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MAPIE: Model Agnostic Prediction Interval Estimator

Vianney Taquet1, Grégoire Martinon1, Abdou Akim Goumbala1, Nicolas Brunel1,2
1: Quantmetry, 52, rue d’Anjou, 75008, Paris, France

2: Laboratoire de Mathématiques et de Modélisation d’Evry, ENSIIE, University Paris Saclay
vtaquet, gmartinon, agoumbala, nbrunel @ quantmetry.com

Abstract

Estimating uncertainties associated with the predictions of machine learning models is of crucial importance
to assess their robustness and predictive power. In this contribution, we present MAPIE [1], an open-source
python scikit-learn-contrib package which implements recent resampling and conformal methods, backed by
strong mathematical guarantees, to easily estimate uncertainties for regression and classification tasks.

1 Introduction
Decision makers are increasingly relying on machine learning (ML) algorithms. It becomes therefore important
to combine the predictive performance of such complex models with practical guarantees on the reliability and
uncertainty of their results. However, robust packages that allow data scientists to readily estimate uncertainties
associated with the predictions of ML models were still lacking in the data science community.

In this contribution, we present MAPIE, an open-source package, developed at Quantmetry as a Quantlab
R&D project, re-introducing the notion of uncertainty in ML. We developed MAPIE with a two-fold objective.
First, MAPIE implements state-of-the-art uncertainty quantification methods associated with strong theoretical
guarantees on the marginal coverage. Second, MAPIE is model-agnostic and can estimate uncertainties associ-
ated with any scikit-learn-compatible estimator and can therefore be integrated in advanced and industrialised
ML pipelines. We started the development of MAPIE by implementing the jackknife+ method introduced in
[2] and its variations for single-output regression problems. We are now extending MAPIE to other settings
with critical applications in industry such as classification, time series, or image segmentation.

2 MAPIE for regression
MAPIE uses various resampling methods based on the jackknife+ strategy recently introduced in [2] allowing
the user to estimate robust prediction intervals with any kind of machine learning model for regression purposes
on single-output data. The jackknife+ method is based on the construction of a set of leave-one-out models.
Each perturbed model is trained on the entire training data with one point removed. Interval predictions are
then estimated from the distribution of the leave-one-out residuals estimated by these perturbed models. The
novelty of this elegant method is that predictions on a new test sample are no longer centered on the predictions
estimated by the base model as with the standard jackknife method but on the predictions from each perturbed
model. This small and seemingly minor change allows estimated prediction intervals to be always stable and
theoretically guaranteed.

However, the standard jackknife+ method is computationally heavy as it requires to compute as many
models as the number of training samples. It is therefore possible to adopt a lighter cross-validation approach,
called the CV+. The CV+ method acts as a standard cross-validation: K perturbed models are trained, with
K ranging typically from 5 to 10, on the entire training set with each fold removed, and the corresponding
residuals are computed. As for the jackknife+, prediction intervals are centered on the predictions performed
by each out-of-fold model. The same stability is therefore guaranteed by the theory although the prediction
intervals are usually slightly wider since each perturbed model is trained on a lower number of samples. For
even lighter computations, it is possible to adopt a split-conformal approach in which residuals are computed
on a single calibration set.

Figure 1 compares the prediction intervals estimated by MAPIE on a one-dimensional toy dataset using
the CV+ method for three base regressors: (i) a polynomial function of degree 10; (ii) a XGBoost model
using the scikit-learn API; (iii) a simple 3-layer MLP neural network using a KerasRegressor wrapper
TensorFlow. It can be seen that the prediction intervals are very similar among the base models with identical
coverages of 0.97 and interval widths all close to 2.4.
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Figure 1: Prediction intervals estimated by MAPIE for a one-dimensional toy regression dataset using a
polynomial function (left), a XGBoost regressor (middle), and a multilayer perceptron (right) as base regressor.
The toy dataset is generated from a x sin(x) function with constant noise. The dashed gray lines and blue
areas depict the 95% theoretical confidence intervals and prediction intervals estimated by MAPIE.

Figure 2: Left panel: Predictions estimated by the Gaussian Naive Bayes classifier on a two-dimensional toy
classification dataset. Other panels: Number of labels included in the prediction sets estimated by MAPIE for
different significance level α values. The toy dataset is a two-dimensional synthetic dataset with three labels.
The distribution of the data is a bivariate normal with diagonal covariance matrices for each label.

3 MAPIE for classification
MAPIE uses conformal methods to estimate prediction sets associated with any scikit-learn-compatible
classifier for multi-class problems. Instead of returning the class with the highest probability, MAPIE estimates
a prediction set of several classes such that the probability that the true label of a new test point is included in the
prediction set is always higher than the target confidence level 1−α. Conformal methods are particularly useful
for usecases requiring to classify a high number of classes, such as e-mail forwarding or image classification.
In practice, after training a base model on a training set, MAPIE computes the distribution of conformity
scores on a calibration set to estimate a quantile associated with the desired α value. Conformity scores can
for instance be the softmax score of the true class output by the model [3] or the cumulated score of all classes
until the true class is reached [4]. Finally, MAPIE creates a prediction set for a new test point that includes all
classes whose conformity score is higher than the estimated quantile. Split-conformal and cross-conformal
variations are both included.

Figure 2 compares the number of labels included in the prediction sets estimated by MAPIE using the
"score" strategy for different significance levels α on a toy classification dataset. The apparition of empty
prediction sets is a corner case when the confidence level is too small but can be managed with post-processing
such as completion algorithm [3]. For smaller α values, MAPIE emphasizes these ambiguous regions with
prediction sets containing several labels.

4 References
[1] https://github.com/scikit-learn-contrib/MAPIE/

[2] Rina Foygel Barber, Emmanuel J. Candès, Aaditya Ramdas, and Ryan J. Tibshirani. "Predictive inference
with the jackknife+." Ann. Statist., 49(1):486–507, February 2021.

[3] Mauricio Sadinle, Jing Lei, and Larry Wasserman. "Least Ambiguous Set-Valued Classifiers With Bounded
Error Levels." Journal of the American Statistical Association, 114:525, 223-234, 2019.

[4] Yaniv Romano, Matteo Sesia and Emmanuel J. Candès. "Classification with Valid and Adaptive Coverage."
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Consistent Probabilistic Sufficient Explanations via random Forests
Salim I. Amoukou 1 and Nicolas J.B Brunel 2

Abstract

To explain the decision of any model, we extend the notion of probabilistic sufficient explanation (P-SE). For each

instance, this approach selects the minimal subset of features that is sufficient to keep the same prediction with high

probability, while removing the other features. Our P-SE can deal with regression, non-binary features, without learning

the law of X. We also prove the consistency of our method.

1 Introduction

Many methods have been proposed to explain the prediction of a black-box model from different perspectives, including

model agnostics approaches (LIME, SHAP, Anchors), or logic-based [1, 2].

In this paper, we generalize the concept of probabilistic sufficient explanations (P-SE) introduced in [3] which is a

relaxation of logic-based explanation (e.g. [2]). It explains the classification of an instance by choosing the minimal

subset of features such that only observing those features is sufficient to give us strong probabilistic guarantees that

the model will behave similarly, no matter what is observed for the remaining features. This subset is called sufficient

explanation (also known as sufficient reason or prime implicant [1, 2]). Note that it may not be unique.

Our contributions are as follows: we extend the P-SE to the regression case and make it support non-discrete

features. Second, our method allows us to explain any data generating process not only a specific model and we no

longer need to learn the law of X. Third, to deal with the non uniqueness of the sufficient explanation, we introduce

probabilistic local explanatory importance, which indicates how frequent each feature is in the set of all sufficient

explanations. Last, we prove the consistency of our method.

2 Probabilistic Sufficient Explanations for Regression

Let assume we have a sample Dn = (Xi, Yi)i=1,...,n i.i.d distributed as (X,Y ) ∼ P(X,Y ) where X ∈ Rp, Y ∈ R. Without

loss of generality, we assume that Y is the output of a measurable function f i.e Y = f(X).

In our framework, the explanations of an instance x is the minimal subset xS , S ⊂ [p] such that given only those

features, with high probability under the data distribution p(X), the model makes ”almost” the same prediction as on the

full example. The main probabilistic reasoning tool that we use for our explanations are the Same-Decision-Probability

(SDP) [4]. Below, we propose a definition of the SDP in the regression setting:

Definition 2.1. (Same Decision Probability of a regressor). Let f : X −→ Z a regressor, the Same Decision

Probability at level t of coalition S ⊂ J1, pK, w.r.t x = (xS ,xS̄) is

SDPS (f ;x, t) = P (d (f(xS ,X S̄), f(x)) ≤ t |XS = xS )

In a regression setting, the SDP gives the probability to stay close to the same prediction f(x) at level t, when

we fixed XS = xS or when X S̄ are missing. The higher is the probability, the better is the explanation based on S.

