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Multi-Scenario Contacts Handling
for Collaborative Robots Applications

Dmitry Popov1,2, Stanislav Mikhel1, Rauf Yagfarov1, Alexandr Klimchik1 and Anatol Pashkevich2

Abstract— The goal of this work is to propose a way of
dealing with physical interactions for collaborative robots that
will ensure the safety of a human operator and improve the
performance of a common task by implementing multiple robot
behavior scenarios. In this scope, all collisions of a robotic arm
are detected and analyzed to chooses an appropriate reaction
strategy. The points of contact on the robot’s surface for each
collision are estimated, the external forces are identified and
collisions are classified by the set of predefined categories. Based
on these categories and the current robot state, the algorithm
chose an appropriate behavior scenario.

All presented algorithms are based only on proprioceptive
sensors information and were tested in a simulated environment
and on the real collaborative robots KUKA iiwa and Universal
Robots UR10e. The result for contact localization showed 4 cm
mean accuracy, the classification algorithm was able to identify
collisions with hard and soft objects with 98% accuracy for
KUKA iiwa 14.

I. INTRODUCTION

Human-robot collaboration is most important in produc-
tion lines with large variety of products when the production
operations require human-specific agility and skills. In this
case a robot and a human work on the same task in the shared
environment. By combining human intelligence and agility
with robot strength, accuracy and robustness it is possible to
improve the performance of this work cell. On the one hand,
the robot will help the human with physically demanding
tasks, on the other hand, the robot will have to work in a com-
plex dynamic environment. This will increase requirements
for robot control to predict human intentions, actions, and
provide necessary assistance. During this interaction physical
contacts between a robot and a human are unavoidable and
should be taken into consideration [1].

Human safety is the number one priority in human-
robot collaboration and that is why the majority of existing
solutions are mainly concentrated around the safety aspect
where the robot slows down, stops in the presence of a
human, or turns on compliance mode. But physical contact
is not only a negative event, it could be used to improve
performance by enabling safe physical interaction. Besides,
physical interaction is one of the simplest and most intuitive
interaction methods even between humans, so it allows us
to enable additional control or communication channel with
a robot. To achieve this goal, the robot needs to properly
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handle all collision events which could include contact with
a human, environment, another robot, workpiece, etc.

In this work, the methodology for multi-scenario contact
handling is proposed. It consists of several steps combined
into one pipeline and allows to easily implement safe and
complex collaboration scenarios. These steps are: (i) collision
detection is done by external torque estimation; (ii) collision
localization, where the exact point of contact in the global
or local coordinate frame is estimated; (iii) contact event
classification using the set of predefined characteristics; (iv)
information about the collision class and location is analyzed
to activate one of the reaction policies.

The contributions of our work are the following:
1) We introduced the methodology to handle a physi-

cal interaction between robot-human/obstacle/task by
utilizing different scenarios and dynamical switching
between them.

2) The proposed approach covers all stages of a contact:
from initial detection to classification and robot reac-
tion to it. Most of the existing works consider only one
aspect of interaction: contact detection, localization or
classification.

3) We presented a modified version of the contact particle
filter for contact localization and compared its perfor-
mance with existing methods in simulation and on the
real KUKA iiwa 14 robot.

4) We proposed a classification topology, which distin-
guishes contacts with soft and hard objects based on a
deep neural network.

5) We demonstrated the reaction module, implemented as
a finite state machine. This module chose an appropri-
ate reaction according to the current state of the robot
and the type of collision.

Together the developed algorithms could not only improve
the safety of a human in a robot workspace but also increase
the performance of the work cell by activating different
scenarios of collaboration.

II. RELATED WORK

Each step in multi-scenario contact handling pipeline is
a challenging task itself. Here we give a brief overview of
existing works on four main steps of a contact processing:
Detection, Localization, Classification and Reaction.

