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Spin-photon interfaces (SPIs) are key devices
of quantum technologies, aimed at coherently
transferring quantum information between spin
qubits and propagating pulses of polarized light.
We study the potential of a SPI for quantum non
demolition (QND) measurements of a spin state.
After being initialized and scattered by the SPI,
the state of a light pulse depends on the spin
state. It thus plays the role of a pointer state, in-
formation being encoded in the light’s temporal
and polarization degrees of freedom. Building on
the fully Hamiltonian resolution of the spin-light
dynamics, we show that quantum superpositions
of zero and single photon states outperform co-
herent pulses of light, producing pointer states
which are more distinguishable with the same
photon budget. The energetic advantage pro-
vided by quantum pulses over coherent ones is
maintained when information on the spin state
is extracted at the classical level by perform-
ing projective measurements on the light pulses.
The proposed schemes are robust against imper-
fections in state of the art semi-conducting de-
vices.

1 Introduction

A spin-photon interface (SPI) is a device, whose pur-
pose is to coherently transfer information between
a spin, which plays the role of a storage qubit, and
a propagating pulse of polarized light, i.e. a fly-
ing qubit. Experimental implementations range from
atomic physics [1], ion traps [2], to semi-conductor

devices [3, 4]. SPIs are key components to implement
a variety of functionalities, from quantum memories
and quantum repeaters [5], to photon-photon gates
[6, 7] and cluster states [8, 9, 10], which are essen-
tial for light-based quantum technologies.

Most SPI functionalities rely on the capacity to ex-
tract reliable information on the spin state by mea-
suring the light state. This encompasses the ability
to coherently map information from the spin to the
light, and to perform well-chosen projective measure-
ments on light pulses. These steps are constitutive
of a von Neumann measurement scheme [11] where
light plays the role of a quantum meter that first maps
the spin state in the readout basis (pre-measurement),
before being collapsed.

Here we analyze the performance of a SPI to
achive quantum non demolition (QND) measure-
ments of the spin state. We first consider the pre-
measurement step and then the full measurement
scheme. We choose the quantum and classical Bhat-
tacharyya coefficients [12] as respective figures of
merit. In the spirit of quantum metrology [13], we
optimize the readout performance as a function of the
state of the light probe. In particular, we compare the
use of classical and quantum resources, by computing
the spin-light dynamics for coherent pulses and su-
perpositions of zero and single photon pulses respec-
tively. We find that quantum resources reach better
performances than classical ones with the same pho-
ton budget. Such energetic advantage of quantum na-
ture is usually chased in optical quantum metrology,
which operates at low-intensity probes [14]. It could
also become a key incentive to deploy quantum tech-
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Figure 1: Scheme of the spin-photon interface. a) Ener-
getic structure of the quantum emitter. The system is a
4-level system hosting two degenerate transitions respec-
tively coupled to left (right) circularly polarized light. b)
The interface consists of a quantum emitter with a spin
degree of freedom (red arrow in the gray shaded area)
and coupled with a 1D waveguide. c) Unfolded wave-
guide. The SPI is positioned at x = 0 and interacts
sequentially with the input ancillas.

nologies at large scales [15].

Importantly, our analysis relies on a complete
Hamiltonian model of the spin-light dynamics, based
on a recent extension of the so-called collision model
[16, 17, 18]. Spin-light entangled states are com-
puted at any time, taking into account all the light
temporal modes and the pulse deformations induced
by the coupling to the spin. This represents an impor-
tant progress with respect to state of the art models,
where single monochromatic light modes is usually
considered. It opens new opportunities to control and
optimize non-ideal behaviors in light-based quantum
devices, where light pulses must have a finite dura-
tion.

Our article is organized as follows. We first intro-
duce the SPI under study, and recall basic but essen-
tial results related to light scattering by a single qubit.
We then analyze the performance of the SPI as a mea-
suring device for the spin state. We find a quantum
advantage, both at the levels of the pre-measurement
and full measurement scheme. We discuss the origin
of such a quantum advantage in our study and quan-
tum metrology. We finally provide a feasibility study
of the proposed experiments and show that the quan-
tum advantage can be observed with state of the art
devices.

2 System and model
The SPI features a 4-level system (4LS) (see
Fig.1(a)). It is composed of two ground states,
{|↑⟩ , |↓⟩}, with spin projections respectively ±ℏ/2,
and zero energy; and two excited states, {|⇑⟩ , |⇓⟩},
with spin projections respectively ±3ℏ/2 and energy
ℏω0. This level scheme is typical of an electronic spin
trapped in a quantum dot [19]. It gives rise to two
degenerate transitions respectively coupled to circu-
larly polarized electromagnetic fields. The 4LS bare
Hamiltonian reads:

H4LS = ℏω0
∑

j=R,L

σ†
jσj , (1)

where we defined the lowering operators σL =
|↓⟩ ⟨⇓| and σR = |↑⟩ ⟨⇑|. Due to the conserva-
tion of the angular momentum, the transition |↓⟩ →
|⇓⟩ (resp. |↑⟩ → |⇑⟩) is coupled to left (right) circu-
larly polarized light pulses.

The 4LS is positioned at the position x = 0 of
a waveguide (WG), where light can only propagate
in one direction (see Fig. 1(c)). The WG hosts two
reservoirs of circularly polarized modes of frequen-
cies denoted ωk with lowering operators aj,k, where
j ∈ {R,L} stands for right- and left-circular polariza-
tion. The field dispersion relation reads k = ωkv

−1

where v is the field group velocity and k ≥ 0 its wave
vector. We only kept the positive values of k, which
captures the unidirectionality of the field propagation.
Hence, the WG bare Hamiltonian reads:

Hfpol = ℏ
∑

j=R,L

∞∑
k=0

ωka
†
j,kaj,k. (2)

Let us notice that this situation does not correspond to
the so-called chiral waveguides, where the direction
of propagation depends on the light polarization [20]
- here all polarizations propagate in the same direc-
tion.

This boils down to coupling the emitter to a single
input-output port, as it was primarily considered in
the seminal paper introducing the input-output for-
malism [21], and since then in various theoretical
works, e.g. [22, 23, 24, 25, 26, 27]. The SPI cou-
pling Hamiltonian is then:

HSPI = igℏ
∑

j=R,L

∞∑
k=0

[
σ†

jaj,k − a†
j,kσj

]
, (3)

where we implicitly assumed that the light-matter
coupling g is the same for both polarizations and uni-
form in frequency. This assumption is valid when the
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coupling is weak enough that only frequency modes
close to ω0 play a role (quasi-monochromatic approx-
imation) [21, 23]. In this regime, the rotating wave
approximation is allowed [28].