Therefore, we focus on the minimal subset of features such that the classifier makes the same decision with a given

(high) probability π, given only them. Formally:

Definition 2.2. (Minimal Sufficient Explanations). Given a model f , an instance x = (xS ,xS̄), S , S?π(x) is a

Sufficient Explanation for probability π if SDPS?π(x) (f ;x, t) ≥ π and no subset Z of S?π(x) satisfies SDPZ (f ;x, t) ≥ π.

Hence, a Minimal Sufficient Explanation is a Sufficient Explanation with minimal size.

For a given instance, Sufficient Explanation or Minimal Sufficient Explanation may not be unique. We denote C-SE

as the set of all Sufficient Explanations, and M-SE as the set of Minimal Sufficient Explanations. Therefore, we propose

to compute the following local importance summary for each variable:

Definition 2.3. (Local Explanatory Importance). Given a model f , an instance x = (xS ,xS̄), S , S?π(x) and its

C-SE or M-SE. The local explanatory importance of Xi is how frequent Xi is choose in the C-SE or M-SE.

2.1 SDP and Sufficient Explanations via Random Forest

In order to find the coalitions S?π(x), we need to compute the SDP for any subset S. However, computing the SDP is

known to be computationally hard, even for simple Naive Bayes model, the computation of SDP is known NP-hard.

To consistently estimate the SDP, we propose a variant of the Random Forest algorithm. The algorithm is based on

two ideas: Projected Forest [5, 6] and Quantile Regression Forest [7]. The projected Forest is an adaptation of random

Forest algorithm that consistently estimates E[Y |XS = xS ] instead of E[Y |X = x], and the Quantile Regression Forest

uses the Random Forest algorithm to go beyond condition mean estimation and to estimate conditional distribution

function P (Y ≤ y|X = x).

1LaMME, University Paris Saclay, Stellantis Paris, salim.ibrahim-amoukou@universite-paris-saclay.fr
2LaMME, ENSIIE, University Paris Saclay, Quantmetry Paris, nicolas.brunel@ensiie.fr
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The algorithm that estimates the SDPS (f ;x, t) can be described as follows: we drop observations down the

initial trees of a trained Random Forest, ignoring splits which use a variable outside of S i.e when a split involving

a variable outside of S is met, data points are sent both to the left and right children nodes. Consequently, each

observation falls in multiple terminal leaves of the tree. We drop the new query point xS down the tree, following

the same procedure, and retrieve the set of terminal leaves where xS falls. Next, we collect the training observations

which belong to every terminal leaf of this collection, in other words, we intersect the collection of leaves where

xS falls. Finally, we average the outputs 1d(Yi,f(x))≤t of the selected training points to generate the estimation of

SDPS (f ;x, t) = P (d (f(xS ,X S̄), f(x)) ≤ t |XS = xS ). The estimator is defined as

ŜDPS (f ;x, t) =

n∑
i=1

w
(xS)
n,i (xS ; Θ1, . . . ,Θk,Dn)1d(Yi,f(x))≤t, (2.1)

w
(xS)
n,i (xS ; Θ1, . . . ,Θk,Dn) = 1

k

∑k
l=1

1
Xi∈A

(xS)
n (xS ;Θl,Dn)

N
(xS)
n (x;Θl,Dn)

is the classic weight of an observation i in a Random Forest

[8] but applied to the Projected forest, where k is the number of trees, Θl the random parameter vector that determines

how the l-th tree is grown (e.g. which variables or observations are considered for split at each node), A
(xS)
n (xS ; Θl,Dn)

is the leaf of the associated Projected l-th tree where xS falls and N
(xS)
n (x; Θl,Dn) is the number of observation that

falls in A
(xS)
n (xS ; Θl,Dn). Below, we show the uniform a.s. consistency of our estimator.

Theorem 1. Consider a model f and a random forest which satisfies mild Assumptions (4.1-4.3 in [9]) then,

∀x,∈ Rd,∀S ⊆ [p], sup
t∈R
|ŜDPS (f ;x, t)− SDPS (f ;x, t) | a.s−→

n→+∞
0 (2.2)

With 2.1 we can estimate directly the SDP from a sample Dn. However, finding the C-SE/M-SE using a greedy

algorithm is computationally hard, since the number of subsets is exponential. Therefore, we propose to reduce the

number of variables by focusing only on the most influential variables. We search the sufficient explanations in the

subspace of the 10-variables frequently selected in the forest used to estimate the SDP, reducing the complexity from 2p

to 210. This selection procedure is already used in other works [5, 10], and it is mainly based on Proposition 1 in [11],

which highlighted the fact that forest naturally splits the most on influential variables.

3 Conclusion

An important finding of this work is the generalization of the P-SE in a more realistic context, and the ability to

compute efficiently and consistently the SDP for any distribution P(X,Y ) under mild assumptions. An open question in

SDP is the choice of t and π that might depend on the context and the corresponding admissible error. A natural

choice is to relate t to the prediction variance, that can be estimated by resampling techniques.
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Mathematical Programming Approaches for AI 
models Verification and Certification  
Hatem Ibn Khedher [1]
[1] Capgemini engineering R&I France, 2 rue Paul Dautier, CS 90599, 78457 Vélizy Villacoublay

CONTEXT 
Neural Networks
Uncertainty in AI

OBJECTIVE
The goal of our project was to deploy, evaluate, model a robust AI models. This models could be used for future 
networks and applications. We defined our success according to the following objectives:

• New formulation based on linear programming approach modelling adversarial attacks.
• Efficient technique for verifying neural networks properties

CONCLUSION
We proposed a new optimization technique for adversarial 
attack process. We considered the integration of new constraints 
such as the number of perturbed inputs
Then, we examined the safety of neural network  models 
against input perturbations i.e. in an uncertain
environment.

PERSPECTIVE
• Extend our modelling to other deep learning architectures 

such as Convolutional Neural Network (CNN) and Long Short-
Term Memory (LSTM)

• Validate our proposed approaches on real use cases such as 
self-driving cars etc.

• Extend our study to other activation functions and DNN 
parameters

Background Testing and Evaluation: adversarial attack

Trustworthy AI models: an adversarial attack

A Deep Neural Network is a extension of neural network with
several hidden layers. It consists of three typical types of layers:
an input layer, some hidden layers of neuron computations and
an output layer. Each neuron is a simple processing
element that responds to the weighted inputs it received from other 
neurons.

optimal adversarial attack approach that tells you about the 
minimal perturbation that brakes the AI model.

Trustworthy AI models: certification

Then, verify and certify you AI model. 

Testing and Evaluation: Certification

• The linear approach is slightly efficient
• in terms of perturbation cost. 
• It outperforms the quadratic one in terms 

of PPI
• The efficiency and feasibility of our 

algorithm is justified in terms of average 
execution time

Execution time (sec)

Perturbation cost TPC)

Perturbed inputs (PPI)

Convergence time

Single versus multi outputs

Neural network models
• The rapid convergence to optimal 

solutions even for large problem 
instances. 

• The scalability of our proposed Big-M-
based approach to the optimal solution 
under different scenarios and NN models

Abstract 
Breaking deep neural networks with adversarial attack requires an intelligent approach that decides about the 
maximum allowed margin in which the neural network decision is invariant. We propose a new formulation based on 
linear programming approach modelling adversarial attacks. Then, propose an efficient technique for verifying deep 
neural networks properties and certifying the artificial intelligence model.



The Data Curation Canvas – a Data-centric Approach to Trustful AI 
Dr. Stefan Suwelack, Renumics GmbH 

Abstract 
We present the Data Curation Canvas as a template for collaboratively curating optimal training data sets. This 

hands-on method empowers engineers to develop more trustful ML models for applications in engineering and 

manufacturing in a data-centric way.  

Introduction 
Data-driven tools methods have become valuable tools in engineering and manufacturing. They allow to speed-

up development cycles and to optimize complex production systems. Applications include anomaly detection 

and root cause analysis for test and simulation data, efficient surrogate modeling for complex simulations, 

better quality control as well as automation of manual modeling tasks. A key success factor for these tools is 

the trustworthiness of the ML-methods. In this context, the reliability and the explainability of ML models are 

especially important. There are three reasons for this: 

1. ML-based solutions typically contain interactive interfaces: Users can override or correct ML-based 

suggestions. In these scenarios it is very helpful to know how reliable the results of the ML model are 

for a specific datapoint. 