A. Detection

The collision detection gives a binary answer to the
question ”does the robot have a collision with an external
object?“. Contact points can be located anywhere on the



robot surface, from the base to the end-effector or tool.
The main demands for this step are response time (from the
moment when collision event happens to the moment when
software sets the collision flag), which should be as short as
possible, and detection precision that minimizes the number
of false-positive classifications. Since it is a binary problem,
most of the methods for collision detection use comparison
of the input signals with some threshold. The simplest way
is to monitor changes in motor current or torque values [2],
[3]. These methods do not require a robot model. Another
approach is based on the nominal robot model and comparing
the model to the actual joint torques. This technique is similar
to direct torque estimation or inverse dynamics approach
[4]. More complicated algorithms allow not only to detect
a collision but also to give an estimation of external torque
(external torque here is referring to the part of the joint torque
which was caused by the external force in the contact event),
they are based on disturbance observers.

Currently, the momentum observer proposed by De Luca
[5] is one of the most popular solutions for estimation of
external load, not only for robotics arm but also for other
kinds of robotic systems like drones [6]. The momentum
observer does not require inertia matrix inversion and joint
acceleration values, but at the same time provides a first-
order filtered version of the external torques and, as a result,
has asymptotic convergence for the constant external load
only. A survey on the detection and estimation methods is
presented in [7]. Collision detection based on deep neural
networks was proposed in [8], which showed a reliable
detection for cyclic operations.

B. Localization

When the fact of the robot collision with an external
object is detected, the exact location of the collision area
should be identified. Here we consider methods based on
proprioceptive sensors only, in most cases, these are 1D
joint torque sensors. Knowledge about the collision point is
important in the scope of choosing the right reaction policy
later. One of the first works in this area considered a planar
3 DoF robot and identified a collision link surface [9]. The
result of their algorithm depended on simplified robot shape
and observed disturbance torques. Buondonno and De Luca
in [10] studied external force isolation using a force sensor
mounted at the robot base, which gave a reliable solution at
any point of the robot no matter how close contact is to the
base.

In [11] the authors analyzed the localization of the colli-
sion point placed on the internal axis of the robot links. Such
a method reduced the dimensionality of the problem and
allowed to use global optimization by only two constrained
parameters. Later this method was used in [12], [13] and
compared with machine learning approaches.

Manuelli and Tedrake [14] suggested using a particle
filter for collision localization. In this method, each particle
includes information about its location on the surface of the
link, and weight is considered as a probability of contact at
this point. Probability is estimated with the assumption that

external force is applied in the friction cone. After this pub-
lication, several other research groups investigated similar
methods. In [15] the motion model of particles was modified
with a combination of small self-movements of the robot to
increase accuracy. Monte Carlo localization was used in [16]
and compared to direct optimization and machine learning
methods. In both works, the authors examined forces acting
to the normal of the robot surface constrained with a friction
cone, which allowed to create more particles and decrease
the computational load. In one of our previous works [17]
the contact isolation was done using two-step optimization
on the mesh surface of the robot KUKA iiwa 14.

It should be noted that collision localization can be also
done using external sensors. Tactile artificial skin makes
the problem trivial [18], [19] and solves detection and
localization tasks at the same time, but it is expensive and
requires additional calibration for the robot. Vision sensors
such as a camera or RGB-D sensor Kinect [20], [21] on
the one hand, can also help, especially in cases of multiple
collisions and safe human-robot coexistence, where robot can
avoid unnecessary collisions [22]. On the other hand, vision
systems depend on the field of view and lighting conditions.

C. Classification and Reaction

By evaluating the characteristics of the collision it is
possible to attribute it to one of the predefined classes. This
allows us to understand the context of the contact event
and make a decision for the reaction. In [23], [24] contacts
with a human are divided into intentional and unintentional.
In another work contacts are classified as collision with a
soft object (human) and a hard (workpiece, another robot,
walls) object, and duration was either single or continuous
[12]. Parusel at el. [25] designed a control architecture for
realizing human-friendly behaviors and intuitive state-based
programming with four control modes. The first mode is
autonomous in case of human absence, the second mode is
compliance with human presence, the third is a collaborative
mode with a human in the loop and the last mode is the
case of a fault. Magrini and De Luca in their work [26]
implemented a finite state machine with 3 basic robot states:
idle state, null space redundancy state and high compliance
mode. In our previous works [27], [28] a similar finite state
machine was proposed for switching between six different
scenarios of robot behavior.

