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Development of an Interactive Human/Agent Loop using Multimodal
Recurrent Neural Networks

JIEYEON WOO, ISIR Lab, Sorbonne University, France

Fig. 1. An interactive loop between a human and an agent modeled through multimodal Recurrent Neural Networks (RNN) for
generating facial and head gestures learned from visual and audio features of a dyad

The development of expressive embodied conversational agent (ECA) still remains a big challenge. During an interaction partners
continuously adapt their behaviors one to the other [7]. Adaptation mechanisms may take different forms such as the choice of same
vocabulary and grammatical form [31], imitation and synchronization [7]. The aim of my PhD project is to improve the interaction
between human and agent. The key idea is to create an interactive loop between human and agent which allows the virtual agent
to continuously adapt its behavior according to its partner’s behavior. The main idea is to learn how dyad of humans adapt their
behaviors and implement it into human-agent interaction. My work, based on recurrent neural network, focuses on nonverbal behavior
generation and addresses several scientific locks like the multimodality, the intra-personal temporality of multimodal signals or
the temporality between partner’s social cues. We plan to build a model learned in an end-to-end fashion that generates behaviors
considering both acoustic and visual modalities.

CCS Concepts: •Human-centered computing→Human computer interaction (HCI); • Computing methodologies→ Neu-
ral networks.
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1 INTRODUCTION

The task of developing expressive embodied conversational agents (ECAs) is a challenging problem. To ensure a fluid
and engaging interaction, agents should be able to generate behaviors and react to social signals. To endow an agent
with such social capacities requires close investigation on how information is communicated during an interaction.
Communication is made of verbal and nonverbal channels. A large part of it is “nonverbal” which refers to “body
language” including “gestures, facial expressions, body movement, gaze, dress, and the like to send messages”, Burgoon
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et al. [7, p.2]. Generating the behavior of an agent consists therefore not only to generate its words, but also its nonverbal
behavior. While conversing, the interlocutors continuously adapt their behavior based on the social signals emitted
by their interlocutors. This increases the fluidity of the exchange and the interlocutors’ engagement level [19]. Our
approach is to analyse interaction partners’ behaviors and to propose a computational model to drive the agent’s
behavior.

In our research, we decide to use Recurrent Neural Networks (RNN) [10] to model the different multimodal nonverbal
patterns within dyadic interactions and to focus on generating nonverbal social signals of the virtual agent. For this, it
is essential to capture the multimodal signals involved during an interactive loop, the multimodality of the signals, and
to ensure their temporal coherence, both intra- and inter-personal temporality.

In this paper, we will start by presenting related work followed up by an explanation of our research, such as our
research questions and our approach, our research plan and expected contributions.

2 RELATEDWORK

2.1 Nonverbal signals and their temporality

“Nonverbal behaviors” refer to actions that are distinct from speech such as facial expressions, gestures and postures [7].
It also includes information that may not be explicitly encoded in the verbal behavior such as emotions or social
attitudes [3, 33] and thus can be used by one’s partner to interpret his/her mental state. Nonverbal signals are also
highly related to engagement in the interaction. For example, facial gestures [36] like a smile, gaze direction [28] or
posture [15] produced in line with the partner’s behaviors can reinforce the interaction. These nonverbal signals are
highly multimodal and the timing between them, often referred as “synchrony” [11], is primordial. For an intra-personal
point of view, these signals (verb, prosody, gaze, facial gestures, head motion) need to be coordinated with each other.
We talk about intra-personal synchrony [6] or intra-personal temporality. Within an interaction, the signals must also
be related to nonverbal signals of the partner, which we call inter-personal temporality. As the display of nonverbal
behaviors can increase the engagement within the interaction, an agent also need to be able to render these behaviors
for an engaging human/agent interaction. Also, the temporal coherence (intra- and inter-personal temporality) must be
considered for the interaction.

2.2 Nonverbal behavior generation of communicative agents

Behavior generation models for virtual agents can be categorized into two groups: models that focus only on the
intra-personal temporality, as only one person is involved, and models that consider the inter-personal temporality, for
dyadic interactions.