2. The introduction of data-driven methods into engineering workflows is a huge change management 

task. Experienced engineers need to develop an understanding of the capabilities and limitations of 

ML-based tools. Methods that illustrate and explain the results of data-driven algorithms can be very 

helpful for this. 

3. The use of data-driven methods in highly regulated or safety-critical environments is still very limited. 

The lack of reliability and explainability are the most important hurdles for adoption. 

Methods 
Significant research has been carried out in the context of explainability and uncertainty quantification of ML 

models [1]. The developed methods can be categorized into model-based approaches (white box machine 

learning models) and post-hoc methods that are used in combination with traditional black box models [2].  

 

Fig.1: Domain experts and data scientists create a trustful ML model by iterating through the cycle outline by 

the Data Curation Canvas 



We build on top of established post-hoc methods to formulate a pragmatic data-driven workflow for 

developing trustful ML-models. A key idea is to empower domain experts and data scientist to collaboratively 

curate optimal training data sets by monitoring the performance of the model. In this context, the monitoring 

is based not only on model predictions, but on additional information such as similarities, uncertainties or 

feature importances. Similar workflows have been successfully implemented in the development of data-driven 

driver assistance systems [3]. We formalize the approach with the “Data Curation Canvas” (Fig. 1). This 

collaborative template draws inspiration from canvas-based methods that are very popular for agile 

development of products and business models [4].  

The goal is to establish a cycle between data Collection, Ingestion and model validation in a way that the 

dataset (and in turn the ML model) is improved until a desirable level of reliability is reached. The main task 

within the framework is for the data scientist and the domain experts to identify suitable training datasets: 

They must identify populations (i.e. segments) in the data and decide which range of populations the ML-tool 

has to cover and which training data has to be collected. Furthermore, they must identify robust features that 

can be used by the ML method and (in the case of supervised learning) they need to establish robust 

annotations of the datapoints. To do that, they use information from one or several ML models. For that 

purpose, they not only use raw predictions, but other types of information with regards to the Reliability and 

Explainability of the model. In terms of Reliability this includes information about the sensitivity of the output 

towards input perturbations as well as information about the aleatoric and epistemic uncertainty (e.g. through 

Bayesian neural networks). Furthermore, post-hoc Explanations such as feature importances (e.g. through 

Shapley-values) or similarity measures (e.g through embeddings) are used. This analysis benefits from the 

possibility to bring all this information into a single interactive application (Fig. 2). 

 

Fig.2: Prediction scores, ground truth values and embeddings are used to qualitatively understand and improve 

a training dataset for 3D object classification. 
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Abstract—Software engineers must cope with a broad range of
development tasks, in addition to mastering a business domain
that is sometimes unknown at first. A solution to alleviate their
workload is to integrate Software Assistants in their development
environment, offering new knowledge and features. However, to
achieve successful collaboration, software engineers must trust
these systems and their suggestions. This poster identify different
research lines on fostering trust between software engineers and
their software assistant, and introduces our solution to build
trust-centered assistants applied for software modeling.

Index Terms—Trust, Modeling Assistant, Software Engineering

I. INTRODUCTION

Software Engineering is a broad term covering a wide
variety of tasks, described in the ISO12207 standard [1].
Although this software lifecycle is often distributed today be-
tween several teams, the work of software engineers consists in
the mastering of various tasks, framed with company-specific
productivity criteria. At the same time, software engineers
must learn to master complex business domains to achieve the
expected software systems. These tasks require knowledge that
software engineers must acquire during their career and apply
by working with software tools.

While tools to support software engineering have not
stopped evolving since their appearance around the 1960s,
they still struggle to integrate knowledge in a form that could
help software engineers. For example, debugging tools have
become common in most development tools nowadays, and
facilitate a specific task in the development work. In particular,
they allow to execute a program step by step, and to locate
an error in the code. However, in order to understand an
error, or the behavior of a piece of code, software engineers
must regularly quit their development environment to find their
answer online, as for example on StackOverflow [2]. These
context switches are responsible for a decrease in productivity,
concentration, and satisfaction. They occur on all tasks of the
software life cycle as soon as it involves a software tool.

Software assistants are a solution to bring knowledge into
the working environment of software engineers. However, for
them to be useful, they must be accepted by software engineers
[3], what depends on the notion of trust. Software assistants
must display trust indicators and provide specific behavior to
enable trust to grow in the human-assistant collaboration .

The criteria for building this relationship of trust between the
system and the user apply to all levels of the system, including
the knowledge base, the algorithm, and the user interface. They
must be discussed and considered at the system design stage
in order to be implemented.

II. BACKGROUND

A. Supporting Software Engineering: Software Assistants

Tools for programmers naturally exist since the beginning
of Software Engineering around 1960. At that time, they were
single tools focused on some specific tasks of the SE life cycle,
cumbersome to use, and acting in isolation of each other. A
new wave of systems then gradually replaces tools with more
comprehensive functionalities, and fall under the emerging
field of Computer-Aided Software Engineering (CASE) tools,
which lay the foundation for modern-day IDEs. As environ-
ments improve, other issues emerge such as the need for
collaboration to produce ever more complex systems, which
paves the way for the Computer-Supported Cooperative Work
(CSCW) community and more specifically the Collaborative
Software Engineering (CSE) community. The CSE community
then seeks to enhance environments to cope with different
forms of collaboration.

During the 90’s, the agent research fields explodes and
brings to light a new opportunity for collaboration: that with
the machine acting as an autonomous system with which users
(or other agents) could interact and work.Some agents are
refined into intelligent agents that are reactive, proactive, and
social agents tailored for human-agent collaboration. However,
due the lack of computing resources and/or data to exploit,
such agent-based systems never became mainstream in Soft-
ware Engineering [4].

Since, the broad Software Agent community has remained
active, and has branched into several sub-categories. Particu-
larly, the notion of conversational agent (a.k.a. bot or chatbot)
is gaining importance in the last years, and has appeared in
the sectors of customer support or video game [4], [5]. In
2016, Storey and Zagalsky laid the foundation for research
on bots in software engineering and described how bots are
increasingly used to support tasks that traditionally required
human intelligence [6]. It has particularly been applied to Soft-
ware Engineering to create BOTse [7] or DevBots [4] (bots for
Software Engineering) [8]. A consensual definition established



during the BOTse Dagstuhl seminar in 2020 [7] defines bots as
systems featuring at least one of the following characteristics:
(i) automates one or more feature(s), (ii) performs one or more
function(s) that a human may do, (iii) interacts with a human
or other agents.

At ICSE’06, Boehm predicted a new kind of developer-
helping systems for 2020 as ”that provide feedback to de-
velopers based on domain knowledge, programming knowl-
edge, systems engineering knowledge, or management knowl-
edge” [9]. The description of previous bot systems is almost
inline with these expectations but still lacks one essential
characteristic that Boehm described as “the use of knowledge”.
Storey et al. [6] identify bots embedding knowledge as one
specific type of bots. Thus, knowledge appear as an inflexion
point, which opens the way for the study of a specific type
of systems–knowledge-empowered DevBots–that we will call
software assistants for Software Engineering.

B. Trust in Software Assistants

Software assistants aim to embed knowledge into the work
environment of software engineers. Thus, they are capable of
providing suggestions and recommendations, and can be per-
ceived as specific recommender systems. As choices made by
designers during modeling do not reflect their personal tastes
but rather the project constraints to respect, software assistants
might rely on a hybrid of content-based and knowledge-based
approaches.

To the best of our knowledge, nothing in available re-
search literature addresses the notion of trust for such hybrid
recommender systems. We analyzed multiple prior works to
help us frame our approach. Because recommender systems
are information systems, we gathered articles linking both
information and trust [3], [10] and cross-referenced them
against literature pertaining to trust and evaluation of recom-
mender systems [11], [12]. To analyse the contents of all these
papers, we constructed a model (shown in Figure 1), which
represents a consolidated conceptual model of trustworthiness
in recommender systems. (Note: The greyed-out elements in
this diagram are not relevant to the discussion in this poster.)

In this initial work, we focused on the impact of Perceived
Usefulness, Perceived Transparency, and Perceived Control
towards increasing the trustworthiness potential of our system.
In particular, we addressed the following characteristics: In-
formation Trustworthiness, Information Transparency, System
Transparency and System Control.