III. METHODS

Now we describe the implemented methods that were
used in multi-scenario contacts handling algorithm. The
detection part relies on two already well-known approaches:
momentum observer [5] and disturbance observer [29]. In
the localization part, we propose to use a modified contact
particle filter [14], in contrast to which we change a robot
surface representation and the motion model to reduce com-
putation time. For the classification, the deep neural network
is used to classify ”hard” and ”soft” collisions. The finite
state machine is used for the reaction part of our pipeline.
Here states of finite state machine represent all possible



reactions, transitions between these states are defined by the
collision events and their characteristics.

A. Detection Algorithms

Different techniques allow to identify collisions based on
proprioceptive sensors only, without additional external sen-
sors. The general idea behind them is to compare measured
data with the predicted robot state. The predicted state relies
on the robot dynamic model. Thus, if the dynamic properties
of the robot are identified then the prediction of the current
parameters could be obtained.

The disturbance observation technique is usually based on
the assumption that the perturbation rate of some parameter is
proportional to the current difference between the perturbed
and estimated values. It allows us to estimate the disturbance
by integration. The parameters can be torques, moments, ve-
locities, or some others depending on the observer algorithm.
The choice is usually determined by the desire to simplify
calculation or reduce errors. In particular, it is the common
approach to exclude joint acceleration because its calculation
is based on numerical differentiation and decreases accuracy.

Three external torque observers were implemented. The
first one is a momentum observer [5]. Authors use rate of
change in momentum in order to estimate residual torque.
Authors of the second method, disturbance observer [29],
eliminate acceleration from equations with the help of special
matrix L(q, q̇), where q, q̇ are the vectors of joint angles
and velocities. The third observer is a modification of the
momentum observer with a sliding mode technique that
should deal with a wider class of disturbances [30].

B. Localization Algorithm

Robot Surface Representation: Although the surface of
the robot is often approximated with primitive shapes like
cylinders, for the collision isolation task it will produce a
poor result, especially with a robot of a complex shape
like KUKA iiwa. To overcome this, we propose to use a
modified and extracted surface of the robot links from its
.STL model. The robot .STL models are widely used for
visualization purposes, but their accuracy is well enough
for the localization task. The initial model, imported from
the .STL file, presented in Fig. 1a. It has an internal area
of the link and some surfaces, unavailable during physical
interaction with a robot. Also, it is more convenient and
computationally easier to work with a finite number of
points, sampled on the robot surface, than to find a point on
the facets of the link. Of course, the points should be equally
distributed and distance between these sampled points should
be less than desired accuracy. The modified mesh of the
robot link is shown in Fig. 1b and obtained by removing
unreachable regions and isotropically resampling mesh.

The remeshed link could be represented in the form of
the graph where the vertex is a node (N ) of the graph
and faces are edges (E) as G = (N ,E). Each node
N i = 〈pi,ni,nbc〉 includes information about its position
in a joint coordinate frame pi, nc is a normal vector in this

(a) Imported .stl file (b) Modified mesh

Fig. 1. KUKA iiwa link mesh representation. In (a) mesh has unreachable
for contact areas. In mesh (b) those areas were removed and the mesh
surface was isotropically resampled.

point and a list of neighbors nbc. This graph is obtained
offline and will be constant during the run-time.

Contact Particle Filter on Graph: The localization of the
contact point and estimation of external force formulated as
a nonlinear optimization problem

min
Fp,p

∥∥∥r − JT
p F p

∥∥∥ (1)

where Jp is a Jacobian for a collision point p, r is an
estimation of external torque, F p is an external force, applied
to the contact point.

It should be noted that here we assume only external
forces, without external torques. The use of only force vector
applied to the robot surface will make identification possible
for links after 3rd in the case of 1D joint torque sensors. To
make a result of this optimization more physically correct,
additional constraints are needed.

The first constraint assumes that contact point p ∈ C,
where C is a surface of the robot.

The second assumption is that F p lies inside a friction
cone with friction coefficient µ, defined by the normal vector
in point p. This constraint could be approximated with a
polyhedron for computational advantages:

F =

n∑
i=1

aiffc,i, min
a≥0

∥∥∥r − JT
fc,aa

∥∥∥ (2)

Here Jfc,a = Jfc
[
ffc1 ... ffcn

]
is Jacobian m×n for

each support vector ffc in contact point, m is a number of
joints, n is an approximation degree, a is a support vector
weights n × 1. Since rTr is a constant, and friction cone
is a convex set, it is sufficient to formulate it as a quadratic
program:

QP = min
a≥0

∥∥aTHa+ gTa
∥∥ (3)

where H = Jfc,aJ
T
fc,a is a square of Jacobian, g =

−2Jfc,ar.
The minimal value of QP is zero, which corresponds to

complete coincidence, and the maximum value depends on
the model error.

