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Real-Time Estimation
of Multiple Potential Contact Locations and Forces

Dmitry Popov1,2, Alexandr Klimchik1, Anatol Pashkevich2

Abstract—In this work, we propose a contact point localization
and external force estimation algorithm for collaborative robots.
In comparison with existing approaches, the proposed algorithm
can detect and evaluate multiple solutions and more than 3x
faster without loss of accuracy. To achieve real-time perfor-
mance, a hierarchical robot representation and surface mesh
preprocessing was used, allowing us to achieve a 50x speedup
in a run-time, compared to checking all contact points. Mesh
preprocessing includes two-step clustering in the space of vertices
normals vectors and vertices positions. The localization method
was tested in a simulated Kinova Jaco 2 and real KUKA iiwa
LBR 14 collaborative robots. Our solution allows estimating the
contact point on the robot surface with 2.3 cm average accuracy
in a more than 600 Hz loop.

Index Terms—Physical Human-Robot Interaction, Force and
Tactile Sensing, Human-Robot Collaboration, Contact Modeling

I. INTRODUCTION

COLLABORATIVE robots, especially manipulators are
becoming more popular nowadays. One of their main

advantages is the ability to work together with a human
on the same task. Usually, this task is located in a shared
environment between a robot and a human worker. As a result,
a robot is forced to work in a complex environment with
dynamic obstacles [1]. This will increase requirements for
robot control to predict human intentions and actions. During
this interaction, physical contact between a robot and a human
could be unavoidable. However, the contact between a human
body and a robot is not always a negative event. In some
cases, physical interaction could be used to control the robot,
program, or correct its path.

To ensure human safety in this human-robot collaboration,
the interaction force should be estimated and controlled during
the execution of the robot program. In addition, not only the
magnitude of the force is important, but also its direction and
position where it is applied. The time, required to estimate the
contact point and the force is also critical. Since the robots can
achieve high speeds, only a split second is enough to harm a
human or the environment.

Our work is dedicated to creating a method for fast estima-
tion of a contact point on the robot surface. We assume that
the fact of the collision is already known by using any of the
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Fig. 1. Contact localization for the KUKA iiwa robot. Left: Robot pose and
the actual point of contact. Right: estimated residual, collision in any of two
potential contact points (P1 and P2) can produce the measured torque τ .

existing approaches [2], [3], [4] and the robot is equipped only
with 1D joint torque sensors.

The problem of contact localization for collaborative robots
was formulated in the past decade. The authors in [5] pro-
posed some simplifications of the robot shape to formulate
the problem by only two constrained parameters. Later this
method was used in [6], [7] and compared with machine
learning approaches. Manuelli and Tedrake [8] suggested using
a particle filter for collision localization. In this approach, par-
ticles are projected on the robot surface, and for each particle
probability of contact is estimated. The authors also introduced
a friction cone constraint for the external force. In [9] the
motion model of particles was modified with a combination of
small self-movements of the robot to increase accuracy. Monte
Carlo localization was used in [10] and compared to direct
optimization and machine learning methods. In both works the
authors estimated only the forces acting normal to the surface
to decrease computational demand.

In one of our previous works [11] the contact isolation was
done using two-step optimization on the mesh surface of the
robot KUKA iiwa 14. In another work [12], we used a neural
network trained to find a contact location in simulation and
then transferred this network to the real robot.

Unfortunately, no of the existing approaches deals with the
uncertainties of a localization algorithm, when only single-axis
torque sensors are available. These methods are designed to
output only one contact position. Depending on the robot pose
and an external force direction, multiple solutions are possible
as shown in Fig. 1. Torques, generated by one physical
collision at P2, could be also described by another force at
P1. So, in this particular configuration with estimated torques,
the real collision could be in P1 or P2. In practice, the location
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of the collision will define the possible reaction of the robot.
For example, we have a real contact with a human in the robot
elbow which also could be represented by contact at the robot
end-effector. The reaction, in the case of contact in the elbow,
is to increase robot compliance and limit interaction force, but
in the case of end-effector is to compensate external force,
which are opposite reactions. Here, the choice of incorrect
reaction could harm the human operator. Another example
could be a collision-avoidance reaction which will be different
for collision in elbow and end-effector.

In this work, we propose an algorithm that is capable of
estimating all possible solutions, even if they are located
on a different link. We present a robot mesh preprocessing
procedure that allows to implement a real-time execution.