III. POSTER CONTENT

This poster presents a discussion of the application of infor-
mation trustworthiness to the design of Software Assistants,
based on the literature related in Section II-B. It also presents
statistics collected during our systematic literature review of
software assistants for software engineering, and our modeling
experts interviews. Finally, it presents our approach to the
design of software assistants applied to software modeling
[13]. We propose a link1 to our prototype of software modeling

1https://youtu.be/6mxoJOhwgbk

Fig. 1. A conceptual model of trustworthiness in recommender systems.

assistant for the Papyrus2 modeling tool, based on Eclipse and
developed by the CEA.
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Domain adaptation for COVID-19 detection on lung
ultrasound imaging

Abstract

Medical imaging is often susceptible to significant experimental bias, for example by the use of different hardware and
protocols. Combined with the fact that medical datasets are often small, due to the difficulty of collecting sensitive
data, applying deep learning models raises several challenges. We report preliminary results on forcing a CNN classifier
to learn domain-invariant representations of COVID-19 features on lung ultrasound images by using domain
adaptation.

Alexandre Autret[a], Armin Dietz[a], Lorena Gayarre Peña[a], Gaël Richard[a], Alexandre Carlot[b], Clément Le Couedic[b], 
Mehdi Benchoufi[b,c] and Elsa D. Angelini [d]

Introduction

One of the most common difficulties with training a
classifier on medical images is the large domain shift
introduced by data being collected in various hospitals:
different hardware, protocols, and setups can lead to very
different data, and it can be difficult to ensure that a given
classifier learns features robust enough to handle a new
source of data. A traditional approach for solving this
problem has been domain adaptation. Schoenauer-Sebag
et al. designed an adversarial domain adaptation
architecture, MuLANN[1], based on DANN[2], for
microscopy data from varying experimental setups. In this
study we evaluate the benefits gained from MuLANN to
classify lung ultrasound images for COVID-19 detection
based on a training cohort from two probes used in two
different hospitals.

Methods

Our dataset was comprised of 1,288 lung ultrasound
videos from 161 patients, coming from 2 different
hospitals and probes (see figure 1). Eight videos were
acquired per patient, at 8 distinct locations in the chest.
Binary labels were provided per-video by clinical experts,
and defined as 0=healthy and 1=pathological. A single
patient could then have videos labelled as healthy and
others as pathological. A maximum intensity projection
was applied to encode the videos into static images, to
save computational resources and to highlight artifacts
characteristics of COVID19 lesions.

Fig. 2: Real sample (left) compared to two synthetic samples. 
Middle one show how ADASYN preserves important artifacts, 

while the one on the right shows the only issue certain synthetic 
samples would have: minor interpolation issues on the edges.

Regular oversampling of the minority class was also
tested, but the model would still consistently predict
most datapoints as belonging to class 0. ADASYN was
therefore necessary, and was applied to each probe
type (domain) separately, as they have specific image
resolution, and combining them would lead to
interpolation issues (see figure 2).
We compared two CNN classifier models: A traditional
VGG-16[4]-based CNN with pretrained convolution
layers on the ImageNet dataset, and the same
architecture extended with an adversarial module for
domain adaptation as described in MuLANN[1]. Each
model was trained for 25 epochs using stochastic
gradient descent, with a data split of 80-20% for
training and validation sets, stratified by classes and
domains.

[a] Capgemini Engineering, France. Authors contact: alexandre.autret@edu.devinci.fr and armin.dietz@capgemini.com
[b] echOpen factory, 67 rue Saint-Jacques, 75005 Paris, France
[c] Université de Paris, Centre of Research in Epidemiology and Statistics (CRESS), French Institute of Health and Medical Research (INSERM), National Institute of Agricultural Research (INRA), Paris, France
[d] LTCI, Telecom Paris, Institut Polytechnique de Paris, France

Fig. 3: Validation accuracy per epoch per domain without 
domain adaptation (left) vs. MuLANN (right).

Fig. 1: Images from two different ultrasound probes, 
recorded at two different hospitals.



Conclusion

Architectures such as DANN and MuLANN can be
effective on medical imaging, and domain adaptation
should be considered whenever a model is expected to
be used on medical data from multiple sources. However,
domain adaptation alone may not always be sufficient,
especially on small datasets, so data augmentation
techniques can be used to supplement it, such as ADASYN
to counter class imbalance. It could be interesting to
study the effect of other data augmentation techniques
like SamplePairing[6] and MixUp[7], which can be used to
generate additional samples and ensure that more robust
features are learned.
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Results

Domain adaptation significantly improved overall
validation accuracy, from 68.6% to 78.6%. As shown on
the accuracy curves in figure 3, our model without
domain adaptation would very effectively learn from
data from one probe, but wouldn't learn from the other
at all. With MuLANN, our model effectively learned on
data from both probes simultaneously.
To further visualize the effectiveness of domain
adaptation, we performed a t-SNE[5] projection on the
model's latent space and colored each point in the
whole-cohort based on its class (figure 4) and domain
(figure 5). With MuLANN, we can see a distinct boundary
between classes while there is some large overlap
without domain adaptation.

Fig. 4: t-SNE of model's latent space at last epoch, with each 
point colored w.r.t its class (green=healthy, red=pathological). On 
the left, without domain adaptation, On the right, with MuLANN.

When we analyze the features by corresponding
domains, we can see that without domain adaptation,
the model seems to have learned to discriminate the
domains, in separate areas within class-specific clusters.
With MuLANN, the domains appear more evenly
distributed in both clusters.

Fig. 5: t-SNE of model's latent space at last epoch, with each 
point colored w.r.t its domain (blue=hospital 1, red=hospital 2). 

On the left, without domain adaptation, on the right, with 
MuLANN.

Discussion

As shown by the accuracy curves, without domain
adaptation, the model learned very effectively on source
domain data (orange), at the expense of the target
domain (blue).
MuLANN significantly improved target domain accuracy,
at the cost of slightly reducing source domain accuracy.
One possible interpretation is that a domain-invariant

representation of data made the model perform similarly
across domains, rather than perform well on one domain
on which it may rely on domain-specific features, at the
cost of reduced performance on other domains, as was
the case without domain adaptation.
The fact that the learning curves for each domain evolve
similarly seems consistent with this idea.
As shown by the t-SNE plots, without domain adaptation,
the model seemed to discriminate domains as much
classes, which wasn't the case with MuLANN.
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Is active learning better than random selection for real-word tasks ?

Fritz Poka Toukam, Thomas Dalgaty, Hedi Ben-Younes
Nicolas Granger, Spyros Gidaris, Camille Dupont, Oriane Simeoni

EC5-FA6

Abstract

In real-world problems, datasets typically do not come with a complete set of annotations. Annotation is a very expensive
process for industry. This is the case in particular for object detection tasks; an annotator must locate all objects in an
image with a bounding box and give each a label. In order to reduce costs, different schemes can be put in practice, e.g.
self-supervision and semi-supervision methods. Deep Active Learning is a another relevant strategy whereby an acquisition
function is used to select a subset of the most useful images within a large unlabelled pool to be labelled by an expert.
Typically, active learning has been applied to datasets that do not necessarily reflect well the characteristics of those found
in industrial problems. We propose here to apply active learning in the object detection setting to more realistic datasets of
driving scenes, and to study its combination with unsupervised learning paradigms.

Introduction

The characteristics of real-world machine learning problems often do not correspond to the tasks used for benchmarking within
the artificial intelligence community. Notably, real-world datasets are often composed of a large amount of unlabelled data.
Labelling data is expensive and time consuming, and therefore it is not a practical route towards deploying an industrial system.
Some unsupervised machine learning paradigms, namely self-supervised [3, 1] and semi-supervised [10, 6] learning, offer a means
to make use of this unlabelled data.

Another idea is active learning [2] (Fig.1 (left)), which is an approach that seeks to train a model using a small labelled
subset of the available data. This occurs over several active learning cycles. A model is trained on an initial seed of annotated
images that are, most often, randomly selected.

All of the unlabelled data-points are then assessed using an acquisition function that aims to score each unlabelled data-point
based on some measure of uncertainty [4] or diversity [9]. The images with the highest score, ideally corresponding to the most
relevant images to the model, are then labelled by an oracle and added to the labelled pooled used in the next cycle of training.
During successive active learning cycles the model will gradually improve as it integrates more of the data. Ideally, after a certain
number of cycles (or after a labelling budget has been exhausted) the performance of the model should approach that of a model
trained through a supervised approach - normally requiring only a fraction of the labels.