Coupling an emitter to a unidirectional light fields
is challenging and most experimental situations cor-
respond to a quantum emitter coupled to multiple
input-output ports. However, there are some cases
where the unidirectional model is accurate as argued
in [29] - in particular, when the emitter is weakly
coupled to an asymmetric, directional cavity (see
Fig. 1(b)). This is the case for a quantum emitter
embedded in an asymmetric Fabry-Perot cavity, it-
self coupled to an optical fiber [30] , or to a free-
space gaussian beam with proper impedance match-
ing [31]. Adiabatic elimination of the cavity [32]
yields an effective, unidirectional atom justifying a
WG-QED treatment.

We consider the scattering of a light pulse by the
4LS. All along the paper, we shall refer to the input
(resp. output) field as the initial light state at t = 0
(resp. to the scattered light state at t → +∞). Let
us consider a L-polarized (resp. R) input pulse |ψL⟩
(resp. |ψR⟩). Initial states of the kind |↑⟩ ⊗ |ψL⟩ and
|↓⟩ ⊗ |ψR⟩ are preserved by the scattering process.
Conversely, |ψR⟩ (resp. |ψL⟩) interacts with the 4LS
if the spin is in the state |↑⟩ (resp. |↓⟩), giving rise to a
dynamics equivalent to that of a spinless 2-level sys-
tem (2LS) interacting with a non-polarized propagat-
ing field. This case has been solved analytically for
an input pulse being either a coherent state [25, 18] or
a superposition of zero and one photon [24, 18], pro-
viding the exact light-matter states at any time. Be-
low we recall the solutions obtained for such a spin-
less 2LS, that we will use later on to derive those of
the 4LS featuring the SPI.

3 Scattering by a 2LS

Following Ref. [18], we consider a 2LS positioned
at the point x = 0 of some unidirectional WG. The
states of the 2LS are the ground and excited states
{|g⟩, |e⟩}. The field is assumed to propagate from
left to right with velocity v. The annihilation operator
ak destroys a photon with positive wave vector k and
frequency ωk = vk. The total Hamiltonian reads

H = H2LS +Hf +HI (4)

with

H2LS = ℏω0σ
†σ, Hf = ℏ

∑
k

ωka
†
kak, (5)

HI = igℏ
∑

k

[
σ†ak − a†

kσ
]
.

Let us notice that we extended the lower limit of
the summation over k to −∞ in order to define the
Fourier transform of ak [24]. The dynamics is solved
in the interaction picture with respect to Hf +H2LS,
yielding the interaction Hamiltonian,

HI(t) = iℏ
√
γ
[
σ†(t)b(t, 0) − b†(t, 0)σ(t)

]
. (6)

We defined the emitter’s dipole in the interaction
picture as σ(t) = e−iω0tσ, and the annihila-
tion operators destroying excitations located in
the position x at the time t [23, 17, 25, 18],
b(t, x) = ϱ− 1

2
∑

k e
−iωk(t−x/v)ak where ϱ

is the modes’ density verifying the relation∑
k e

−iωk(t−t′)/ϱ = δ(t − t′). Finally γ = g2ϱ
is the spontaneous emission rate of the 2LS.
The operators b(t, 0) obey the bosonic algebra[
b(t, 0), b†(s, 0)

]
= δ(t − s). In what follows and

to lighten the notations, we will denote b(t) = b(t, 0).

We first consider a coherent input pulse of ampli-
tude ⟨b(t)⟩ = βt = (β/√

ϱ)e−iω0t. It is conve-
nient to solve the dynamics in the frame displaced by
D(β) = exp{

∫
dt(b†(t)βt − b(t)β∗

t )}, such that the
effective interaction term D(−β)HI(t)D(β) is the
one of a resonant classical drive of Rabi frequency
Ω/2 = gβ , and the input field is in the vacuum state.
In the displaced frame, the joint light matter dynam-
ics boils down to the one of a resonantly driven 2LS
spontaneously emitting photons in the empty modes
of the WG. If the 2LS is initially in its ground state,
the joint state at time τ in the lab frame reads:

|Φ(τ)⟩ =
√
Pg(τ) |g, ϕg(τ)⟩ +

√
Pe(τ) |e, ϕe(τ)⟩

(7)

with

|ϕϵ(τ)⟩ = D(β)√
Pϵ(τ)

[√
p0,ϵ(τ)f (0,ϵ)(τ)+ (8)

+
∞∑

n=1

√
pn,ϵ(τ)

∫ τ

0
dtnf

(n,ϵ)(τ ; tn)
n∏

i=1
b†(ti)

]
|0⟩ .

ϵ = g, e stands for ground and excited states of the
2LS, tn = {t1, t2, ...tn} with t1 < t2... < tn < τ ,
|f (0,ϵ)(τ)|2 = 1 and

∫ τ
0 dtn|f (n,ϵ)(τ ; tn)|2 = 1 for
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any n. Finally
∑∞

n=0 pn,ϵ(τ) = Pϵ(τ). To save space,
the explicit expressions of the functions f (n,ϵ)(τ ; tn)
derived in [25, 18] are recalled in Appendix A. They
reveal that in the long time limit γτ → ∞, the in-
put pulse has been scattered by the 2LS, which has
relaxed in its ground state |g⟩. The scattered light
state is |ϕg(τ)⟩, with γτ → ∞. It involves the prob-
abilities pn,g(τ → ∞) = pn. For n ≥ 1, pn is the
probability that the 2LS has scattered n photons in
other modes than the driving mode. Conversely the
limit p0 → 1 captures the case where the 2LS solely
exchanges photons with the driving mode. This hap-
pens in the purely stimulated regime after a com-
plete Rabi oscillation (2π pulse), such that the 2LS
is brought back in the ground state at the end of the
interaction. It also happens in the so-called linear
regime where the pulse Rabi frequency Ω is much
lower than the spontaneous emission rate γ. Then the
2LS population remains vanishingly small all along
the interaction with the pulse. In this case, the shape
of the pulse remains almost unaltered, input and out-
put pulses solely differing by a π phase shift (See Ap-
pendix A).

When the input field is a single photon pulse |1⟩ =∫
dtξ(t)b†(t) |0⟩ with

∫
dt|ξ(t)|2 = 1, and the initial

state of the 2LS is the ground state, the joint state at
time τ reads:

|Φ(τ)⟩ = √
γξ̃(τ) |e, 0⟩ + |g⟩ ⊗ (9)(∫ ∞

τ
dtξ(t)b†(t) +

∫ τ

0
dtΥ (t)b†(t)

)
|0⟩ ,

with ξ̃(t) = e−γt/2 ∫ t
0 dt

′
[
e

γt′
2 +iω0t′

ξ(t′)
]

and

Υ (t) = ξ(t) − γξ̃(t)e−iω0t, see Ref. [18] for the
derivation. In the long time limit γτ → ∞, the 2LS
has decayed back in the ground state (Eq. (9)). The
shape of a monochromatic input pulse is not altered
by the scattering, input and output pulses solely dif-
fering by a π phase shift [22].