II. PROBLEM STATEMENT

In the event of a collision between a robot arm and an
external object, it is important to identify where exactly this
collision happened. This information can be further used to
chose a reaction action to ensure safety. In this work, we will
address the solution of this problem for a serial manipulator,
equipped with 1D torque sensors in the joints.

Lets us consider serial manipulator with a n degrees of
freedom. The robot state at rest can be described by the
joint coordinate vector q ∈ Rn and the joint torque vector
τ ∈ Rn. The robot has a collision in the point pc ∈ R3 with
an external object and this point is located on the robot surface
pc ∈ C. This physical interaction leads to the external wrench
W ext ∈ R6 applied in pc. Here W ext = [F ext,M ext]

T ,
where F ext ∈ R3 is an external force and M ext ∈ R3 is
an external moment. For simplicity, the τ values here caused
only by the external wrench W ext.

τ = J(q,pc)
TW ext (1)

In general, mapping between forces and torques in Cartesian
and joint coordinate systems can be expressed with a robot
kinematic Jacobian matrix J(q,pc) ∈ R6×n where p is a
point in the local coordinate frame of the link with W ext (1).
One column of a Jacobian matrix, can be found by:

J j =

[
Jvj
Jwj

]
=

[
Zj−1 × (P −Oj−1)

Zj−1

]
(2)

where J j is a jth column of a Jacobian matrix, Jvj corre-
sponds to linear, Jwj to angular velocity Jacobian. P is a
position of an arbitrary point p ∈ C in the base coordinate
frame, Oj−1 is an origin of a previous joint and Zj−1 its axis
of rotation. All of these values depend on q.

In Eq. (1) q, τ are known from the robot state, and to
solve a localization task we need to find W ext and pc. The
straightforward solution is to use a pseudo-inverse of the
Jacobian J (i)(q,p) for all points on the robot surface C. To
do so, we fix the potential collision point p and a link i where
this point lies to compute Jacobian.

The problem can be simplified by the assumption of a point
contact collision. This leads to M ext = 0 and it is sufficient
to consider only F ext component of the W ext. In this case
Jacobian becomes Jv(i)(q,pc) ∈ R3×n. When i = 3 there

will be exactly one solution for all point on the surface of ith
link, but for the i > 3 we can find an approximate solution
for an over-determined system by:

min
F , p∈C

∥∥∥τ − Jv(i)(q, p)TF∥∥∥ (3)

Assuming that we also need to iterate through points on the
curved robot surface C, multiple solutions are possible. The
example of these multiple minimum cases is shown in Fig.
1 where torque in joints can be described by the contact
in point P1 or P2. This multiple minima behavior could
be explained by the existence of point-force pairs that could
generate torque equal to the observed from the robot sensors.
In practice, it could lead to wrong external force and collision
point estimation and as result wrong robot reaction to the
collision. Thus, this behavior should be studied.

III. PRESENCE OF MULTIPLE SOLUTIONS

A. Planar Robot Examples

To illustrate multiple solution cases, let us consider a planar
4 degree of freedom robot with link length L = [1, 1, 1, 1]. The
external force F ∈ R2×1 in the contact point p and vector of
external torque τ ∈ R4×1 caused by the original force F ext.

The solutions of (3) can be found by numerically estimating
the residual r(i,p) for points on the link surface p:

r(i,p) = ‖τ − τp‖ (4)

where τ p found from (1) for a contact point p on the i-th
link using pseudo-inverse. The residual value of 0 means exact
recreation of input torque τ , while other values mean inability
to find a force vector that will result in τ torque. The presence
of multiple solutions will result in multiple minima in r(i,p).

Let us examine few cases where multiple minima can be
detected. At the first stage, consider a planar robot with rod
links, where the contact point can be placed on the axis of the
link. The summary of test cases is presented in Table I.

1) Case 1: The robot is in a configuration q = [0◦ 45◦ −
90◦ 45◦]T , has a collision in point i = 4 pc = [0.5, 0]T ,
interaction force is F ext = [0, 1]T . This robot configuration
is not singular kinematically and from the external force point
of view. As result, we have only one point with zero residual
and one corresponding external force.

2) Case 2: q = [0◦ 45◦ − 90◦ 45◦]T , collision in i =
4 pc = [0.5, 0]T , interaction force is F ext = [1, 0]T . From the
kinematic point of view, this configuration is not singular, but
the direction of F ext intersects the 4th joint axis and produces
a zero torque τ4 making it singular to the given external force.
As a result, any point on the 4th link can be used to describe an
interaction. The estimated external force vector will be equal
to the original contact force at any point of the 4th link.