While active learning has been applied successfully to image classification, many questions remain: how can diversity be
ensured in the labelled set, how to account for class imbalance, how will these methods extend to real world problems? Further-
more, more complex, and potentially more industrially relevant tasks and models, for example instance segmentation and object
detection, and their combination with unsupervised learning approaches have not been well explored.

We aim to apply active learning to object detection in real-world industrial datasets (i.e., Woodscape [11] - Fig.1(right)).
Additionally, we propose to investigate how unlabelled data can be best leveraged via the combination of active learning with
unsupervised learning approaches.

Figure 1: (left) A cartoon of the active learning cycle. (right) An example real-world data point (from Woodscape [11])
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Some first results

As a starting point for our experiments, we apply a fast object detection model widely used in industry (YOLOv5 [5]) to object
detection. We report results from two different scenarios: (i) we use a YOLOv5 model with random initialisation, (ii) we pre-
train the model on the COCO dataset [8]. The COCO dataset shares common classes to our datasets of interest, namely the
classes person and car, however the type of data are significantly different. We investigate several active learning baselines on
the BDD100K dataset [12] - an autonomous driving dataset with 10 classes and 70 000 images in the training set. We consider
a budget of 700 images per cycle and perform 10 active learning cycles, therefore using at most 7000 images. The figure 2 shows
the mean Average Precision at 50% of IoU (mAP50) obtained with the model trained on the labelled set at the end of each cycle.
We observe that, in both scenarios, the best results are achieved with the maximum uncertainty selection acquisition function
which scores each data-point based on the highest entropy calculated amongst detected objects. Furthermore, When using the
COCO pre-training, we achieve 52.5 mAP with 10% of the dataset vs 59.6 mAP with the full dataset. Without pre-training we
achieve 49.5 mAP with 10% vs 58.3 with the full dataset. Results with active learning are also significantly better than when
random selection is performed.

Figure 2: Plots of the mean average precision (mAP) at 50% intersection-over-union, with the number of labelled images for
(left) a model pre-trained on the COCO dataset [7] and (right) a model with no pre-training.

Figure 3: Distribution of the three types of meta-data over the training set of the BDD100k dataset.

Perspectives

We achieve promising results on the large dataset BDD100k with classic active learning methods. We are currently investigating
how those results can be improved, and in particular how unlabelled data can be best integrated to the active learning setup.
Self-supervised and semi-supervised methods are known to achieve great results by themselves, but it is less clear how active
learning can best benefit from such paradigms. We also consider using the meta-data stored during the image acquisitions. In
particular, the Figure 3 shows the distribution of values over the training set for the three different type of meta-data proposed
in the dataset BDD100k. We are currently testing methods to best incorporate this information.
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ABSTRACT 
 

 
The first experiments in predictive maintenance done for aircraft engines almost 
10 years ago have attracted all industries. The average annual growth rate of 
predictive maintenance was 53.65% between 2015 and 2020 in France. 

 
With this emergence of predictive maintenance, machine learning and artificial 
intelligence approaches have been extensively applied in industry for handling the 
health status of equipments. 
 
Time series anomaly detection has been an important topic in data science, with 
papers dating back to the 1950s. 
In recent years, there has been an explosion of interest in this topic, much of it 
driven by the success of deep learning in other domains and for other time series 
tasks. 

 
Massive amounts of operational and processes conditions data are generated from 
several equipments, but most data is not complete, has not good quality and are 
poorly labelled. 
Most of time series available in industry doesn’t have any seasonality, cyclicity or 
evident pattern. 
 
The objective of the poster is to test several Machine Learning technics for anomaly 
detection on problematic univariate time-series with minimal pre-processing on 
data. 
 
Algorithms tested are: 
- Clustering based methodologies: 

DBSCAN 
- Classification based: 

Isolation forest; 
OneClassSVM; 

- Prediction based: 
   Auto-ARIMA; 
  TBATS; 
  Quantile Gradient Boositng. 
- Deep Learning based: 

LSTM Autoencoders. 
 

Classical methods usually used for anomaly detection on time series have a 
much more questionable behavior when the data series are coming 
from heterogeneous operating situations. 
Most of machine learning approaches show their limits due to the 
nature of the data, and get easily outscaled by more basic methods like 
defining a threshold. 
 
 
Keywords: predictive maintenance; machine learning; anomaly detection; time 
series 
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Abstract

Many machine learning models output a single prediction without any measure of uncertainty, or with hardly inter-
pretable ones. In the context of the project EC3 in Confiance.ai, the fifth action sheet, called “Predictive Uncertainty
Quantification”, aims at associating meaningful and rigorous measures of uncertainties, such as prediction intervals,
to regression tasks. They are applied to a time series use case provided by Air Liquide.

1 Air Liquide Use Case

Among the first industrial use cases accepted in Confiance.ai, Air Liquide proposed a time series use case focused on
forecasting customers’ demand. In fact, the production units at Air Liquide should guarantee that all customers are
always in supply. Therefore, predicting the future trends of customer demands based on historical data, as precisely as
possible, is highly useful for the production sites and dispatchers.

The use case includes a dataset on historical consumption, customers and orders data, geographical distribution,
seasonality and contextual data, as well as an XGBoost regression model predicting future values of the target variable.
However, this model provides no measure of uncertainty, which can have a great impact on production and operations,
leading to energy loss or customer dryout. Since this is a regression problem, we aim to construct Prediction Intervals
(PI) to quantify uncertainty in the forecasts. These intervals can be interpreted as error margins on the predictions,
yielding upper and lower bounds containing the true labels with high probability. If they are guaranteed, they can
increase the trust in the predictions of the single-value forecast model.

2 Predicting Uncertainty Intervals

For a time series Y (Observations) associated with a series of explanatory variables X (Features) and for an (1 − α)%
confidence requirement: the aim is to build PIs, by estimating the uncertainty associated with an observation y from
these attributes x, and a miscoverage probability α. As uncertainty can vary according to features and is not directly ob-
served, estimation will often build upon the variability in the forecasting residuals as an intermediate to reach uncertainty.

Our first experiment consists in evaluating a forecasting model (Gradient Boosting Regressor) several ways, to per-
form Uncertainty Quantification (UQ) in order to build PIs. A Gradient Boosting Regressor is an ensemble learning
model that combines several weak predictors (Decision tree) to perform regression. The Boosting mechanism aims to
successively add weak learners (Tree) to correct errors of the current model that combines the weak models learned so far.

Gradient Boosting can also be used to quantify uncertainty by performing quantile regression using the quantile loss,
which penalizes positive and negative errors in a antisymmetric way in order to approximate quantile qβ(x) = inf {y :
F (y |X = x) ≥ β}. By fixing lower and upper thresholds αlo and (1− αhi) so that αlo + αhi = α, we can estimate the
PI as CGB(x) = [ q̂αlo

(x), q̂1−αhi
(x)].

Uncertainty Quantification can also be performed by Conformal Prediction (see Section 3). Our experiments aim to
perform robust evaluation on real data of PIs quality obtained by the different UQ techniques through two metrics: the
Average Coverage Error (ACE), the difference between the actual and expected global coverage, and the Sharpness,
the average size of the prediction interval.



3 Conformal Prediction and Prediction Intervals

Conformal Prediction (CP, Vovk et al. 2005) is a set of distribution-free, non-asymptotic, model-agnostic methods to do
UQ by constructing PIs whose probability coverages are backed by theoretical guarantees.

Specifically, given exchangeable training and test data1 drawn from PX,Y and a fixed miscoverage probability α ∈
(0, 1), CP yields a prediction interval Ĉα(·) such that

P
(
Y ∈ Ĉα(X)

)
≥ (1− α) (1)

holds, on average. In particular, over many test predictions, Ĉα(X) will contain the true values Y with a frequency of

at least (1−α)%. For example, the PI can be constructed from a regression function f̂(·) or a quantile regressor q̂(·) as:

Ĉα(X) =

{
f̂(X)± δfα δfα ≥ 0, f̂(·) : regression function

[q̂αlo
(x)− δqα, q̂1−αhi

(x) + δqα] δqα ∈ R, q̂(·) : quantile regression function

The quantities δfα and δqα are derived from the (1 − α)-th empirical quantile of specifically designed regression
residuals, known as nonconformity scores, proper to each CP algorithm, computed by evaluating the predictor on
held-out calibration data. The width of the interval is tied to the quality of the predictor and the uncertainty of the
phenomenon, and can be used to quantify uncertainty. Since Equation 1 is guaranteed to hold for any prediction model,
CP can be extended to calibrate pre-trained models, given some new calibration data Dcalibration ∼ PX,Y .