4 Measuring a spin with light
We now focus back on the 4LS featuring the SPI. In
analogy with the previous section, we treat the dy-
namics in the interaction picture with respect to the
bare Hamiltonian H4LS + Hfpol (Eqs. (1) and (2)).
The SPI coupling Hamiltonian (Eq. (3)) in the inter-
action picture reads:

HSPI(t) = ℏi√γ
∑

j=R,L

[
σ†

j(t)bj(t) − b†
j(t)σj(t)

]
,

(10)

where we defined the emitter’s dipoles in the interac-
tion picture as σj(t) = e−iω0tσj , and the annihilation
operators destroying polarized excitations in x = 0
at time t, bj(t) = ϱ− 1

2
∑

k e
−iωktak,j . The opera-

tors bj(t) obey the bosonic algebra
[
bj(t), b†

j′(s)
]

=
δj,j′δ(t − s) with j, j′ ∈ R,L. Let us notice that, as
we assumed the light-matter coupling to be the same
for both polarizations, the two transitions of the 4LS
have same decaying rate γ.

From the reminders on the 2LS, it appears that the
spin states |↑ / ↓⟩ are stable under the coupling with
light in the long time limit γτ ≫ 1. Indeed after the
transitions |↑⟩ → |⇑⟩ (resp. |↓⟩ → |⇓⟩) have been
driven and light pulses scattered, the spin is brought
back to its initial state. In the limit of low-intensity,
monochromatic pulses, the 2LS study also shows that
the shape of the light pulses is unaltered by the inter-
action, input and output pulses solely differing by a
π phase shift. This effect is essential to capture the
physics at play in SPIs. For single, L-polarised (resp.
R) photon pulses denoted |1L⟩ (resp. |1R⟩), it trans-
lates into the following map:

|↑ (↓), 1R(L)⟩ → − |↑ (↓), 1R(L)⟩ , (11)
|↓ (↑), 1R(L)⟩ → |↓ (↑), 1R(L)⟩ ,

This map lies at the basis of several proposals for gen-
erating photonic gates [6, 7] and more recently 2D
photonic clusters [33]. However, most functionali-
ties of optical computing require operating at mini-
mal speed, hence involve light pulses of finite dura-
tion. We now exploit our analytical model to explore
the spin-light dynamics and its potential for quantum
technologies beyond the monochromatic approxima-
tion.

To benchmark the performances of the SPI, we
choose to analyze it as a device, whose purpose is
to perform QND measurements of the spin state in
the |↑ / ↓⟩ basis [34]. In this section we focus on the
pre-measurement step [11]: Starting from a well de-
fined initial state, the light evolves conditionally to
the spin state. While the spin state remains unaltered
at the end of the process, the final light states

∣∣∣ψ↑/↓
〉

become respectively correlated to |↑ / ↓⟩: they are
dubbed pointer states [35]. Their overlap defines the
performance of the pre-measurement and is quanti-
fied by the so-called quantum Bhattacharyya coeffi-
cient (qBhat) [12]:

Bq = |⟨ψ↓|ψ↑⟩|. (12)

Bq = 0 corresponds to orthogonal, hence perfectly
distinguishable pointer states. It is this figure of
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merit we shall optimize throughout this section as
a function of the light characteristics. In the spirit
of quantum metrology [13], we shall pay special
attention to the light statistics in search for a quantum
advantage. Namely, we shall compare the perfor-
mance of the SPI as a quantum meter, depending if
the probe is a coherent pulse that can be generated by
a classical light source, or by a quantum pulse made
of a coherent superposition of zero and one photon.

In the rest of this section we take as light ini-
tial state some horizontally (H) polarized pulse
denoted |ψH⟩. We first consider a coherent input
pulse of amplitude αt = ⟨ψH| bH(t) |ψH⟩, with
bH(t) ≡ (bR(t) + bL(t)) /

√
2. The pointer states∣∣∣ψcs

↑/↓

〉
(the superscript cs refers to the coherent

input state) can be found from the solution of the
associated spinless problem Eqs. (7) and (8) with
βt = αt/

√
2. They read:

|ψcs
↑(↓)⟩ = D(H)(α)

[√
p0f

(0)+ (13)

+
∞∑

n=1

√
pn

∫ ∞

0
dtnf

(n)(tn)
n∏

i=1
b†

R(L)(ti)
]

|0⟩

where f (0) = limγτ→∞f
(0)(τ) and

f (n)(tn) = limγτ→∞f
(n,g)(τ ; tn), and

D(H)(α) = exp{
∫
dt
(
b†

H(t)αt − bH(t)α∗
t

)
} is

the displacement operator of the H-polarized propa-
gating field’s mode. f (n)(tn) and pn do not depend
on the light’s polarization as the amplitude of the
light-matter coupling is assumed to be the same for
R and L, see Eq. (6). Plugging Eq. (13) into Eq. (12)
yields:

Bcs
q = p0. (14)

The physical meaning of Eq. (14) is transparent. Po-
larized photons scattered in the empty modes of the
WG signal that the transition of the same polariza-
tion was driven, which carries information on the spin
state. Conversely in the limit where no photon was
scattered (p0 → 1), the final light states are indistin-
guishable.

Figure 2 shows the value of qBhat for a coher-
ent input pulse of amplitude αt =

√
n̄Γe−Γt/2−iω0t

as a function of the average photon number, n̄, and
the bandwidth, Γ. Regions (b) and (c) are the high-
energy regions, n̄ ≥ 10. The fringes in the region (b)
capture Rabi oscillations [36]. Bright fringes corre-
spond to complete inversions of the emitter’s popula-
tion (π pulses), after which spontaneous emission oc-
curs with certainty (p1 = 1, p0 = 0). When the spin

0

0.2

0.4

0.6

0.8

1.0

Figure 2: Quantum Bhattacharyya coefficient for co-
herent, H-polarized input fields of amplitude αt =√
n̄Γe−Γt/2−iω0t. The horizontal axis corresponds to the

average number of photons per pulse, n̄, and the verti-
cal axis to the pulse bandwidth, Γ, in units of the decay
rate γ. The color corresponds to the value of qBhat ac-
cording to a color-scale going from yellow (Bcs

q = 0), to
black (Bcs

q = 1). a) low-energy regime, b) high-energy,
short-pulse regime where the system undergoes Rabi os-
cillations, and c) high-energy, long-pulses regime.

is initially in a coherent superposition of |↑⟩ and |↓⟩,
this situation leads to maximal spin-light entangle-
ment, and was recently used to generate elementary
1D cluster states [9, 10] following the seminal pro-
posal by Lindner and Rudolph [19]. Conversely, dark
fringes correspond to complete Rabi oscillations (2π
pulses), which leave the emitter in its ground state.
Hence no photon is scattered in other modes than the
driving mode, and no information can be extracted on
the spin state.