In contexts where the multi-person interaction is not primitive, approaches focus only on the intra-personal
temporality. Some works use simple Feed-Forward Neural Network (FFN) [5] for modality translation to compute
communicative behaviors. For example, Karra et al. [26] generate 3D facial animation using audio input in real-time. In
a similar way, Ding et al. [14] propose a FFN regression model to synthesize head motion of a speaker from his/her
speech. Other computational methods are also employed. Sadoughi et al. [34] propose the use of Bi-directional Long
Short-Term Memory (BLSTM) [22] to predict the future head movements from sliding temporal windows of prosody
features. A Generative Adversarial Network (GAN) [21] is added to generate multiple realizations of head movements
from each speech segment by sampling from a conditioned distribution. Hasegawa et al. [23] also use an approach based
on BLSTM to predict the 3D human body gesture from audio utterances. Alexanderson et al. [2] introduce another
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powerful model, based on MoGlow method [24], that generates speech-driven gesticulation. The statistical aspect of
the method allows generating several gesticulations from a same speech segment, all with an important plausibility.

Some other works modeled the temporal relationship of nonverbal behaviors between a participant and his/her
partner during an interaction (i.e. inter-personal temporality). Earlier behavior generation models for dyadic interactions
used rule-based systems such as manually designed rules [35] for backchannel prediction, decision trees [30] for the
generation of natural responses and their timing in a chat context or multimodal probabilistic models [27] that are
able to predict backchannels using multimodal signals such as prosody, words or gaze. In [18], Feng et al. create a
FFN model that generates agent’s facial gestures based on the agent’s and human’s facial gestures on previous frames.
To the best of our knowledge, it is one of the first works that considers the interactive loop between a user and an
embodied agent. Dermouche et al. [13] employ LSTM to model the temporality of nonverbal signals and generate
ECA’s behavior in a dyadic interaction. They introduce the Interactive Loop LSTM (IL-LSTM) that models the agent’s
nonverbal behaviors by considering both agent’s and user’s behaviors. In [25], a system that takes audio from both
partners and facial expression of human generates corresponding appropriate facial expression of an ECA using an
extension of MoGlow [24]. At each time step of the flow, all modalities are encoded using a RNN and their concatenation
is passed to a neural network.

2.3 Multimodal signal processing

The multimodality of signals that can come from words, prosody, facial expression, . . . , is an important aspect that needs
to be dealt for the task of generating nonverbal behavior to ensure an engaging interaction. The works presented just
above use multimodal signals (audio, visual and textual features) for nonverbal behavior generation. Nevertheless, they
do not all explicitly model multimodality, thus we observe how these multimodal signals can be processed from models
applied for different tasks, including but not limited to nonverbal behavior generation. Chu et al. [9] propose a neural
conversation model generating facial expression alongside with text. Their goal is to add richness to their generation
by exploiting modalities in a separate manner. Rather than concatenating both modalities, they use a RNN dedicated
to each modality and then obtain the global description by concatenating the history of each modality. Rajagopalan
et al. [32] extended the LSTM for multimodal learning by proposing Multi-View LSTM (MV-LSTM) which explicitly
models modality-specific and cross-modality interactions. Thus, the model defines four types of memory cells: modality
specific cells, coupled cells, fully connected cells and input oriented cells. MV-LSTM shows promising results (high
accuracy for the engagement level prediction task) in exploiting multi-view relationships for behavior recognition.
Another approach that learns from multiple modalities was proposed by Zadeh et al. [38]. Their structure, named
Memory Fusion Network (MFN), learns view-specific dynamics in isolation by training a LSTM for each modality and
finds cross-view interactions by associating a relevance score to the memory dimensions of each LSTM via an attention
mechanism. It stores the cross-view information over time in the Multi-view Gated Memory acting like a dynamic
memory module. MFN has been tested on several multimodal databases and show high performance in sentiment
analysis, emotion recognition and speaker traits recognition.

Existing models presented above show how we can consider the temporal coherence or explicitly model multimodal
signals. Nevertheless, they do not yet fully take into account both aspects of temporality and multimodality for the
nonverbal behavior generation. In an interaction both multimodal and temporal relations of exchanged signals can be
observed simultaneously and are correlated. The different modalities provide additional information and the capture of
complementary information can be strengthened by explicitly modeling multimodal signals. These multimodal signals
also need to be temporally coherent with each other. The temporal sync must be ensured not only between the different
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modalities of the same person (intra-personal temporality) but also between those of his/her interlocutor (inter-personal
temporality). Considering the two aspects together can further help capture and understand the correlation between
them. It will thus be interesting to investigate on how to embed their dynamics for an engaging dyadic interaction.