The exact collision location is estimated using particle
filter [14], which in contrast to the original work operates
on the robot surface graph G. This allows avoiding the
computational complexity of a motion model update, where



new positions of the particles are projected on the surface of
the robot by finding ray-mesh intersections.

To describe the proposed particle filter motion and mea-
surement model are presented.

Motion Model: The motion model is used for updating
the particle location. Due to the unpredictable behavior of
the interaction point on the robot surface, it is not possible
to define a model with good generalization. For example,
assuming contact point motion on the surface will have good
results when a human grabs the robot. At the same time,
robot collision with a wall will benefit from a model with
a contact point in the base frame. For our particle filter, we
use a random walk policy as the motion model, which will
generate reasonable results for most cases.

The random walk policy on the graph means choosing
a random neighbor node to the current node iteratively.
The number of iterations is defined by a random integer
between 0 to max steps variable. This variable depends on
the weight of the current particle, so the particle with a high
weight will have a lower maximum walk distance.

Measurement Model: The measurement step applies
weights to the particles. The weight of each particle is equal
to the residual between the measured external torque and
recreated torque in this particle. For further analysis, it is
useful to map the result into the interval from 0 to 1:

w ∼ exp(−αQP ) (4)

where α is scaling coefficient, normalization constant is
omitted here.

Multi-collision Cases: To extend the approach to a multi-
ple collision identification, an additional particle set should
be added similarly as it was described in [14]. In this case,
each particle set will have its own solution with a contact
point, force in this point, and a generated torque. The sum
of generated torques by all particle sets will be equal to total
external torque.

Unfortunately for collaborative robots with a 1D torque
sensor per joint, it’s hard to detect more than 2 collisions in
practice. The first problem is that the resulting torque from
all collisions has no unique solution and could be described
as a single collision. It can be partly avoided by assuming
that collisions happen sequentially. The second problem is
an amplitude of collision impact: with a large difference
in amplitudes, one of the collisions could be identified
as noise for a significantly larger second collision after
torque normalization. To improve identifiability, we made
an additional assumption that one of the collisions is placed
at the end-effector of the robot. Here end-effector payload is
not modeled in the robot dynamics. If a robot performing a
contact operation like pick and place, drilling, and so on,
there is one collision associated with a task at the end-
effector and a second collision in the intermediate point of
the robot in case of a collision with the environment/human
is possible. This leads to set up with particle filter with one
set and one fixed particle from a second set for representing
collision in intermediate point and end-effector of the robot.

Fig. 2. Collision classes. Collision duration, nature, and type classes could
be obtained using only internal sensors of the robot. By using an external
vision system it is also possible to extract the intention and context of
interaction. The possibility of a planned contact could be predefined for
each step of the robot program.

C. Collision Classification

Depending on the context of a collision event, the outcome
will be different. Here we try to understand the context of
a collision based only on the robot’s internal sensors. The
classification starts when a collision is detected. Currently,
we defined 6 criteria for the collision event, but it could be
easily extended. The classification diagram is presented in
Fig. 2.

The first criterion is the nature of a colliding object, we
divide all possible variants into hard objects (could be a wall,
workpiece, etc.) and soft objects (human in most cases). The
object nature could be classified by analyzing the time series
of joints torques and positions. Since we use only the internal
sensors of the robot, it is not possible to reliably distinguish
contact with humans and contact with cushioned furniture,
for example. Thus, we have to assume all soft contact as
contacts with a human. In the case of industrial applications,
soft and hard contacts usually correspond to the operator and
the robot environment. Consequently, if a collision happens
with a human, we can define if it was intentional as a part of
a human-robot collaboration or the collision was incidental.

Every collision could be purposeful or accidental. The
collision is marked as purposeful if it is expected at the
current stage of the robot program, otherwise, it is accidental.
If the process is non-contact, the collision in most cases
would be accidental, but if we expect collaborative work,
conditions of the purposeful interaction could be defined.