3) Case 3: q = [0◦ 0◦ 0◦ 45◦]T , collision in i = 4 pc =
[0.5, 0]T , interaction force is F ext = [0,−1]T . The Jacobian
rank rank(Jp) = 2, this configuration is not kinematically
singular, external force does not intersect joints axis, but has
multiple minima. The main reason for singularity here is the
position of all joint axis, where all of them lies on the line.
In this situation, at any point of the 4th link, we can have an
infinite number of forces that will result in a zero residual.
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TABLE I
SINGULAR AND NON-SINGULAR CASES FOR ROD ROBOT MODEL.

Robot configuration Cost function r eq. (4)
Case 1:

Case 2:

Case 3:

Case 4:

4) Case 4: q = [0◦ 45◦ − 90◦ 45◦]T , collision in i =
4 pc = [0.5, 0]T , interaction force is F ext = [1, 1]T . Here the
Jacobian rank rank(Jp) = 1 and robot pose is kinematically
singular, all joint centers lie on the line. This case has one point
of collision and an infinite number of force vectors which can
be applied to this point to achieve a zero residual.

For before mentioned cases, the multiple minima behavior
mostly observable in a singular configuration. Here the term
singular corresponds to not only kinematic singularity but also
for the instances with aligned joint centers and when the force
intersects the last joint.

So far we observed multiple solutions in a rod link robot,
but in the real world, the robot’s link could have a complex
shape. In addition, the external force could be applied only
to the surface. The presence of a surface could increase the
number of possible solutions even in non-singular cases.

Let us now consider the same 4 DoF planar robot with a
thicker link, where the contact point can lie only on the right
or left surface of the the Γ shaped last link. The summary of
test cases is presented in Table II.

5) Case 5: The robot with q = [0◦ 45◦ − 90◦ 45◦]T

has a collision in i = 4 pc = [0.4, 0.15]T , the interaction
force is F ext = [−1, 1]T . The robot pose is not singular
kinematically and from the external force point of view, since
the force vector does not intersect the last joint axis. The line
of force action intersects the 4th link surfaces in 4 points
P1, P2, P3, P4, where P1 is an original point of contact. This
scenario is similar to Case 1, but the existence of a surface
increased the number of potential solutions to 4. All potential

TABLE II
NON-SINGULAR CASES FOR ROBOT MODEL WITH SURFACE.

Robot configuration Cost function r eq. (4)
Case 5:

Case 6:

intersection points have a zero residual value. Therefore the
same force could be applied in any of these points without
any possibility to distinguish between them in static.

6) Case 6: q = [0◦ 45◦ − 90◦ 45◦]T , collision in i =
4 pc = [1.15,−0.3]T , the force is F ext = [1.15, 0.3]T . The
robot is in the same configuration as in Case 5, but the force
vector now intersects the 4th joint axis and produces a zero
torque in τ4 = 0. Points P2, P3, P4 lie on the 4th link and
P1 on the 3rd. This case is similar to the Case 2, but because
of the link surface, we no longer have an infinite number of
possible contact points. Now, it is impossible to distinguish
even the link of the robot with a collision.

B. Existing Approaches for Multiple Minima Resolution

Some of the current approaches in contact localization
reduce the number of possible solutions by putting constraints
on the direction of the external force. Assuming that there is
physical contact between the robot and an object, there should
be some friction forces defined by the friction coefficient.
Thus, the external force will lie inside of a friction cone with
a friction coefficient µ > 0, directed by the normal of a robot
surface. The eq. (3) can be supplemented with an additional
condition F ∈ FCp where FCp is a friction cone in point p
defined by its normal vector pn and a µ. We can simplify this
problem by approximation of friction cone with the tetrahedral
pyramid F =

∑4
i=1 αiF cone,i.

Here, αi is the weight of each support vector F cone,i. It
allows to rewrite the optimization problem (3) in terms of
quadratic programming for a fixed contact point p:

min
a≥0

(
aTHa+ gT

)
(5)

where H = JaJ
T
a is a square of Jacobians, variable a is

weight for a support vectors 4 × 1, g = −Jaτ ext. More
information about this approach could be found in [8].