3.1 Conformalized Quantile Regression for Uncertainty Quantification

The state-of-the-art approach in CP is based on quantile regressors (Gupta et al., 2019). Here, we present the first
results we obtained with Conformalized Quantile Regression (CQR) by Romano et al. (2019): after splitting dis-
jointly the data as Dtrain = {Dfit, Dcalibration}, we fit a Gradient Boosting quantile regressor on Dfit, and compute the
nonconformity scores Ri = max{q̂αlo

(Xi)− Yi, Yi − q̂1−αhi
(Xi)} for every (Xi, Yi) ∈ Dcalibration, yielding R̄ = {Ri}.

For a new test point Xnew, the CQR Conformal PI then boils down to:

ĈCQRα (Xnew) =
[
q̂αlo

(Xnew)−Q1−α(R̄), q̂1−αhi
(Xnew) +Q1−α(R̄)

]
, (2)

where Q1−α(R̄) is the (1− α)(1 + 1
|Dcalib| )-th empirical quantile of R̄.

Following the metrics specified in Section 2, we obtain a promising empirical coverage of 0.874 for a nominal (1−α) =
0.9 and ACE = |0.9− 0.874| = 2.6%, despite the fact that our time series does not seem to comply with the hypothesis
of data exchangeability, a topic currently under experimentation.

4 Conclusion and Perspectives

For clarity, we restricted the presentation to few UQ approaches (Quantile regression & CQR), although we are carrying
out extensive benchmarks on others approaches. Stemming from these promising results, we are currently working
towards:

• Further non-conformal UQ approaches (Bayesian Modeling, Variance Regression, ML sub-sampling estimation).

• Specific CP methods for time-dependent, non-exchangeable data (Xu and Xie, 2021)
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A Example of Conformal Prediction Intervals on Air Liquide use case

Figure 1: CQR prediction intervals, first 200 test points. Empirical coverage is 0.874 for 1− α = 0.9, empirical average
width of the interval is 0.671.
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Abstract—This paper presents a method to generalize the
concept of ”Operational Design Domain” (ODD) used in the
automotive domain to any cyber-physical system. The approach
proposes to use domain-level and meta-theories taxonomies to
develop a cross domain ontology for the definition of the ODD.

Index Terms—ODD, Ontology, Autonomous system

I. INTRODUCTION

To solve the challenge of the specification of the intended

capabilities and limitations of Autonomous Systems (ASs)

based on AI models, a solution is to capture the scenario-space

covering all possible Usage Scenarios (USs) of the system.

Such scenario-space is defined in the automotive domain

with the concept of Operational Design Domain (ODD) [1].

Within ODDs, USs are decomposed into Operating Conditions

(OCs) which might include environmental conditions (e.g,

illuminance, weather, traffic), conditions on the ego system

(e.g, speed limitations, maneuvers), etc. The OC terms and

their relations can be formalized through an ontology, i.e, ”a

representation, formal naming, and definition of the categories,

properties, and relation between the concepts, data and enti-

ties that substantiate one, many, or all domains of discourse”

[2]. In other words, an ontology can represent the body of

knowledge in a given field. The ODDs could provide a huge

benefit for scenario-based AS safety processes.

However, while current approaches supporting the ODD

specification are only adapted for one specific domain, it may

be interesting to define a commonly controlled vocabulary

that may embody the knowledge related to ASs from different

application domains in a harmonized way. In this paper, we

then present a cross-domain approach for ODD specification.

Our goal is to define a method to formalize the overall

scenario-space relevant for ASs irrespective of the application

domain. We collect taxonomies related to ASs from differ-

ent domains: automotive, avionics, and manufacturing. We

compile and structure the concepts from the taxonomies with

generic concepts (e.g, time, space, weather), into an ontology

from which we can extract OCs for the ODD specification

of these different domains. Our multi-domain formalization

aims to facilitate the definition of the scenario-space for a

new application domain using the captured knowledge from

existing ones. We can validate this approach by testing it on

ASs from various UCs concerning different domains including

the domains used to extract the generic concepts but also new

domains which combine concepts from other domains, e.g,

taxi-drone which combine drones and passenger vehicles [3].

II. BACKGROUND

To address the problem of the harmonization of scenario

representation through different domains, we use upper on-

tologies [4], i.e, general concepts which can be reused to

express knowledge for several different domains, e.g, space,

time, weather, infrastructure. The knowledge transfer from a

well-defined domain to new domains is resolved by these

upper ontologies that ensure completeness of semantic rep-

resentation. These upper ontologies can be cross-cutting to

all domains, e.g, ATIC for time representation [5], RCC-

8 for space representation [6], or they can concern only

a domain set, e.g. CORA [7] for the autonomous robotic

domain ontology. We also integrate domain standards (e.g, the

PAS1883 [8] which defines a taxonomy for safe automated

driving systems, the taxonomy of unmanned aircraft, and

their operations [9]). We further take into consideration the

specification of additional concepts from current work that we

found worth including in the ODD specification. For example,

we reuse the concepts of uncertainty and exposure probability

as specified by OpenODD project from ASAM [10].

III. APPROACH

Our approach follows several steps as presented below.

The steps concerning the compilation of the concepts used



to describe OCs (SA1 and SA2) are independent of the steps

concerning the formalization language used to structure these

concepts (SB1 and SB2).

SA1 Theories & Standards: We list all standards and meta

theories which present concepts to describe usage scenario for

ASs from various domains.

SA2. Taxonomies: By using all the acquired standards, we

build a taxonomy that lists all OCs extracted from theories

and standards.

SB1. Ontology Language Definition: We define a domain-

specific language to capture our knowledge representation as

ontologies.

SB2. Ontology Formalization: We specify the supplementary

rules and interfaces to adapt our ontology representation on US

description.

S3. Meta-domains Knowledge: We formalize our taxonomies

(SA2) with our ontology language (SB2).

S4. Generics domains Knowledge: Any new AS domains

can be represented using upper ontologies, e.g, a drone on-

tology can be built using a weather ontology and an aerial

environment ontology. The upper ontology representation is

completed with domain-specific concepts, e.g, the drone ma-

neuvers. The classic domains (i.e, automotive, aviation, robotic

manufacture) are defined in a similar way to make them

compatible with the ODD formalization.

S5. ODD Specification: For the ODD definition of a specific

UC, we extract from the corresponding domain ontology

(defined at S4) all the required concepts to characterize the

scenario space of the UC. Furthermore, the ODD specification

includes the OCs together with their properties and applicable

range or limit values, e.g, the OC ”moderate rain” may be

included in the ODD with 2.5 mm/h as minimum values

and 7.6 mm/h as maximum values. It is also completed by

information to help the safety analysis, e.g. the exposure

probability and acceptable uncertainty thresholds.

S6. ODD Usage: To refine the studied AS limits, we define

restrictions as a list of rejected OC combinations. We then

obtain a representation of the system scenario-space which

can be used as an input for safety oriented AS development.

IV. CONCLUSION & FUTURE WORK

We presented an approach to formalize the ODD of au-

tonomous systems for any domain. We detailed all the needs

to achieve this formalization from the domain representation

to the system-specific constraints representation. We further

need to implement the tool for domain and ODD specification.

For the choice of the ontology language, we have to com-

pare the existing ones (Unified Foundational Ontologies [11],

Ontology Web Language [12]) to select the most appropriate

give our requirements and extend it if needed. To make our

approach usable even for non-experts, a user interface could

guide stakeholders through the domain description and ODD

boundaries specification. The OC selection could be achieved

with predefined questions on the system. Finally, our validation

process includes evaluating our approach on UCs from various

domains.
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ABSTRACT: Recent development in the field of speech recognition has made it possible to achieve 

human parity at the cost of an enormous amount of transcribed speech. In this work, we tackle the 

issues of data scarcity and robustness of voice recognition algorithms by developing cutting-edge 

approaches based on state-of-the-art methods such as self-supervised learning and data-centric AI. 