3 OUR RESEARCH

We propose to generate nonverbal behaviors of a virtual agent during a dyadic interaction. As stated above, producing
nonverbal behavior is important for an ECA as a lot of signals passe through this canal of communication. It requires the
generation of a great number of multi-dimensional signals like facial expression (or gesture), head motion, body gesture,
posture, prosody and so on. Also, the intra-personal and inter-personal temporality of these signals must be ensured.
Moreover, we also plan to integrate our work into the Greta platform [29], which is a 3D humanoid agent capable of
communicating with a human using verbal and nonverbal channels. Thus, the model should be causal, taking signals
from the past to predict or generate future signals, so that the model can be applied in real-time. These constraints
imply some challenges in constructing a model which takes into account all the signals together, from all modalities
and all partners. Moreover, to ensure a real-time interaction, the nonverbal behavior needs to be generated at each
time step, taking into account the past behaviors of both human and agent. Thus, a loop can be developed to solve the
problem of having to consider all the different signals at once and to ensure the real-time interaction. Thus, we choose
to use the interactive loop as both human and agent continuously adapt their behaviors within the interaction.

Regarding the bibliography and previously indicated requirements, several questions are still open.
We propose to tackle 3 research questions to model the interactive loop between the human and the agent:

RQ1: Which temporal scale should be considered as input and output to avoid output discontinuity? We will try to
avoid output discontinuity, that comes from independent sequence predictions, by considering the input data at
each time step and by predicting the output time step by time step guaranteeing a real-time adaptation. The
challenge is to obtain continuous output predictions while avoiding poor learning (vanishing gradient).
RQ2: How to embed multimodal signals’ dynamics? It is important to manage the multimodal aspect of social
signals for an engaging interaction. It can be done by a simple concatenation of each modality to form the
input of the predictor [13, 18], but we plan to better modelize them with a specific combination of modality
encodings [32, 38]. The problem of how to manage multimodal signals in an explainable way needs to be
addressed.
RQ3: How to manage intra-personal and inter-personal temporality? We aim to explicitly model intra- and inter-
personal temporal dependencies and merge them, for example with a selective attention module [1]. The main
issue of this part is how to connect the modeling of temporal dependencies with the multimodality dynamics
model studied in RQ2.

We start by extracting features from our database and apply data processing methods to obtain three distinct
modalities. Then, we will construct our model which is based on Dermouche’s adaptation model of an interactive loop
(IL-LSTM) [13] and improve it by taking into account the temporal coherence and the mulitmodality of signals. Our
work will be progressively developed in three stages corresponding to each research question. At the end, all these
studies will be integrated in a unique model learned in an end-to-end way.
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3.1 Corpus and feature extraction

We choose to use the NoXi (NOvice eXpert Interaction) [8] database, a corpus of screen-mediated face-to-face interactions.
The database offers dyadic interactions between an expert and a novice in a natural setting. In this work, we use only the
French part containing 21 dyadic interactions performed by 28 participants (total duration 7h22). Nonverbal behavior
features are obtained through feature extraction. For image processing, two feature vectors are extracted at each time
step: a head vector (𝑥ℎ𝑒𝑎𝑑𝑡 ) composed of head rotations around the 3 axes, and a face vector (𝑥 𝑓 𝑎𝑐𝑒𝑡 ) composed of the 17
facial Action Units (AUs) [16], using the opensource toolkit OpenFace [4]. For audio signals, an audio feature vector
(𝑥𝑎𝑢𝑑𝑖𝑜𝑡 ), composed of fundamental frequency, loudness, voicing probability and 13 MFCCs coefficients, is extracted at
each time step 𝑡 via the opensource toolkit openSMILE [17] after a denoising phase. These three features vectors 𝑥ℎ𝑒𝑎𝑑𝑡 ,
𝑥
𝑓 𝑎𝑐𝑒
𝑡 and 𝑥𝑎𝑢𝑑𝑖𝑜𝑡 are considered as three distinct modalities.

3.2 Model architecture

Our purpose is thus to generate the nonverbal behavior of an agent and more particularly, to generate its facial gestures
𝐴
𝑓 𝑎𝑐𝑒
𝑡 and head motion 𝐴ℎ𝑒𝑎𝑑

𝑡 at time step 𝑡 from facial gestures, head motion and audio of both human partner and
agent at previous time 𝑡 − 1: 𝐻 𝑓 𝑎𝑐𝑒

0...𝑡−1, 𝐴
𝑓 𝑎𝑐𝑒

0...𝑡−1, 𝐻
ℎ𝑒𝑎𝑑
0...𝑡−1, 𝐴

ℎ𝑒𝑎𝑑
0...𝑡−1, 𝐻

𝑎𝑢𝑑𝑖𝑜
0...𝑡−1, 𝐴

𝑎𝑢𝑑𝑖𝑜
0...𝑡−1.