This allows us to reduce the number of solutions by elimi-
nating points where the force is directed opposite to the normal
vector or vice versa. For example, in Case 5 it will drop out
points P2 and P4. It should be noted that this constraint will
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Algorithm 1: Link mesh clustering
1 Function geoCluster(v, f , num cl):

Input : Mesh geometry (v, f ), number of clusters num cl
Output: List of clusters c

2 1st step: Farthest Point Sampling;
3 g = random(v);
4 for 1 : num cl do
5 D = geoDist(v,f , g);
6 n ind = find(max(D));
7 g.add(n ind);
8 c = voronoi(v,f , g);
9 2nd step: Lloyd’s Relaxation;

10 while c 6= c prev do
11 for each c do
12 vi,fi = c(v,f);
13 g = findGeoCenter(vi,fi);
14 c = c prev;
15 c = voronoi(v,f , g);

not help in the scenario where external force intersects the joint
axis and a potential collision point could be on a different link.
The approximation of the friction cone could also be a source
of errors for the force vectors that lie inside of the friction
cone, and outside of the pyramid.

IV. PROPOSED ALGORITHMS

In this section, we propose our way of finding a solution for
the system (3). The system of the equation has two unknowns,
p as a contact point and F as an external force. In particular,
the point of contact p is constrained by the known surface C
and an external force F by the normal vector in the contact
point pn and a friction coefficient µ. Since the robot surface
is usually formulated as a triangular mesh, it already includes
information about link surface and link normal vectors. Thus,
by analyzing the robot mesh, one can reduce the search space
of the problem and as result reduce computational complexity,
enabling real-time execution. However, robot mesh is mostly
used for visualization purposes, therefore should be modified.

One way to avoid iteration through all points on the link
surface is to introduce a tree-like structure. The idea behind
that is to divide the surface into segments, each segment
will be represented by the reference point. One significant
requirement for the reference point and all segment points
is that they should have similar properties in a sense of
position and orientation. According to that, points in one
segment should be clustered by their position and their normals
orientation, so classical 3D clustering algorithms like k-means
are not applicable. In this way, the robot will be the root of
a tree, the first layer of leaves are links, each link has leaves
as segments and each segment has bottom leaves as points on
the surface. By isolating the link with a potential collision we
evaluate the residual (4) in the reference points of this link
a choice segments with the lowest residual value and finally
search contact point only in these segments. As result, we
greatly decrease the number of evaluations, but only if we
chose the right segment.

The problem of multiple solutions is solved by estimating
interaction force in the last link with non-zero torque in its
joint and then recursively checking for an intersection between
this force line of action and the next joint axis. If the line

(a) 1st reference point (b) 2nd reference point

(c) 3rd reference point (d) 4th reference point

Fig. 2. The evolution of the Farthest Sampling Point algorithm. The color
shows the geodesic distance (the distance on the surface of the mesh) between
reference points and all mesh vertices.

of force action intersects the axis, then this force could also
appear on the next link as was shown in Case 6.

A. Surface Clustering

Let us assume that surface is described by a discrete
triangular mesh which consists of a finite number of vertices
v ∈ R3×m and a list of facets f ∈ R3×n. Each facet consists
of three edges between three points from v. In addition, each
vertex has a normal vector n ∈ R3×m, that locally follows
the surface normal.

The segmentation or clustering allows to group a large
number of vertices and represents them by one reference
point. The first approach for making k clusters is to sample k
uniformly distributed points on the robot surface and then use a
Voronoi segmentation for all vertices. This can be achieved by
the Farthest Point Sampling algorithm and following Lloyd’s
relaxation. The algorithm for this is presented in Algorithm 1.
Now, let us describe this method in more detail.

Suppose there is a triangular mesh that we need to divide
into four segments. The first step is to sample the first segment
reference point by randomly choosing it from the vertices
list and then find a distance to all other vertices v (Fig. 2a).
The distance function here is not a Euclidean distance, but a
geodesic distance that shows the distance on the mesh surface.
In our algorithm, it implemented using the heat method [13]
as a part of gptoolbox [14].

In the second step after measuring a distance to all points,
select the farthest one as a second cluster reference point (Fig.
2b). Now the distance to some arbitrary point p on the surface
can be estimated as minimum distance from existing reference
points dist = min(geoDist(P1, p), geoDist(P2, p)). After
that we repeat until the number of segments reference points
is equal to the desired number of clusters (Fig. 2c,d).