Today, speech recognition technologies are mature enough to be integrated into marketable 

solutions. However, these are owned by large groups with access to significant resources, both from a 

computational and data point of view. In particular, the development of a voice recognition algorithm 

requires several tens of thousands of hours of transcribed recording to achieve the performance of 

solutions currently on the market. In addition, if voice recognition solutions are widely used in our daily 

lives, they require significant computing resources and are not deployed on device but via cloud 

computing services. In most cases, speech recognition offers do not meet the needs of industry 

because (i) they do not guarantee data confidentiality i.e., manufacturers refuse to send their private 

and sensitive data to the cloud, (ii) the cost of use is important, (iii) they are not adapted to the 

recording condition in industry and (iv) they are not adapted to the specific business vocabulary of the 

manufacturer. In addition, the state-of-the-art algorithms proposed in the literature are evaluated on 

datasets that are not representative of the real world (audiobook, recording in a silent environment, 

professional audio recording equipment, …). For example, our preliminary work on the subject showed 

that the precision of these state-of-the-art algorithms was not acceptable on real world data nor in 

industrial conditions: we observe a word error rate greater than 40% and up to 90%. In this context, 

the development of voice recognition solutions for French language deployed locally, requiring little 

data labeled for training and robust to noisy environments represents a real challenge in the field of 

industry. 

To solve these challenges, our work focus on the development of voice recognition algorithm 

focuses on 3 axes: 

- Develop a Speech to Text approach adapted to a small labeled dataset by focusing work mainly 

on recent approaches of self-supervised learning 

- Robust the Speech to Text algorithms under real conditions (noise, reverberation, disturbance, 

…) 

- Reduce the complexity of algorithm for on-device deployment to overcome constraints related 

to cloud computing (cost, GDPR and data privacy compliant, …) 

To tackle the problem of data scarcity, we have developed a self-supervised algorithm based on 

contrastive learning and the wav2vec2 architecture. More precisely, our approach is made up of two 

steps: first we use a pretraining block which is based on contrastive predictive coding to learn a high-

level representation of the data in an unsupervised way, then in a second phase we add a connectionist 

temporal overlay to the pretraining block to adapt the model to the transcription task. For the 

pretraining phase, we have collected more than 10 000 hours audio recording in real life condition and 

use them for training phase in order to learn a high-level representation of an audio sample. Then, the 

model is finetuned on few hours of labelled speech. We do some experiments by varying the quantities 

of labelled audio use in the finetuning step and show that our algorithm allows to reach 20% raw WER, 

i.e., without any language model post-processing, and thus with only 5 hours of labelled speech while 



traditional speech recognition algorithm requires thousands of hours to reach similar accuracy. 

Although our work deserves further study, our first results are very encouraging and highlight how self-

supervised approaches allow to reach similar accuracy as solutions from big cloud provider with only 

a few ten of hours of labelled audio. Thus, in line with the work of Baevski et al. our work breaks the 

barrier of labelled audio data scarcity and paves the way for a new paradigm in speech recognition. 

 

 
 Our work also addresses the problem of the robustness of the model. In particular, most of the 

state-of-the-art Speech to Text model are build and benchmarked on datasets that are not 

representative of real conditions such audio books or recording in clean conditions. Indeed, conditions 

in industry are very different from these idealized datasets with the presence of noise, reverberation, 

or with different sample rate which causes a significant decrease in the performance. To face these 

issues, we have put a lot of effort to build real world dataset of more of 300 hours labelled with speech 

from different source (interview, documentary, conference, debate, …), sound environment (indoor, 

outdoor, open space, factory, station, …) and from various speaker.  Moreover, we have also developed 

a denoising algorithm to deals with very noisy conditions. In our work, we have developed an 

autoencoder to denoise the raw audio data in real time based on the recent development of audio 

source separation. Our work highlights the efficiency of deep learning-based approaches for end-to-

end audio denoising, and our results outperform state-of-the-art algorithm for French noisy speech 

with 0≤SNR≤15. However, for very noisy speech, i.e., with a SNR < 0 dB, the noise removal is effective 

but goes along with a very low intelligibility making transcription very hard, even for humans. 
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Abstract

In this poster, we investigate the robustness of neural net-
work models to adversarial attacks in the context of time
series forecasting. We present percentile smoothing [1], a
technique similar to randomized smoothing [2, 3], which is
more suited for regression tasks (as opposed to classifica-
tion). We use the Air Liquid demand forecast dataset, and
provide robustness intervals for the prediction of a simple
neural network to `2-bounded attacks.

1. Introduction

Randomized smoothing, a technique used to provide ro-
bustness to adversarial attacks, is mainly studied in the liter-
ature for classification tasks. For classification, one would
expect a model to be stable to small perturbations around
a test image. However for regression, the situation is dif-
ferent, as by construction, one would expect the output of a
model to vary if the inputs are perturbed. It appeared that
certification to adversariel attacks for regression models is
largely under-studied in the literature. One of the only paper
tackling this question [1] introduces percentile smoothing
to bring some level of certification to detection algorithms
such as YOLO, Faster-RCNN, ... In the detection problem,
one is task to predict the position of the corners of the boxes
of the object to be detected, and this can be seen as a regres-
sion problem.

We therefore adapt the formalism developed in [1] to the
case of time series forecast and provide robustness inter-
val for `2-bounded adversarial attacks. In the following, we
first describe the Air Liquide dataset and its preprocessing.
Then we present the formalism of percentile smoothing. Fi-
nally we show some preliminary results on the Air Liquide
data.

Figure 1. Target variable for the 29 times series of the Air Liquide
dataset. The vertical black line indicates the separation between
the train and the test sets.

2. Presentation of the Air Liquide dataset
The Air Liquide demand forecast dataset consists in tab-

ular data with continuous and categorical variables. We
studied this dataset and realised that it is actually the con-
catenation of 29 times series that are largely independent.
Since the data is anonymised, we can only assume that each
time series correspond to a given client or production line1.
There are four variables that are real-values, one of which,
Numerical_0, constitues the target to predict. Figure 1
shows the target variable for the 29 times series.

3. Percentile smoothing
Following [1], we introduce the percentile smoothing

version of a function f : Rd → R

hp = sup {y ∈ R|P[f(x+G) ≤ y] ≤ p} , (1)

hp = inf {y ∈ R|P[f(x+G) ≤ y] ≥ p} , (2)
1This is just for context, the real meaning of the dataset does not matter

in this use case.
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where G ∼ N (0, σ2I).Those two quantities coincide when
f is continuous (which is our case here), but they might
differ if f is not real-valued. If p = 0.5, those percentiles
reduce to the median of f(x+G).

The main result of [1] is the following lemma:
Lemma 1. A percentile-smoothed function hp with ad-

versarial perturbation δ can be bounded as

hp(x) ≤ hp(x+ δ) ≤ hp(x),∀||δ||2 < ε, (3)

where p := Φ
(
Φ−1(p)− ε

σ

)
and p := Φ

(
Φ−1(p) + ε

σ

)
,

with Φ being the standard Gaussian CDF. In practice p =
0.5 as we consider the median. As can be seen, the interval
between the bounds is controlled by the values of ε

σ . While
ε is the size of the attack against which we want certifi-
cation, there is some freedom in the choice of the amount
of noise (characterised by σ) we can used to perform the
smoothing. If one uses too less noise (σ << ε), the noised
inferences would be clustered around a central value, but the
percentiles to interrogate would be very large, and it would
require a large number of random realisations of the data to
get accurate estimated of hp(x) and hp(x). On the contrary,
if the noise is too large, the smoothed function will lose its
predictive power and the resulting results will present poor
performances.

3.1. Estimation of hp
Given a function f , the percentile smoothing of f is ob-

tained the following way:

• draw n samples G ∼ N (0, σ2I),

• run the regressor f on x+G,

• return the 50th percentile of the resulting array.

Similarly, we get a numerical approximation of the bounds
l, u, such that

P (hp ≤ u) ≥ α andP (hp ≥ l) ≥ α, (4)

for some confidence threshold α (typically α = 0.9999).

4. Preliminary results
For these preliminary results, we focused on the imple-

mentation and the demonstration of the percentile smooth-
ing method rather than the sheer performances of the pre-
diction model. We thus considered a simple multi-layer per-
ceptron (MLP), and we keep the same pre-processing of the
data as the Air Liquide XGBoost code. Since the time series
are independent, we trained a model for each time series.
Results are summarised in Fig. 2, where we show the test
part of the target (in black). The prediction of the MLP is
shown in orange. The smoothed prediction (corresponding

Figure 2. Illustration of the percentile smoothing technique on one
Air Liquide time series.

to hp(x) in the formalism developed in Sect. 3). The shaded
region is delimiting the area between hp(x) and hp(x). It
corresponds to the robustness interval of the model when
attacked by perturbations δ, such as ||δ||2 < ε. An illus-
tration of such an attack is given by the green line, which
is the prediction of a Fast Gradient Sign Method perturba-
tion. As can be seem, around week 20, the prediction of the
MLP model exceeds the upper bound of the robustness in-
terval. However, the smoothed prediction on this attack (red
line) is well within the theoretical bounds. It is important to
note that this robustness interval is not a confidence interval
in the sense where the true answer would lie between the
bounds of this interval. Rather it gives the interval in which
the predictions can vary when the inputs are modified by a
`2 bounded perturbation.