The duration of the contact event defines if it is single or
continuous. When the contact time is longer than a certain
threshold value, the collision is continuous, otherwise, it is
single and can be caused by an accidental human touch, for
example.

By the contact location extracted from the localization
algorithm, we can mark this collision as static or dynamic.



Fig. 3. Structure of proposed DNN for soft/hard collision classification.
As input, a fixed time window for the contact external torques is used. The
class of the collision is output.

Depending on the chosen coordinate frame, collision is static
when coordinates of the contact point are fixed with relation
to frame and dynamic if coordinates are changing in time.
The idea behind that is to separate dynamic objects such as
a human or another robot with static immovable objects like
walls in the robot workspace.

The accidental/purposeful class is given on the stage of
robot programming and depends on a specific task. Instead,
single/continuous, soft/hard, and static/dynamic classes are
estimated online from the properties of the collision. Par-
ticularly the soft/hard class identification done by the deep
neural network is shown in Fig. 3.

The input for the network consists of external torque
values for a fixed time window. In the case of multiple
collisions, only part of the total torque that was generated
by this collision is used. The use of velocities in the case
of a single collision could help with classification, but in
practice, it decreases the accuracy of the model when used
for a second collision. The output of our network is a class
of collision: soft or hard. The classification works only if at
least one collision is detected.

A deep neural network for collision classification consists
of 3 identical sequential Residual blocks. Each Residual
block has two paths for input data. The first path consists of
sequential 1D convolution, batch normalization, and ReLU
activation layers. The group of these three blocks is repeated
3 times and connected sequentially. The second path includes
one 1D convolution layer. Next, both paths are connected
using the addition operation. After 3 Residual blocks, 1D
global average pooling is performed and then the network has
the last feedforward layer with a softmax activation function.

Data from proprioceptive sensors is not enough to esti-
mate the context and intention of the collision events. This
implies the use of external sensors like a camera or RGB-D
with classification algorithms based on deep convolutional
networks, image processing, and that is out of the scope of
this work.

D. Reactions

The main goal for the collaborative robot is to be safe
for humans, the environment, and themselves, and simulta-
neously execute the task most efficiently. To achieve this goal
the robot should have a strategy for every possible collision

Fig. 4. Proposed finite state machine with states and transitions. Collision
by location: in end-effector (EE), in elbow (EL); by nature: soft (S), hard
(H); by current task: purposeful (P ), accidental (A).

and a switch that will turn this strategy on and off. Here, we
propose to use a finite state machine.

In the scope of our methodology, states of the finite state
machine are reaction strategies, contact events are transitions
and contact properties are transition conditions. The end-user
can define states and transitions between them according to
the desired robot behavior. Each state includes several robot
actions, each transition has a condition on collision classes.

The following example shows the possibilities of our
approach. Consider a collaborative work cell, where a robot
has the task of tightening screws. The end-effector of the
robot is equipped with a camera for screw detection and a
gripper tool. The finite state machine for this example is
presented in Fig. 4. The robot has 2 main tasks. The first
task executes non-contact operation (“Normal NonContact“
state), for example, visual detection of screws in a workpiece.
The second task is contact operation (“Normal Contact“
state), for example tightening of a screw with a tool.

The basic reaction for all accidental collisions (”A”) is
defined by the safety policy and forces the robot to stop.
There are two kinds of stop states in our reactions: the touch
reaction and the stop reaction. The stop reaction is basically
an emergency stop command to prevent harm to a human
or an environment. It also used a transition block to other
reactions. The touch reaction activates only if the contact is
with a human. This state is used to stop execution for a short
period. The manual control can be implemented as reactions
to touches: the first touch means the robot stop, the second
one is a resume. It can be used to change the workpiece
by a human, or correct the workpiece position. If contact
is persisting and becomes continuous, the touch reaction
becomes a stop reaction, and then for a soft (”S”) contact
in the robot end-effector switches to the compliant mode.
In the compliant mode, the position and orientation of the
robot can be changed manually. The robot could be guided by



Fig. 5. Real and simulated KUKA iiwa with ATOS5 markers. By measuring
markers coordinate is a robot base frame, it is possible to match markers
position in the real robot and its virtual model, to obtain ground truth for
localization.

a human to the next screw position if it was unrecognized
by the vision system. Also if there was accidental contact
with a human, firstly robot will stop, then, if the collision
still exists, become compliant. In this way, we try to limit
interaction force for safety.