The next step is to apply the Voronoi partition and assign a
cluster to all points on the surface. It can be done to any surface
point by finding the closest reference point and assigning the
same class. The clustering result is shown in Fig. 3a. Since the
reference points were fixed during the previous step, obtained
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(a) Initial partition (b) After relaxation

Fig. 3. Clusters normalization. (a) shows segments for the reference points
located as in Fig. 2d, clusters size is unbalanced, reference points are static.
(b) shows segments after Lloyd’s relaxation, where reference points iteratively
moved to the center of each cluster.

(a) Clustering in n (b) Mapping to v

Fig. 4. Clusters in a normal vector space. Applying farthest Point Sampling
and Lloyd’s relaxation for n = (nx, ny , nz) (a) and projecting assigned
clusters into Cartesian space for v = (vx, vy , vz) (b).

clusters are unbalanced, reference points sometimes located in
the corners of its segments (P2 and P3).

To balance the clusters and move the reference points we
apply Lloyd’s relaxation. By iteratively moving the reference
points to the center of its segments, we can acquire balanced
segments with almost the same size and reference points in
their centers (Fig. 3b). It should be noted that the choice of
initial point does not show any significant difference in final
cluster size or quality.

If we look at the first and the fourth cluster with reference
points P1, P4, they include two kinds of points: one of them
lies on the vertical wall of a mesh and the second on the
curved surface. Vertices normals in these two groups will be
orthogonal, thus the reference point is capable of describing
a position of neighborhood vertices, but not able to describe
their orientation or normals. Although it is possible to increase
the number of clusters, it will not guarantee that two points
in the same cluster will have orthogonal normal vectors.

To overcome this problem, we can repeat the same steps
of Algorithm 1, but for the normal vectors n. The result for
cluster segmentation in a normal vectors space is shown in
Fig. 4a. By mapping clusters back to the vertices positions v,
the clusters are now grouped according to their normals, all
vertices from the vertical wall are in the same cluster and a
curved surface is divided by other three clusters (Fig. 4b).

B. Robot Mesh Preprocessing

The robot mesh preprocessing procedure is executed offline
and allows to obtain a tree-like structure for each link. In this
procedure, all robot link meshes are clusterized in a similar
way that was described in a previous section.

Usually, link mesh files are derived in a .stl format with a
list of vertices coordinates v, a list of facets f , and a list of

Algorithm 2: Mesh preprocessing
1 Function clusterMesh(file):

Input : Mesh file in .stl format
Output: Data structure link

2 d size desired size of a cluster;
3 v stl,f stl, fn stl = importSTL(file);
4 v,f ,fn = isoRemesh(v stl,f stl,fn stl);
5 vn = calcNormals(v,f ,fn);
6 cn = geoCluster(vn,f , n cl);
7 for each cn do
8 c i = connectedComponents(cn);
9 for each c i do

10 if size(c i ≥ d size) then
11 n cl = bsize(v(c i))/d sizec;
12 c = geoCluster(v(c i),f(c i), n cl);
13 else
14 c = c i;
15 store c data in a link;

normal vectors for each facet. The image of such mesh for the
second link of the KUKA iiwa robot is shown in Fig. 5a.

The standard optimization routine for localization assumes
a continuous function for the potential contact point p, so
in the case of a triangular mesh, it means that the contact
point could be in a vertex or a facet of a mesh. The searching
process implies a gradient descent-like method to identify
the exact location of the local minimum on the surface C
and a lot of computational power. At the same time, the
noise in external torque measurements will limit the accuracy
of localization. Thus, in our approach, we scatter a set of
equally distributed points on the robot surface and estimate
contacts only in these points. The average distance between
scattered points is set to a value, which is several times lower
than the desired localization accuracy. To obtain a new mesh
with equally scattered vertices, we used an isotropic remesh
algorithm from [15]. In addition to remeshing, the original link
mesh file (Fig. 5a) was manually edited to remove internal
areas of the link (A). The resulting mesh is presented in Fig.
5b. The area marked with (B) had very inconsistent triangles
sizes compared to the same region of remeshed link (C).