Region (a) (n̄ ≤ 1) is the low-energy regime on
which we focus from now on. As it appears on
Fig. 3(a), Bcs

q never vanishes in this region, i.e. the
pointer states never become perfectly distinguishable.
Distinguishability fully vanishes in the monochro-
matic limit Γ ≪ γ (input pulses much longer than
the lifetime of the atomic excited states) for a low
energy input coherent field. This is the so-called lin-
ear regime mentioned in the previous section where
the shapes of the scattered pulses remain almost un-
altered, while undergoing a π phase shift. Hence, the
pointer states respectively read |ψ↑⟩ ≈

∣∣∣α/√
2
〉

L
⊗∣∣∣−α/√

2
〉

R
(|ψ↓⟩ ≈

∣∣∣−α/√
2
〉

L
⊗
∣∣∣α/√

2
〉

R
) -

which strongly overlap for low energy pulses where
|α|2 ≪ 1.

We now take as input pulse a coherent super-
position of zero and single photon states, |ψH⟩ =
c0 |0⟩ + c1|1H⟩, with |c0|2 + |c1|2 = 1, |1H⟩ =
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∫
dtξ(t)b†

H(t) |0⟩. The pointer states
∣∣∣ψqs

↑/↓

〉
(the su-

perscript qs refers to the quantum statistics of this in-
put state) can be found from the solution of the asso-
ciated spinless problem Eq. (9) and read:∣∣∣ψqs

↑(↓)

〉
=
[
c0 + c1√

2

∫ ∞

0
dtξ(t)b†

L(R)(t) (15)

+ c1√
2

∫ ∞

0
dtΥ (t)b†

R(L)(t)
]

|0⟩ .

Plugging Eq. (15) into Eq. (12) yields the qBhat fur-
ther denoted Bqs

q . When the input field is an expo-
nential wavepacket ξ(t) =

√
Γe−Γt/2−iω0t, the latter

reads
Bns

q = 1 − 2n̄γ
γ + Γ , (16)

meaning that perfectly distinguishable pointer states
can be produced for any input energy 1/2 ≤ n̄ ≤ 1,
provided that n̄ ≡ |c1|2 = (1+Γ/γ)/2. Bqs

q is plotted
in Fig. 3(b) as a function of Γ/γ and n̄.

Let us first consider the limit of monochromatic
input pulses (Γ ≪ γ). The H-polarized photons
read |1H⟩ = (|1L⟩ + |1R⟩)/

√
2 and evolve under

the map (11) into i |1V⟩ (resp. −i |1V⟩) if the spin
is ↑ (resp. ↓). Thus, the pointer states read |ψ↑⟩ =
(c0 |0⟩ + ic1 |1V⟩) and |ψ↓⟩ = (c0 |0⟩ − ic1 |1V⟩).
They are maximally distinguishable for c0 = c1, for
which n̄ = 1/2.

For shorter pulses, the spin-controlled phase shift
respectively acquired by |1L⟩ and |1R⟩ while being
scattered induces the clockwise or counterclockwise
rotation of the pulse polarization, together with an al-
teration of its shape (see Appendix B for a detailed
analysis). The final polarization and shape of each
pointer state depend on the energy, shape and dura-
tion of the input pulse. Remarkably, mode-matched
single photons characterized by Γ ∼ γ and n̄ = 1
give rise to pointer states where information is mostly
encoded in the polarization of |ψ↑⟩ (|ψ↓⟩) that rotates
from H to R (resp. L) during the interaction. In any
case, the pulse shape is modified by the scattering
process, which dilutes entanglement over polariza-
tion and temporal light degrees of freedom. Dealing
with temporal degrees of freedom thus appears as a
strong source of non-ideality for SPIs, both for infor-
mation extraction at the classical level and quantum
information protocols. This non-ideality cannot be
avoided as photonic quantum computation requires
photons of finite duration.

The two studied situations reveal a quantum ad-
vantage for spin-light entanglement generation, bet-
ter performances being reached by using quantum su-
perpositions rather than coherent pulses. A similar

Figure 3: Quantum Bhattacharyya coefficient in the
low-energy regime. a) QBhat for coherent input fields.
b) QBhat for superpositions of zero and single photon
states. The fields are H-polarized and have same tem-
poral profile being a decreasing exponential of rate Γ.
The horizontal axes correspond to the average number
of photons carried by the fields, and the vertical axes
to their bandwidth, Γ, in units of the decay rate γ.
The color corresponds to the value of qBhat, accord-
ing to a color-scale going from yellow (Bq = 0), to black
(Bq = 1). The gray line indicates n̄ = 0.5, while the
black line indicates the points where Γ = γ. In panel
(a) the qBhat is always greater than zero, while in (b)
it vanishes for all the points of the black dashed line of
equation n̄ = (1 + Γ/γ)/2.

effect has been observed in the context of machine
learning [37]. We elaborate on this quantum advan-
tage in Section 6.

5 Spin readout

In measurement theory, pre-measurements are fol-
lowed by collapses, where the quantum meter under-
goes a projective measurement [11]. Classical out-
comes are expected to provide information on the
measured quantum system. A convenient figure of
merit of the full measurement scheme is provided
by the classical (cl) Bhattacharyya coefficient (cB-
hat) [12, 38]. In the present case, the cBhat quan-
tifies the overlap among the conditional probabilities
p↑/↓(x) of obtaining the classical outcome x among
the set X , given that the spin is prepared in the state
|↑ / ↓⟩:

Bcl =
∑
x∈X

√
p↑(x)p↓(x). (17)

Bcl = 1 signals identical distributions where the mea-
surement does not provide any information about the
spin state; conversely Bcl = 0 corresponds to dis-
joint distributions granting complete knowledge of
the spin state. The cBhat is lower bounded by the
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qBhat (Bq ≤ Bcl), which captures that correlations
can be degraded while extracting information at the
classical level. By optimizing the classical measure-
ment scheme, equality can be reached when both
Bhattacharyya coefficients vanish [12], which means
when the two pointer states are perfectly distinguish-
able and collapsed in the proper basis.

Source

M1

Detector

SPI
BS

Figure 4: Performance of the SPI for spin readout. a)
Michelson interferometer. The right arm contains the
SPI and the upper arm contains a tunable phase plate
(ϕ). BS is a 50/50 beam splitter. The source pro-
duces either a coherent pulse (classical state, cs) or a
single photon (quantum state, qs) each with an aver-
age photon number of n = 1. b) Classical (black curve)
and quantum (red dotted) Bhattacharyya coefficients for
the quantum statistics, and quantum Bhattacharyya co-
efficient (blue dashed) for the classical statistics. All
the coefficients are computed in the long-time limit as a
function of pulse bandwidth Γ.