In the case where something touches the robot in the
intermediate point or ”elbow” (”EL”), the robot enables
elbow reaction. In this mode, the robot will try to use its
kinematic redundancy to avoid the collision, while following
the desired trajectory by the end-effector. If the end-effector
(”EE”) itself has collided with a hard object (”H”) during
the non-contact operation, we also could try to avoid this
obstacle. In our example, the robot could have a collision
between its tool and a workpiece/environment during the
inspection phase. To implement this, we used a potential
field approach, where a point with a collision in the base
frame was added as a new point with high potential.

The states and transitions in the finite state machine
presented in this section could be extended or altered to
better describe robot behavior during multi-scenario contact
operations.

IV. EXPERIMENTS AND RESULTS

A. Hardware and Datasets

For the experimental study, two collaborative robots were
used: KUKA iiwa 14 and Universal Robots UR 10e. The
obtained results were tested in simulation and hardware.

We used two separate datasets, one for classification
and the other for localization. The dataset for classification
consists of 430000 frames with a 100Hz rate, with a total of
300 random trajectories and 500 collision events. It includes
the collision data with hard dynamic objects, hard static
objects, and three different persons. The contacts with the
humans occurred not only in a collaborative way, where a
human guided the robot, but also in an accidental way, where
the robot unintentionally collided with a human’s arm, back,
or body.

The second dataset for localization consists of 100 random
robot configurations for 22 contact points, 2200 samples in
total. For the real robot, only 10 test configurations were
used to verify our results. All points of contact were located

Fig. 6. Force estimation with different types of observers for UR10 robot
during the contact with a human.

in the last four links where a random force from a friction
cone was applied. Contact point location was estimated with
the ATOS 5 measurement system with less than millimeter
accuracy, all 22 contact points were marked on the real robot
and its model in simulation as shown in Fig. 5. During the
experiment on the real robot, the operator applied external
force for the marked point with a known location on the
robot surface. The ground truth for force vector amplitude
or direction is not provided, but in the future, we plan to use
a special tool with a force sensor.

The developed algorithm was tested on Intel Core i5-
4210H 3GHz CPU, 8Gb RAM PC as a Matlab 2-thread
program.

B. Contact Detection Results

We have tested three algorithms on the UR10e robot:
momentum observer, disturbance observer, and sliding mode
momentum observers. This robot is not equipped with torque
sensors in each joint but allows to measure motor currents.
After that, the current-to-torque matrix can be used to esti-
mate the load in motors. Each observer has its parameters for
configuration. We used the Fmincon optimization technique
to find the optimal values. More information about dynamic
parameters identification and observers can be found in [31].

During the experiment, we pushed the robot in different
positions and measured angles, velocities, and currents. The
result of external force estimation is shown in Fig. 6.

In general, all observers have demonstrated similar output.
In terms of the detection speed, the results of the momentum
and the disturbance observers are slightly better than the
sliding mode. From a practical point of view, the disturbance
observer algorithm is more compact for implementation
but requires the inversion of the robot inertia matrix and
configuration of three values regardless of the joint number.
Momentum observer does not use matrix inversion but re-
quires a transposed version of the matrix with centripetal and
Coriolis terms. The amount of parameters for configuration
is equal to the joint number. Thus the algorithms are almost
equal and the choice could depend on secondary factors.

To estimate part of torque that was generated only by
the external force for KUKA iiwa and UR10, we used



TABLE I
LOCALIZATION ALGORITHMS RESULTS FOR SIMULATED AND REAL ROBOT KUKA IIWA 14.

Simulated results Real experiment
Noise for torque measurements 0 N(0, 0.5Nm) *

Method for collision localization
error ∆d,m error ∆d,m error ∆d,m Run-time, ms

Average std. Average std. Average std. Average std.
Proposed Particle Filter on Graph (PFG) 0 0.01 0.04 0.06 0.04 0.05 17 3

Two-step Optimization (TS) 0 0.05 0.05 0.08 0.06 0.09 10 5

Feed-forward NN (NN) 0.05 0.09 0.08 0.13 0.09 0.08 5 2

Direct Optimization (DR) 0.05 0.11 0.08 0.11 0.07 0.09 52 6

moment observer. It provides slightly better time response
characteristic compared to the two other methods.