Mesh clustering could be done using Algorithm 1 for a
vertices coordinates v. The output of this algorithm is shown
in Fig. 5c. Again, as was described previously, two points of
the same segment (shown in the zoomed image of a Fig. 5c)
have almost orthogonal normals directions. This will result in
a bad representation of a cluster with a reference point. To
overcome this, Algorithm 1 was used in a vertices normals
space n (Fig. 5d). The same zoomed region now shows that
there are two separate clusters. Despite that, obtained clusters
are unbalanced in size (D) and can have unconnected parts.
Therefore we propose to use two-step clustering.

The stages of a two-step clustering, used for the link mesh
preprocessing are demonstrated in Algorithm 2. The first step
is the clustering of a link in a vertices normals space, and after
that, clustering of all obtained clusters on subclusters. In this
way, we achieve clusters of the desired size and approximately
the same orientation. The result could be evaluated in Fig. 5e.

Compared to traditional clustering with a weighted objective
function that considers vertices position and normals, our
approach better describes small details. In traditional clustering
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(a) Initial triangular link mesh
imported from .stl.

(b) Isotropic remesh of
the (a)

(c) Clustering result for vertices
coordinates (vx, vy , vz)

(d) Clustering result for vertices
normals (nx, ny , nz)

(e) Two step cluster-
ing

Fig. 5. Link mesh clustering steps. Imported mesh (a) from .stl model have unreachable areas (A) and inconsistent vertex distribution (D). This mesh is
preprocessed (b) by removing unnecessary areas and remeshed by uniformly placed vertex points (C). In (c) we applied Algorithm 1 for vertices coordinates,
zoom-up image shows that two points in the same segment have almost perpendicular normals. We can avoid this by applying the same algorithm to vertices
normals (d), but one can expect clusters with inconsistent size (D) and unconnected areas. As an alternative, a two-step clustering algorithm (e) is proposed
(Algorithm 2) which eliminates the disadvantages of (c, d).

Fig. 6. Data structure for the robot state and internal surface representation.

with a weighted coefficient between vertices positions and
normals (separated optimization is required to find optimal
weights) will not give clusters with a fixed maximum size and
most likely miss-classify minor parts of the surface. The two-
stage algorithm generates clusters with limited maximum size
to ensure algorithm run-time and is not limited with minimum
size to preserve smaller surface elements and features.

After the segmentation of mesh vertices, data about each
segment is stored in a Robot structure. Information about
stored values is presented in Fig. 6.

C. Localization Algorithm

In this section, we present an algorithm for collision point
localization. In contrast with other available approaches, the
algorithm is capable of estimating multiple solutions for
the cases where the force vector intersects the last joint
axis. The Algorithm 3 consists of two parts, the first part
(localization link) deals with localization on the robot link,
and the second part (localization robot) with the whole
robot. Let us consider the first part in more detail.

As was mentioned previously, we try to exploit the proposed
tree-like structure of the robot by estimating residual r in

cluster reference points. For the reference points, their location
in the global and local frame is known, the normal vector is
given, joints position and torque are known from the robot
state. Consequently, the external force vector F could be
estimated using pseudo inversion. Typically there will be
at least two points where the line of external force action
intersects the link surface, but only one of them is possible
due to friction cone constraint. This is why we manually set
the residual as a large value for the points where an external
force is out of the friction cone. It should be noted that instead
of pseudo inversion we can solve a quadratic program (5)
with a friction cone approximation, but it could decrease the
performance of the algorithm.

Next, we pick only n segments with the lowest r in their
reference points and find the residual for the vertices of the
segments. In this way, we avoid iterating through all link
vertices and reduce computation requirements.

As the last stage, we need to check the possibility of
multiple solutions. Multiple solutions on the same link are
basically multiple minima on the already estimated residual
rp, so it is sufficient to output the local minima. However,
the external force, estimated in the current link could intersect
following after the link joint axis and generate zero torque in it.
To address this issue we introduce a simple metric of a distance
d between the estimated external force and the following joint
axis. If there is an intersection, then we need to check the next
link for a collision too.