A possible measurement scheme including pre-
measurement and collapse for a spin embedded in
the SPI modeled above is depicted on Fig. 4(a). The
spin is initialized in |↑ / ↓⟩ and then probed with a
monochromatic R-polarized, low intensity pulse sent
through a Michelson interferometer. As shown above
in this regime, information on the spin state gets en-
coded in the phase of the pulse. The Michelson inter-
ferometer encompasses two balanced non-polarized

beam splitters. One arm contains a tunable phase-
plate (ϕ), the other contains the SPI. The pulse ex-
its the interferometer in one of the pointer states |Ψ↑⟩
and |Ψ↓⟩ that are respectively correlated with the spin
up or down. This step is unitary and corresponds to
the pre-measurement, whose performance is quanti-
fied by the qBhat, Eq. (12). The pulse is finally col-
lapsed using a photo-counter positioned in the output
port of the interferometer. The number of detected
photons x = 0, 1 defines our two possible classi-
cal outcomes, whose statistics give rise to the cBhat
assessing the performance of the full measurement
scheme. In the following, the phase ϕ is chosen such
that p↑(x) = 1 (resp. 0) if the spin is |↑⟩ (resp. |↓⟩)
for a monochromatic single photon input pulse.

We analyze the performance of the readout if the
spin is probed with a coherent or a single photon
pulse, both characterized by an exponential temporal
shape of spectral width Γ and a mean number of pho-
tons n̄ = 1. The overlap between the pointer states
defines the two qBhat (quantum and coherent, resp.
corresponding to the dotted red and the dashed blue
curves). They are plotted on Fig. 4 as a function of the
pulse bandwidth. Their behavior is consistent with
Section 3: it reveals a quantum advantage for the pre-
measurement step captured by Bcs

q ≥ Bqs
q , whichever

the pulse bandwidth. The difference between the two
qBhat, hence the quantum advantage is maximal in
the monochromatic regime γ ≫ Γ.

We now focus on the robustness of the quantum
advantage when the information on the spin state is
extracted at the classical level. We have computed
the evolution of the classical Batthacharyya coeffi-
cient in the case where the classical measurement
is performed on a single photon pulse. The corre-
sponding quantity is denoted Bqs

cl and is plotted on
Fig.4(b) as a function of Γ/γ (black solid curve). As
expected, Bqs

cl ≥ Bqs
q , whichever the bandwidth, and

the measurement scheme is optimal for monochro-
matic photons. Interestingly, the plot also reveals that
sufficiently long pulses verify Bqs

cl ≤ Bcs
q , the latter

inequality implies that Bqs
cl ≤ Bcs

cl . In this regime
(region (1) on Fig. 4), classical measurements per-
formed on single photon pulses extract more informa-
tion than on coherent fields of the same temporal pro-
file and energy – showing that the quantum advantage
is robust and observable at the classical level. Note
that it is not necessarily the case for shorter pulses
where both the qBhat difference is lower and the clas-
sical measurement scheme is less adapted (region (2)
on Fig. 4).

Accepted in Quantum 2023-08-10, click title to verify. Published under CC-BY 4.0. 7



6 Quantum advantage

The analyses above point toward an energetic advan-
tage of quantum nature when using quantum pulses
as probes instead of coherent ones. Namely, quan-
tum pulses show better performances for spin read-
out (as quantified by the quantum and classical Bhat-
tacharyya coefficients) than classical ones with the
same energy budget (as quantified by the mean num-
ber of photons per input pulse). Similar effects are
observed in quantum metrology. It is interesting to
compare the origin of such quantum advantages.

Firstly, let us recall that quantum metrology aims
at maximizing the Fisher information about a pa-
rameter. The classical Fisher information is upper
bounded by the quantum Fisher information, the in-
equality being saturated when an optimal measure-
ment basis is chosen for the probe. This is a first
similarity with the present situation which uses clas-
sical and quantum Battacharyya coefficients. Thus,
the connecting factor between the two situations is
information maximization: Fisher information in the
case of quantum metrology, Battacharyya coefficient
for the SPI. Note that the classical Battacharyya coef-
ficient is equivalent to the Renyi information between
the two distributions [39], whereas the quantum Bat-
tacharyya coefficient is the overlap of the two pointer
states, which is a measure of their distinguishability,
also a critical concept in metrology [40]. Both cases
give rise to a quantum advantage, because the use of
quantum resources saturates the respective inequali-
ties in order to obtain maximal information about ei-
ther the parameter imprinted on the quantum state, or
about which state the system of interest is in.

Let us now examine the origin of the quantum ad-
vantage on concrete physical examples. In the case
of metrology, we usually strive to measure the phase
acquired by a probe as it interacts with a dispersive
medium. The phase shift, hence the measurement
precision is maximized with the variance of the probe
Hamiltonian [41]. For a fixed photon budget, this
variance is larger for quantum superpositions (N00N
states) than for coherent states. Conversely in the SPI
case under study, one wants to maximize the phase
shift conditionally acquired by the probe as it inter-
acts resonantly with the 4LS. This is a non-linear
mechanism: the saturation of the quantum emitter ap-
pears as soon as the probe contains more than one
photon, naturally altering the performance of coher-
ent probes with respect to quantum superpositions of
zero and one photons.

Hence if the two mechanisms have different ori-

gins, they share the motivation of efficiency, in terms
of budget per photon. Fine metrologic experiments
rely on low intensity input pulses, giving rise to ded-
icated figures of merit such as the Fisher information
per photon [14]. In the same way, scaling up photonic
quantum computers will require the optimization of
the photonic resource cost [15]: thus, our results are
timely and show that quantum resources could play a
significant role.

7 Experimental feasibility

We finally discuss the experimental feasibility of
SPIs as energy-efficient measuring devices of the spin
state and their potential to show an energetic advan-
tage of quantum nature. Let us first recall that in the
past decade, degenerate SPIs as those presently stud-
ied have been implemented using dark excitons [8]
and more recently within atomic physics [42, 43]
and semiconducting quantum dots in directional mi-
cropillar cavities [10, 9]. The latter setting is nearly
ideal, and was recently used to generate coherent su-
perpositions of zero and one photon states of un-
precedented purity [44]. Non-ideality stems from
photon losses and phonon-induced dephasing [45],
which we have included in our model to estimate
the robustness of the quantum advantage (see Ap-
pendix C).