C. Contact Localization Results

Four localization algorithms were chosen to compare their
performance. To make a fair comparison, the single contact
situation is considered. The first algorithm is a proposed
modification of particle filter on the graph (PFG) with 50
particles, the second one is a two-step optimization (TS)
algorithm from [17], the third one is a one-layer feed-forward
neural network with 100 neurons in a hidden layer (NN) and
the fourth one is Direct-based optimization (DR) from [11].
The first two approaches use information about the robot
surface and find a force inside a friction cone, the rest two
approaches use a cylindrical approximation of a robot shape
and assume an external force normal to the link.

The results of the simulations and tests on the real
hardware are presented in Table I. Without noise in torque
measurements, PF and TS algorithms gave almost zero error
in position and external force. With added noise, these
algorithms showed 4-5 cm mean error in position estimation
and 16-17 % error in external force. With the real robot, PF
gave slightly better localization than a TS but had a slower
update loop, 60 Hz vs. 90 Hz. In practice, a larger mean
error of TS can be explained by obtaining a local minimum
in the wrong link.

Two other approaches, NN and DR showed more than 10
cm mean error even without noise. It could be explained by
the complex shape of a robot surface, which these algorithms
neglect. The force estimation has a large error due to the
assumption of force acting on the normal. The machine
learning-based approach is the fastest of the studied methods
and can be used when the precise location of contact is not
very important. NN can also be used for the classification of
a collision point from a set of predefined locations.

The examples of PFG estimation for real KUKA iiwa
and UR10e robots are presented in Fig. 7 (a-d). The multi-
collision case is shown in Fig. 7 (e), here the first external
force is caused by the constant gravity force applied to the
end-effector, and the second force applied by a human.

D. Contact Classification Results

The classification of hard/soft contacts is performed using
deep neural networks. To train the network for collision type
classification, the previously mentioned dataset was cut into

(a) Contact at the 3rd link (b) Contact at the 4th link

(c) Contact at the 4th link (d) Contact at the 6th link

(e) Multi-collision case, with contact at EE and 5th link

Fig. 7. Localization algorithm for KUKA iiwa and UR10e. Probability at
all points is estimated for visualization. The green dot is a collision location,
the red arrow is the estimated contact location and force direction.

samples with a window of 1 second with overlap. Each
sample has a size of 100 by 14, where 100 is the window size,
and 14 is the number of values with torques and positions for
robot joints. After the partition, an undersampling technique
was used to balance data by classes, resulting in 3300
samples of each class in the dataset. The neural network
was trained using the backpropagation algorithm with Adam
optimizer. Binary cross-entropy was used as a loss function.
The trained neural network showed an accuracy of 98.8% on
the test data compared to 89.5% from a previous frequency
based approach [12]. In practice, the algorithm was able to



reliably separate contacts with a human’s hand, arm, or body
from contacts with hard objects, such as metal workpieces,
walls, wooden furniture.

V. CONCLUSION

In this work, we presented a multi-scenario contacts
handling methodology for collaborative robots. It includes
and considers four main stages of collision event: detec-
tion, localization, classification, and reaction. For the de-
tection stage, state-of-the-art observers were implemented
and tested. The localization of multiple contacts was per-
formed using a particle filter on the graph which utilizes a
graph representation of a remeshed robot link to improve
computational efficiency. The classification module includes
six different categories of interaction where soft/hard contact
classification was carried out using a deep neural network.
For the reaction stage, a finite state machine with states
as behavior scenarios and transitions as contact events was
presented. All stages were tested in a simulation environment
and with a real collaborative robot KUKA iiwa, and some
stages with the UR10e robot.

In the experimental study, three different observers were
implemented, and four localization algorithms were com-
pared. The result of the proposed localization algorithm
showed a 4 cm mean error for the last 4 links of the KUKA
iiwa robot. The contact nature classification achieved 98%
accuracy. All algorithms were capable of working in real-
time with 50Hz frequency.
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