The localization for the whole robot starts with link iso-
lation. Firstly, the link following the last non-zero torque is
isolated. In the practice, of course, there are some threshold
values that depend on the joint torque noise. The isolated link
is also could be extracted from the estimated collision location
on the previous timestamp (p prev) if there is one. This
isolated link is checked for a collision in a localization link
routine and the following multiple solution evaluation. In this
evaluation, we compare the distance between the estimated
line of force action and the joint axis. In other words, if there
is an intersection, we start to iteratively check the adjacent
links until there will be no intersection, or we reach the last
link. In this way, we can acquire multiple solutions on one
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Algorithm 3: Localization on the robot surface
1 Function estimate_F(ind, Robot):

Input : Surface point index ind, structure Robot
Output: External force F , residual rp

2 J = Jac(Robot.Links(link).v(ind));
3 F = (J JT )−1 J τext;
4 if ](F , Robot.Links(link).vn(ind)) < atan(µ) then
5 τt = JTF ;
6 rp = ‖τext − τt‖;
7 else
8 rp = Inf ;
9 Function localization_link(link, Robot):

Input : Link index link, Structure Robot
Output: Local collision point p l, external force F l, residual

r, dist. between F l and joint axis d
10 for each Robot.Links(link).vc do
11 F , rp = estimate F (ind,Robot);
12 pick top n clusters c top with min rp;
13 for each c top do
14 for each Robot.Links(link).c(c top).v do
15 F , rp = estimate F (ind,Robot);
16 p l = find(min(rp));
17 F l = F (p l);
18 check for joint sensor axis intersection;
19 O = link + 1-th joint axis;
20 d = dist(F ,O);
21 Function localization_robot(Robot):

Input : Structure Robot, collision point on the previous
timestamp p prev

Output: Collision point p c, external force F ext
22 if isEmpty(p prev) then
23 isolate last link with nonzero torque;
24 link = lastNonZero(abs(τext) > ε);
25 else
26 link = link with p prev;
27 link.c = cluster with p prev;
28 F , p, r, d = localization link(link,Robot);
29 while abs(d) < εd & link < link max do
30 link ++;
31 F , p, r, d = localization link(link,Robot);
32 p c = find(min(r));
33 F ext = F (p c);
34 p prev = p c;

(a) Contact at the 6th link (b) Contact at the 4th link

Fig. 7. Localization algorithm for KUKA iiwa. Probability at all points is
estimated for visualization. The green circle is a possible collision location,
the red cross is a true contact location.

link and an additional solution from the following links.
Consider the example on the Fig. 7a. The KUKA iiwa robot

has a collision on the 6th link. The last joint with non-zero
torque is a joint 6, so we isolate the 6th link and try to estimate
a contact point on it. There are two possible solutions, one
of them is where the actual external force is applied and the
second one is on the other side of the link which represents the
same force but in the opposite direction. The second contact

point is ignored due to friction cone constraint. The estimated
force for the first potential contact point does not intersect
the axis of a 7th joint. Thus, the robot in a given pose and
interaction has only one solution.

Another example from the Fig. 7b shows multiple minima
behavior. The real contact is on the 4th link and a 4th joint
is the last joint with non-zero torque. The external force,
estimated after localization on a 4th link will intersect the axis
of a 5th and 6th joint. By searching another collision point for
these links we can see that there is another solution in a 6th
link. From the current robot state, it not possible to decide
which of them is a true contact location, everything we can
do is to mark these points and see if changes in robot pose or
external force will leave only one of them.

The real-time capabilities of the proposed method can be
explained by the hierarchical robot surface representation and
the fact that the most complicated part in estimation is the
inversion of 3×3 matrix for each potential contact point. The
most time-consuming part is a Jacobian calculation, but using
an only Jv(i) part of a (2) we need to once in a timestamp
find the forward kinematics to each joint origin and extract
Zj , Oj . As a result, this algorithm could be run in real-time.

V. EXPERIMENTS & RESULTS

For the experimental study, the KUKA iiwa 14 collaborative
robot was used. The obtained method was tested in simulation
and hardware. For the simulation, we generated 1000 random
robot poses and applied external force in 22 contact points
giving 22000 samples in total. For the real robot, only 10 test
configurations were used to verify our results. All points of
contact were located in the last four links where a random
force from a friction cone was applied. To match a contact
point location on the real robot and our virtual model the
ATOS 5 measurement system was used. 22 ATOS 5 markers
were placed on the real robot surface to estimate their exact
location with sub-millimeter accuracy. During the experiment
on the real robot, the operator applied external force only in
the marked point with a known location on the robot surface.
This allowed us to obtain ground truth information about
contact point pc. The ground truth for force vector amplitude
or direction was not provided, but in the future, we plan to
use a special tool with a force sensor.

The developed algorithm was tested on Intel Core i5-4210H
3GHz CPU, 8Gb RAM PC as a Matlab program.