We find that the quantum advantage region is
reachable for setups having an overall efficiency no
less than 80%, and a dephasing rate no more than
25% of the optical decay rate γ. State-of-the-art
quantum dots in directional cavities operating in the
near IR can reach coupling efficiencies exceeding
90% combined with low dephasing rates of 0.025γ
for γ−1 ≈ 100 ps [46], providing a promising direc-
tion towards experimental realization of the proposed
setup. Commercially available superconducting
nanowire detectors can also reach detection efficien-
cies exceeding 90% in the near IR [47]. In principle,
the required quantum input light can be produced by
a similar quantum dot device. However, this would
compound the degrading effects of dephasing and
would also bring the overall experimental efficiency
below the 80% bound. Near-term experimental real-
ization could be possible using pulsed SPDC, with
an appropriate bandwidth of at most Γ = 10−1γ.
In this case, post-selecting on successfully-created
single photons may bring the overall efficiency above
the 80% bound, allowing for an observation of the
quantum advantage.
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8 Conclusion
We studied the interaction between a spin-carrying
quantum emitter and a travelling pulse of light. We
considered the low-energy regime where the light
carries a maximum of one excitation in average, and
compared a coherent field with a quantum superposi-
tion of zero and single photon states. We find that the
latter state produces spin-light entanglement more
efficiently than the former, providing an energetic
quantum advantage. This quantum advantage is
maintained when the information on the spin state
is extracted by a classical agent who performs a
projective measurement on the electromagnetic field
after its interaction with the SPI. We showed that
it can be observed within state-of-the-art physical
implementations. Our study brings out a new
interest in the exploitation of quantum resources
based on energy efficiency, as already observed in
quantum metrology. This inquiry is relevant from

a fundamental point of view and useful to inspire
new applications in the field of optical quantum
computation, e.g. photon-photon gates and cluster
states. Finally, our Hamiltonian model of SPI will
be a valuable tool to mitigate errors in photonic
quantum computations based on light pulses of finite
duration.
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A Explicit solution of the dynamics with coherent input field

Explicit expressions of the functions f (n,ϵ)(τ ; tn) in Eq. (8) can be derived with the method presented in
Ref. [18]. When the initial state of the 2-level system is |g⟩, the input pulse is a square pulse of |β|2 photons
and central frequency ω0, the functions f (n,ϵ)(τ ; tn) take the form:

f (n,ϵ)(τ ; tn) = F (n,ϵ)(τ ; tn)√
pn,ϵ(τ)

. (A1)

Where

F (0,g)(τ) = e−γτ/4 [cos
(
Ω′τ/2

)
+ sin

(
Ω′τ/2

)
(γ)/(2Ω′)

]
, (A2)

F (0,e)(τ) = e−γτ/4 sin
(
Ω′τ/2

)
Ω/Ω′,

and for the terms with n > 0:

F (1,ϵ)(τ ; t1) = − √
γF (0,ϵ)(τ − t1)e−iω0t1F (0,e)(t1), (A3)

F (n>1,ϵ)(τ ; tj) = (− √
γ)jF (0,ϵ)(τ − tn)e−iω0tn

[
n∏

i=2
F (0,e)(ti − ti−1)e−iω0ti−1

]
F (0,e)(t1),

with Ω = 2
√
γ/ϱβ, Ω′ =

√
(Ω)2 − γ2/4, and

pn,ϵ(τ) =
∫ τ

0
dtn|F (n,ϵ)(τ ; tn)|2. (A4)

The average value of the operator b(t) on Eq. (8) gives as expected the input-output relation:

⟨b(t)⟩ = (β/√
ϱ)e−iω0t − √

γ⟨σ(t)⟩, (A5)

the term ⟨σ(t)⟩ can be computed analytically starting from the functions F (n,ϵ)(t; tn), it reads:

⟨σ(t)⟩ = e−iω0tF (0,e)(t)(F (0,g)(t))∗ + e−iω0t
∞∑

n=1

∫ t

0
dtnF

(n,e)(t; tn)(F (n,g)(t; tn))∗ (A6)

A.1 Linear-regime: π phase shift

In the limit of very weak driving, i.e. Ω ≪ γ, the interaction with the atom leaves almost unchanged the shape
of the field just producing a π-phase shift on the scattered field we hence have:

⟨b(t)⟩ ≈ −(β/√
ϱ)e−iω0t, (A7)

or equivalently from Eq. (A5):

⟨σ(t)⟩ ≈ (2/√
γ)(β/√

ϱ)e−iω0t. (A8)

The above equality is indeed verified when Ω ≪ γ and hence Ω′ =
√

(Ω)2 − γ2/4 ≈ iγ/2. Replacing
Ω′ ≈ iγ/2 in Eqs (A2) we find:

F (0,g)(t) ≈ 1; (A9)

F (0,e)(t) ≈ (2/√
γ)
[
1 − e−γt/2

]
(β/√

ϱ).

Injecting the above expressions in Eq. (A6) we find that Eq. (A8) is verified as soon as e−γt/2 becomes negli-
gible.
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B Analysis of polarization and amplitude of the output field

B.1 Polarization

The instantaneous polarization vector conditioned on the spin state is a 3-components vector, E↑(↓)(t) =
{ϵ↑(↓)

z (t), ϵ↑(↓)
x (t), ϵ↑(↓)

y (t)}, defined as:

ϵ↑(↓)
z (t) = I

↑(↓)
R (t) − I

↑(↓)
L (t)

I↑(↓)(t)
; (A10)

ϵ↑x(t) = I
↑(↓)
H (t) − I

↑(↓)
V (t)

I↑(↓)(t)
;

ϵ↑(↓)
y (t) = I

↑(↓)
A (t) − I

↑(↓)
D (t)

I↑(↓)(t)
;

where

I
↑(↓)
j (t) =

〈
ψ↑(↓)(t)

∣∣∣ b†
j(t)bj(t)

∣∣∣ψ↑(↓)(t)
〉

+
〈
ψ⇑(⇓)(t)

∣∣∣ b†
j(t)bj(t)

∣∣∣ψ⇑(⇓)(t)
〉
, (A11)

and

bH(t) = 1√
2

(bR(t) + bL(t)) ; (A12)

bV(t) = eiπ/2
√

2
(bR(t) − bL(t)) ;

bA(t) = eiπ/4
√

2
(bR(t) − ibL(t)) ;

bD(t) = e−iπ/4
√

2
(bR(t) + ibL(t)) ;

Since the input fields are H-polarized, the interaction excites symmetrically the states with opposite spin pro-
jections, i.e. ⟨σR(t)⟩ = ⟨σL(t)⟩, we have:

ϵ↑z(t) = −ϵ↓z(t); (A13)
ϵ↑x(t) = ϵ↓x(t);

ϵ↑y(t) = −ϵ↓y(t);

The instantaneous polarization vectors E↑(↓)(t) can be equivalently defined by a couple of angles, the polar
angle θ↑(↓)(t), and the azimuthal angle ϕ↑(↓)(t). These angles can be obtained from the corresponding vector:

θ↑(↓)(t) = arccos
[
ϵ
↑(↓)
z (t)

|E↑(↓)(t)|

]
(A14)

ϕ↑(↓)(t) = arctan
[
ϵ
↑(↓)
y (t)
ϵ
↑(↓)
x (t)