5. Conclusion and perspectives
We have implemented the percentile (or median)

smoothing technique to the Air Liquide demand forecast-
ing dataset to provide robustness. Several extensions of this
work can be envisaged, such as certification against differ-
ent types of perturbations.
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Abstract

In the quest for (critical) embedded systems featuring machine learning
(ML) components, we propose a method and a language allowing the
conjugate the expressive power of Lustre for embedded control aspects
and TensorFlow/MLIR for ML/HPC aspects. We explore the theoretical
and engineering aspects of this language.

The Static Single Assignment (SSA) form has proven an extremely useful
tool in the hands of compiler builders. First introduced as a representation to
facilitate optimizations, it became a staple of optimizing compilers. More re-
cently, its semantic properties—e.g. functional determinism while still allowing
for limited concurrency—established it as a sound basis for High-Performance-
Computing (HPC) compilation frameworks such as MLIR, where different ab-
straction levels of the same application1 share the structural and semantic prin-
ciples of SSA, allowing them to co-exist while being subject to common analysis
and optimization passes (in addition to specialized ones).

But while compilation frameworks such as MLIR concentrate the existing
know-how in HPC compilation for virtually every execution platform, they lack a
key ingredient needed in the high-performance embedded systems of the future—
the ability to represent reactive control and real-time aspects of a system. They
do not provide first-class representation and reasoning for systems with a cyclic
execution model, synchronization with external time references (logical or phys-
ical), synchronization with other systems, tasks and I/O with multiple periods
and execution modes.

And yet, while the standard SSA form does not cover these aspects, it shares
strong structural and semantic ties with one of the main programming models
for reactive real-time systems: dataflow synchrony, and its large and structured
corpus of theory and practice of reactive systems design.

1Ranging from ML dataflow graphs and linear algebra specifications down to affine loop
nests and optimized (tiled, vectorized. . . ) low-level code.
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Contribution. Relying on this syntactic and semantic proximity, we extend
the SSA-based MLIR framework to open it to synchronous reactive program-
ming of real-time applications. We illustrate the expressiveness of our extension
through the compilation of the pure dataflow core of the Lustre language. This
allows us to model and compile all data processing, computational and reactive
control aspects of signal processing and machine learning applications. In the
compilation of Lustre, following an initial normalization phase, all data type
verifications, buffer synthesis, and causality analysis can be handled using ex-
isting MLIR SSA algorithms. Only the initialization analysis specific to the
synchronous model (a.k.a. clock calculus or analysis) requires specific handling,
leading to significant code reuse.

The MLIR embedding of Lustre is non-trivial. As modularity based on func-
tion calls is no longer natural due to the cyclic execution model, we introduce
a node instantiation mechanism. We also generalize the usage of the special
undefined/absent value in SSA semantics and in low-level intermediate repre-
sentations such as LLVM IR. We clarify its semantics and relate it to the notion
of absence and the associated static analyses (clock calculi) of synchronous lan-
guages.

Our extension remains fully compatible with SSA analysis and code trans-
formation algorithms. It allows giving semantics and an implementation to all
correct SSA specifications. It also supports static analyses determining correct-
ness from a synchronous semantics point of view.

The resulting language allows the modeling of signal processing and deep
neural network inference in the (closed) loop of feedback-directed control sys-
tems. With only a minor time investment in using MLIR’s optimization sup-
port, generated code surpasses in speed state-of-the-art synchronous language
compilers.

2
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Abstract: 

Social robots that assist, engage and interact with people are seen by many as the future of human-centered 

artificial intelligence. One of the big challenges of this evolution is to facilitate acceptance of robots in human 

habitats. Managing the impressions of social robots is a first step towards ensuring trust, acceptance and 

integration of AI.  

Introduction

As robots and intelligent agents are expected to 

become more prevalent in everyday contexts, public 

reception of Robotics and Artificial Intelligence 

(RAI) is the cornerstone of the acceptance, uptake 

and research funding of such technology. However, 

algorithms are becoming more complex and opaque 

by the day, inducing a negative impact on the 

trustworthiness of a system (Linegang et al., 2006; 

Stubbs et al., 2007). The research field of 

Explainable Artificial Intelligence tackles this 

shortcoming by developing innovative solutions 

aiming at increasing user understanding, and thereby 

trust, of artificial intelligence systems. An effective 

way of doing so is via the design of embodied virtual 

agents communicating about the systems’ results and 

processes in a natural and human-like way (Weitz et 

al., 2019). However this solution comes at a risk of 

sliding on the disturbing side of the uncanny valley 

by being too close to human-likeness yet too far from 

an industrial robot. The Uncanny valley theory 

expects that such a design could trigger a negative 

emotional response towards the virtual agent, thus 

impairing rapport bonding and trust. For instance, 

people have reported feeling “unsafe” or 

“uncomfortable” when interacting with a robot. So 

how can virtual agents or robot design be controlled 

as to manage impressions and trigger positive 

emotions? 

It is hypothesized that people perceive autonomous 

intelligent systems by applying human traits to them 

(Graaf & Malle, 2017). Research shows that humans 

tend to behave towards robots in a similar way they 

would with another human: for example as 

evidenced by a robot “black sheep effect”, they 

distinguish ingroup from outgroup members 

depending on the characteristics of the robot (Steain 

et al., 2019). Some researchers have even observed 

unexpected bullying and abusive behaviors towards 

robots (Brščić et al., 2015), suggesting that HRI 

elicit strong affective responses that certainly were 

not controlled nor wanted by the engineers. 

Conversely, there is evidence of human prosocial 

behavior (Connolly et al., 2020) and even empathy 

(Slater et al., 2006) within HRI when the robot 

expressed emotional reactions.  

Impressions are fast and structured affective 

responses: they occur within 100-ms of meeting a 

person for the first time (Willis & Todorov, 2006). 

More importantly, they are central to action 

tendencies (approach or avoidance) and decision 

making. In fact, many of our high-impact decisions 

are based on zero-acquaintance judgments such as 

criminal sentencing (Dumas & Testé, 2006), 

political voting (Chen et al., 2014), salary (Fruhen et 

al., 2015), economic choices (Rezlescu et al., 2012).  

What impressions do we form? 

When a new person is met for the first time, people 

judge them on two main dimensions: 

trustworthiness-warmth (“is this person trustworthy? 

Are their intentions good?”) and dominance-

competence (“is this person capable of acting on 

their intentions ?”). Evidence shows that perceived 

competence and intelligence in a robot influences 

trust behaviors towards it (Haring et al., 2013). Such 

judgments occur on extremely fragmentary sources 

of information such as facial traits, vocal cues, 

clothing, and even body shape and size.  

Trustworthy faces are characterized by higher 

eyebrows and a larger space between eyes and 

eyebrows, pronounced cheekbones, wide chins and 

thin nose sellion. Untrustworthy face configuration 

is associated with an increased response of the (right) 

amygdala, a neural correlate of relevance and threat 

detection (Todorov et al., 2008). 



 

Figure 1. A sequential model of impression formation: 
data for training of Capgemini Engineering’s testing 
solution is based on natural reactions.  

Methodology: a testing solution for AI 

trustworthiness 

“Emotions are largely seen as interfaces between an 

organism and its environment […] they constitute a 

sort of detection mechanism for personal relevance 

of events and stimuli in the organism’s surroundings. 

They have been found to interact with several, if not 

all, cognitive mechanisms, such as attention, 

memory, judgment, etc.” (Scherer & Moors, 2019) 

Our project aims at casting light on the features of 

embodied AI that elicit emotional responses and 

influence behavior in human-machine interaction. 

To this end, we are developing a protocol for 

evaluation of affective perception, useful for the 

detection of trust and behavioral prediction.   

Capgemini Engineering’s machine learning 

algorithm trains on multi-channel measures of facial 

expression, vocal expression, and physiological 

activation. It is able to analyze a combination of 

responses on several sub-systems of the organism 

implicated in the emotion event and predicting 

behaviors towards an item.  

 

Figure 2. Several use cases for development of trustworthy 
and competent embodied AI. 

Conclusion 

Human proclivity to form impressions of their 

environment can be leveraged to design more 

effective and more trustworthy AIs.  
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