The result of virtual and real experiments presented in
Table III. For our test, we used 5 different parameters for
our algorithm and one case where we simply iterate through
all vertices of robot mesh. The vertices on the mesh were
located with a 0.5 cm mean distance between them. As a
parameter, desired size of a cluster d size from Algorithm
2 was set as 10, 25, 50, 100 vertices, that give approximately
500, 200, 100, 50 segments per link. In the simulation scenario,
N(0, 0.5Nm) noise was added to the torque values to emulate
dynamic model inaccuracies in external torque estimation. The
accuracy metrics in this table correspond to the average dis-
tance between the ground truth point of contact and the closest
estimated local minimum from a set of possible contacts. The
run-time evaluates the average time to estimate a contact point.
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TABLE III
LOCALIZATION ALGORITHMS RESULTS FOR SIMULATED AND REAL

ROBOT KUKA IIWA 14.

Mesh parameters Accuracy, cm Loop run-time
Sim. Real ms Hz IF*

All points 2.32 2.17 75 13.3 -
Cluster d size = 100 3.19 3.04 1.8 555.6 41.6
Cluster d size = 50 2.56 2.34 1.6 625 46.9
Cluster d size = 25 2.48 2.33 1.5 666.7 50
Cluster d size = 10 2.51 2.31 1.7 588.2 44.1

*Improvement Factor

TABLE IV
COMPARISON BETWEEN PROPOSED AND EXISTING LOCALIZATION

ALGORITHMS.

Algorithm Robot Acc.,
cm

Run-time,
Hz

Mult.
sol.

Proposed algorithm KUKA iiwa 2.3 600+ Yes
Algorithm form [11] KUKA iiwa 4.2 100 No
Feed-forward NN [6] KUKA iiwa 8.4 180 No
Direct optimization [6] KUKA iiwa 5.4 19 No
Contact PF [16] KUKA iiwa <2.4 <10 No
Proposed algorithm Kinova Jaco2 1.8 600+ Yes
DRL [7] Kinova Jaco2 12 20 No
RF [7] Kinova Jaco2 8 200 No
MLP [7] Kinova Jaco2 4 200 No
FCB [10] Kinova Jaco2 11 63 No
PFB [10] Kinova Jaco2 12 71 No
PFNN [10] Kinova Jaco2 11 125 No
PFWM [10] Kinova Jaco2 11 159 No

According to the results, our algorithm allows achieving
50x speedup for the localization, without significant loss
of accuracy. The model with d size = 100 shows worse
performance due to a large cluster that is hard to represent
with one reference point, which leads to picking the wrong
segments and results in the loss of accuracy. Using a very
small cluster d size = 10 requires evaluating more segments
and slower due to increased cluster initialization time. The
most optimal parameter is a d size = 25 since it gives a
good balance between run-time and accuracy.

The accuracy of an algorithm depends on the link with a
collision. The last links tend to have a better accuracy due to
the larger number of sensors. With d size = 25, estimated
accuracy in simulation with N(0, 0.5Nm) noise is 0.9, 1.2,
2.2, 4.2 cm for the 7th, 6th, 5th, and 4th link respectively.

The proposed algorithm with d size = 25 was also com-
pared to the existing localization algorithms for a KUKA iiwa
and simulated Kinova Jaco 2 (with N(0, 0.5Nm) noise for
torque measurements) robots in Table IV. None of the existing
approaches was able to find more than one possible solution.
It should be noted that run-time results are achieved with a
different computational power. Compared to algorithms based
on a particle filter [8], [10], our approach shows better run-
time frequency since we do not spend time on resampling and
projecting points on surface steps. The absence of a numerical
optimization procedure inside like Direct in [6], [7], or QP in
[11], [8], [10] also helps to improve run-time.

VI. CONCLUSION

In this work, we propose an algorithm for contact point
localization on the surface of the robot. The algorithm is

capable to detect more than one possible solution for the
cases where external force produces zero torque on a joint.
The estimation is based on the current robot state, using 1D
joints torque sensors values, and a preprocessed robot mesh.
The mesh preprocessing includes isotropic remeshing and a
two-stage clustering to achieve a hierarchical structure. By
exploiting this structure we achieve a real-time execution of
our algorithm on frequencies more than 600 Hz. The approach
was tested in the simulation on Kinova Jaco 2 and KUKA iiwa
robot with an average accuracy of 1.8 and 2.5 cm. For the real
KUKA iiwa robot, the average accuracy of a solution is 2.3
cm.
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