]
Now the polarization vector can be represented as a point on a sphere of radius 1, where the north and the south
poles correspond respectively to the polarization state R and L. For both coherent and number statistics, we
focus on two regimes with different energy and spectral bandwidth: (i) {n̄ = 1,Γ = γ} and (ii) {n̄ = 0.5,Γ =
10−2γ}. In (i) the polarization vectors E↑ and E↓ rotate on the Poincaré sphere in opposite directions during the
interaction reaching the orthogonal states, R and L, in the long-time stationary state (see Fig. A1a). In (ii) the
polarization vectors also rotates in opposite directions, but reach the same state, V, in a time shorter than the
pulse duration, i.e. before the stationary state is reached (see Fig. A1b).
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Figure A1: Instantaneous polarization vector trajectories through the R-H plane of the Poincaré sphere for different
light-matter interaction conditions. a) Trajectories in the mode-matched regime where Γ = γ for initial spin state |↑⟩
(red curves) or |↓⟩ (blue curves). The initial state of light has either classical statistics (cs) or quantum statistics (qs).
b) Trajectories in the quasi-monochromatic regime where Γ ≪ γ. Both qs and cs converge to the same polarization
dynamics in this limit. The arrows on all plots indicate the time evolution over a timescale of ∼10γ−1.

B.2 Amplitude

For a fixed value of the instantaneous polarization, i.e. fixing the values of the angles θ↑(↓)(t) and ϕ↑(↓)(t) at
time t, we can define the operator:

b↑(↓)(t) = cos
(
θ↑(↓)(t)

2

)
bR(t) + sin

(
θ↑(↓)(t)

2

)
e−iϕ↑(↓)(t)bL(t). (A15)

The average value of the above operator give the average field’s complex amplitude conditioned on the spin
state:

⟨b↑(t)⟩ = cos
(
θ↑(t)

2

)[
⟨bin

R (t)⟩ − √
γ⟨σR(t)⟩

]
+ e−iϕ↑(t) sin

(
θ↑(t)

2

)
⟨bin

L (t)⟩; (A16)

⟨b↓(t)⟩ = e−iϕ↓(t) sin
(
θ↓(t)

2

)[
⟨bin

L (t)⟩ − √
γ⟨σL(t)⟩

]
+ cos

(
θ↓(t)

2

)
⟨bin

R (t)⟩,

with ⟨bin
R (t)⟩ = ⟨bin

L (t)⟩ = ⟨bin
H (t)⟩/

√
2 = ⟨ψ(0)| bH(t) |ψ(0)⟩ /

√
2 being the average amplitude of the input

field prepared in the state |ψ(0)⟩.
We consider again the two different regimes of energy and spectral bandwidth (i) and (ii), and find the field’s

average amplitude in the long time limit. In the case (i), in the long time limit, the polarization vector E↑

reaches R and E↓ reaches L, i.e. ϕ↑ = ϕ↓ = 0, θ↑ = 0 and θ↓ = π. Plugging these values in the expressions
above, we find that the average values of the field’s amplitude conditioned on the spin states are identical in the
long time limit. For this reason, in case (i), the polarization features a better pointer for the spin state than the
field’s mean amplitude. On the contrary in case (ii), both polarization vectors E↑ and E↓ reach V after a short
transient of time, i.e. ϕ↑ = ϕ↓ = 0, and θ↑ = θ↓ = −π/2. Plugging these values in the expression above, we
find that the average values of the field’s amplitude conditioned on the spin states have a relative phase of π.
Then, in case (ii), the imaginary part of the field’s amplitude (field’s phase quadrature) features a better pointer
than the polarization.

C Numerical methods

To simulate the dynamics of measuring the spin state using a pulse of quantum light, we make use of the
SLH framework [48] by considering a virtual source of the pulse [49]. This approach is based on the input-
output formalism introduced by Gardiner and Collett [21], which was further developed by Gardiner [50] and
Carmichael [51]. Hence, it is a framework valid for the Markovian limit of light-matter interaction where there
is no back-action on the source, and where there is dispersionless propagation of the field between components.
Under these assumptions, the SLH framework provides solutions matching the analytical expressions given in
the main text that have been obtained from the collision-model approach presented in [18].
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The input pulse is modelled using degenerate two-mode virtual cavity source (s) whose evolution is fully
described by an SLH triple Gs = (Ss,Ls, Hs), where the unitary map Ss = I is the identity operator, Ls =√

Γ(aR, aL) is the vector of collapse operators, Hs = ℏωsa
†
RaR + ℏωsa

†
LaL is the cavity Hamiltonian, aR

(aL) is the right (left) circularly polarized cavity mode photon annihilation operator, Γ is the cavity decay rate
(pulse bandwidth), and ℏωs is the photon energy for both polarization modes. The spin-photon interface at
zero magnetic field can be modelled as a 4-level atom composed of two degenerate 2-level transitions with
the frequency ω0 and circular-polarized selection rules. The SLH triple for this system is similar to the source
cavity: G0 = (S0,L0, H0), where S0 = I , L0 = √

γ(σR, σL), H0 = ℏω0σ
†
RσR + ℏω0σ

†
LσL.

Using the series rule for SLH triples [48], the cascaded system evolution is described byG0◁Gp = (I,L, H)
where the collapse operators are L = L0 + Ls and the Hamiltonian is H = H0 +Hs + V where the cascaded
interaction potential is a sum of two Jaynes-Cummings coupling terms V = −(i

√
Γγ/2)[(σ†

RaR − σRa
†
R) +

(σ†
LaL − σLa

†
L)]. The cascaded system master equation is then ρ̇ = Lρ = −(i/ℏ)[H, ρ] +

∑
k D(Lk)ρ, where

the dissipator superoperator is D(L) = J (L) − (1/2)A(L), J (L)ρ = LρL† is the jump superoperator and
A(L)ρ = {L†L, ρ} is the anti-commutation (or amplitude damping) superoperator. Here, the Lindblad operator
Lk is the element of L corresponding to polarization k ∈ {R,L}. These operators also describe the total system
input-output relations: ak,in − ak, out = Lk = √

γσk +
√

Γak, where ak,in is the vacuum input mode to the
cavity and ak,out is the output mode after the spin-photon interaction. The solution to the system dynamics

is then formally given by ρ(t) = K(t, t0)ρ(t0), where K(t, t0) = T e
∫ t

t0
L(t′)dt′

, and T is the time-ordering
operator. The system can then be solved with standard numerical integration techniques with an accuracy
limited by the necessary truncation of the cavity energy levels.

This approach can account for pure dephasing and inefficiencies [52, 49] with a few modifications to the
master equation. To capture the pure dephasing rate of the light-matter interaction, we add the additional
terms γ⋆D(σ†

RσR) + γ⋆D(σ†
LσL). To account for inefficiencies, we add a factor

√
η on the virtual cavity mode

operators: ak → √
ηak. This is also equivalent to reducing the cross-section of the light-matter interaction.

