m/vox, that seems suitable for
mapping trees in large scale natural environments, we can see
that, in the case of noisy localization in simulation, WDocc

is 5 times more informative than the most permissive cov
(p = 0.7, d = 0.15m). In the real experiment, even with
what we can consider a good localization, WDocc is still
twice more informative than the most permissive cov.

Finally, we further demonstrate that WDocc is an interest-
ing metric. Not only it is discriminant of the reconstruction
quality, but it is also robust. To do so, we show how WDocc

behaves when we increase the blur and the uniform noise
in the “ideal” reconstructions, following Sec. III-C. For
each k level of blur and noise in the “ideal” reconstruction
[b1, b2, b3], we compute ∆k. Table II shows the results
grouped by type of world, with grid resolution res = 0.1m.
When we increase the level of blur and noise (i.e increase
the index k), ∆k increases, demonstrating that WDocc is
able to discriminate between those good reconstructions.
Nonetheless, the value of ∆k does not change significantly,
demonstrating that WDocc is also a robust metric. The same
measure done with cov is always the same: 1.00. cov is not
able to discriminate those ideal reconstructions.

V. CONCLUSION

We have shown that our proposed metric WDocc is capable
of measuring 3D-reconstruction quality both in structured
and unstructured environments, even with noise in the robot

∆2 ∆3

structured 1.21% 3.93%
unstructured 1.65% 6.20%
real 0.39% 3.46%

TABLE II: Variation of the measure of the reconstruction quality
with WDocc when we incrementally add blur and noise.

localization, when traditional metrics such as surface cov-
erage fail. Additionally, we have proposed a methodology
to calculate the quality of the 3D-reconstruction at a local
level, where the space is divided into cuboid regions. Based
on these results, we can now foresee the integration of
this metric into inspection and monitoring tasks, either by
giving feedback to a human operator or by using them in an
autonomous exploration framework. Looking even further,
we intend to use this metric within the computation of a
reward function for reinforcement learning algorithms.
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