C.1 QBhat

For a pure initial cavity and spin state, the qBhat, Bq(t) = |⟨ψ↓(t)|ψ↑(t)⟩|, can be equivalently given by the
normalized magnitude of spin coherence remaining at time t: Bq(t) = |⟨σ↑↓|σ↑↓⟩| /c∗

↑c↓, where σ↑↓ = |↑⟩ ⟨↓|.
We initialize the system in the state |Ψ(0)⟩ = (|↑⟩+ |↓⟩)/

√
2⊗|ψ(0)⟩s, where s stands for source, so that c↑ =

c↓ = 1/
√

2. Hence, Bq(t) = 2 |Tr [σ↑↓K(t, 0)ρ(0)]|, with ρ(0) = |Ψ(0)⟩ ⟨Ψ(0)|. To test the performance of
the two different input pulse states, we either set |ψ(0)⟩s = (

√
1 − n+

√
na†

H) |0⟩ for the number superposition

pulse, or |ψ(0)⟩s = eαa†
H−α∗aH |0⟩ for the coherent pulse, where α =

√
n, for 0 ≤ n ≤ 1. The source produces

a pulse of light from the quantum state prepared in the cavity with a temporal profile dictated by Γ. In the case
that Γ is constant, the pulse profile is a mono-exponential decay, which is the primary case studied in the main
text. However, it is possible to shape the input pulse amplitude f(t) by modulating Γ in time using the formula
Γ(t) = |f(t)|2/(1 −

∫ t
0 |f(t′)|2dt′). In Ref. [49], they extend this approach to define a pulse with an arbitrary

complex temporal wavefunction.

C.2 Classical measurement

In the main text we propose a classical measurement of the spin using a Michelson interferometer. The in-
put field, being a single-photon field, passes through a balanced BS whose arms contain respectively the
spin-photon interface, and a tunable phase shifter. Combining the map given by the spin-photon interac-
tion, i.e. |↑ (↓)⟩ |ψin⟩ → |↑ (↓)⟩

∣∣∣ψ↑(↓)
〉

, with that of the BS, i.e. |1, 0⟩ → (|1, 0⟩ + |0, 1⟩) /
√

2 and

|0, 1⟩ → (|0, 1⟩ − |1, 0⟩) /
√

2, we can find the final state of the field, conditioned on the spin state:∣∣∣Ψ↑(↓)
〉

= 1
2
(∣∣∣ψ↑(↓)

〉
|0⟩ − |ψin⟩ |0⟩ + |0⟩

∣∣∣ψ↑(↓)
〉

+ |0⟩ |ψin⟩
)
. (A17)

The qBhat coefficient of this system, Bqs
q = | ⟨Ψ↑| Ψ↓⟩| is identical to that computed considering the sole

spin-photon interface interacting with an input field having n̄ = 0.5. In the considered lossless system, the
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Figure A2: Bounds on the regime where the quantum advantage can be observed. a) Classical Bhattacharyya
coefficient (black curve) for the Michelson interferometer scheme using a single photon input with an efficiency of
η = 0.8 and a trion with no dephasing γ⋆ = 0. The gray region between the quantum Bhattacharyya coefficients
for the classical state input (Bcs

q , dashed blue curve) and the quantum state input (Bqs
q , solid blue curve) represents

the region of quantum advantage for this scheme. The figure for η = 1 and γ⋆ = 0.25γ looks nearly identical. b) A
map of the observed measurement efficiency relative to the classical bound in the monochromatic limit Γ ≪ γ. The
blue area below the red dashed curve shows the parameter region where the Michelson interferometer scheme using
a single-photon input performs a better spin measurement than a coherent pulse of equal energy and shape.

presence or absence of light at the detector can be used to detect the spin’s state. Then the cBhat can be
written as Bcl =

√
p↑(click)p↓(click) +

√
(1 − p↑(click))(1 − p↓(click)) where pj(click) is the probability

of a detection occurring when the spin is prepared in state |j⟩, where j ∈ {↑, ↓}.

To numerically compute the cBhat, we split the input pulse with a balanced beam splitter, resulting in the
modified SLH triple G with L = L0 + Ls/

√
2 and H = H0 +Hs +V/

√
2. The four output modes leaving the

beam splitter after the interference are then given by (L1,L2) = UBS

(
L,Ls/

√
2
)

, where UBS is a balanced
beam splitter transformation operating on the interfering polarization modes within each vector operator.

The photon annihilation operator of the Michelson interferometer output mode monitored by the detector is
given by dp = p · L1, where p is the polarization vector of the light. The probability 1 − pj of not measuring
a photon in mode dp after one input pulse is given by 1 − pj = limt→∞ Tr [ρ0(t)] [53] where the condi-
tional state ρ0 is found by removing the stochastic jump dynamics J (dp) induced by the quantum fluctuations
of mode dp from the total cascaded system master equation: ρ̇0(t) =

(
L − J (d̂p)

)
ρ0(t). In the proposed

Michelson experiment, the measurement is based on the presence or absence of light at the detector, regard-
less of the polarization. Thus, the state ρ0 conditioned on no detection is given by the equation of motion
ρ̇0 = (L − J (dR) − J (dL)) ρ0, where L1 = (dR, dL) as written in the circular polarization basis at the detec-
tor. Note that the equation of motion is unchanged if we apply a unitary transformation to L1, meaning that the
evolution of ρ0 is independent of the polarization of light detected, as is expected.

Following the above approach, we compute the quantum and classical Bhattacharyya coefficients for a coher-
ent state and a single photon input to the interferometer. When assuming ideal parameters η = 1 and γ⋆ = 0,
we acquire the plot presented in the main text Fig. 4 b. By increasing γ⋆ while keeping η = 1, we find that the
cBhatt for the single photon input Bqs

cl can be less than the qBhatt for the coherent state input Bcs
q only when

γ⋆/γ is less than around 0.25, and this occurs in the monochromatic limit (Γ ≪ γ). Similarly, by decreasing
η while keeping γ⋆ = 0, we find that Bqs

cl < Bcs
q only when η is larger than about 0.80, and this again occurs

in the monochromatic limit (as illustrated in Fig. A2 a). More generally, we look at the relative information
extraction efficiency of the measurement defined by the ratio of the logarithms log

(
B

qs
cl

)
/ log

(
Bcs

q

)
. When this

quantity exceeds 1, it implies that the Michelson interferometer implementation of the spin measurement using
a single-photon pulse outperforms a coherent pulse of the same shape and input energy. It also implies that the
Michelson scheme using a single photon outperforms any possible measurement scheme that uses a coherent
pulse where an average photon number of n = 1/2 interacts with the spin system (see Fig. A2 b).
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