We plan to begin with a simple model, like the IL-LSTM in [13], where all modalities for both agent and human of
the last 20 frames (Dermouche’s parameter [13]) are set as input of a LSTM layer. A fully connected layer allows then
to predict outputs.

We tackle our first research question 𝑅𝑄1 by avoiding important output discontinuities. They are encountered with
the method of IL-LSTM as independent predictions are made for each input sequence and as no previous memory is
conserved the predictions are not continuous. To avoid them, we change the paradigm by avoiding the use of a sliding
window and using “online LSTM” [37] where cells’ memories are continuously updated during the whole interaction.
Through this process of updating the cells’ memories for each instant, the past is encoded in these memory cells and is
used to make a new prediction. Moreover, the model takes its predicted values of the previous time step as input for
the prediction at the next time step. Another change we propose on the IL-LSTM model is to symmetrize the problem:
predicting the behaviors of both partners. This symmetrization is applied during the training phase, which learns from
human/human interactions, as the two human partners are involved in the same way in the interaction and the defined
problem or context is identical. Thus, rather than predicting just one behavior from the past data, we predict behaviors
of both partners to use all the available information in the loss function (MSE for the IL-LSTM) during the training
and thus to help the learning step. This new model is illustrated on Figure 2. Nevertheless, this symmetrization is only
applied for the training. For the inference, only the behavior of the agent will be predicted. The optimal time step
(temporal scale) found during the training phase of our model, in Figure 2, will be applied to the rest of our project.

In a second stage, we want to tackle the multimodality modeling, by answering our second research question 𝑅𝑄2
and plan to employ the MFN proposed in [38], to encode each partner modalities. The idea is to encode the nonverbal
behavior of each partner using a MFN to obtain two multimodal memory cells that will be concatenated to predict the
future behavior of each partner, as illustrated in Figure 3.

Our last purpose concerns a better modeling of the inter-personal interaction (for the moment, the behaviors of both
partners are simply concatenated) using a specific model that has to be developed. We plan to do so by investigating on
how both intra-personal and inter-personal temporality can be managed in our model, which corresponds to our last
research question 𝑅𝑄3.
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Fig. 2. A first model with a symmetrization for training

Fig. 3. Fusion of multimodal memory cells

A single end-to-end model will be developed after progressively responding to each of our three research questions.

3.3 Evaluation

The task of validating a behavior is very complex. Like any other regression model evaluation, we could accept a
generated behavior to be correct based on its quantitative closeness to the ground truth. In other words, the accuracy is
calculated using metrics such as MSE [14, 34], RMSE [13], MAE [20], Pearson’s correlation [38] for each sample. However,
various outcome behaviors could derive from the same surrounding signals. In such cases, where several plausible
candidates exist for a given input, quantitative evaluation is not sufficient. Thus, the quality is assessed subjectively via
questionnaires [2, 9, 18, 25, 26, 34]. Nevertheless, these conventional methods are not enough to measure the success of
our work as we want to evaluate if a behavior, especially nonverbal behavior, is human-like and suitable for a certain
instance of a dyadic interaction. For a behavior to be human-like, the motion to which it belongs has to be continuous
(i.e. a smooth transition between the previous and the current behavior) and perceived by humans as "natural" (or not
as a weird movement). As our work is in a dyadic setting, the synchronization of the predicted behaviors with the
corresponding interlocutor’s behaviors also needs to be evaluated. Thus, for our project we plan to conduct not only
conventional evaluations (both quantitative and qualitative) but also additional studies to evaluate the smoothness and
naturalness of the behaviors, and their synchronization with those of its interlocutor. In addition, the IL-LSTM model of
Dermouche et al. [12], that inspired us in the first place, will be used as baseline, to validate, or not, our propositions.

4 RESEARCH PLAN

The research plan and provisional timeline are outlined as the following:

• 2021:We plan to finalize our first model, Figure 2, for facial gesture and head movement generation of the agent
using all input features (visual and audio features) of both agent and human. Then we will address our first
research question 𝑅𝑄1 by finding the optimal temporal scale for our input and output.

• 2022: We will develop the multimodal model, Figure 3, and then the inter-personal interaction model to answer
the remaining research questions, 𝑅𝑄2 and 𝑅𝑄3. We intend to develop an end-to-end model and integrate it to
the GRETA platform.

• 2023:We plan to evaluate our model through quantitative and qualitative measures and write the PhD thesis.
6
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5 CONTRIBUTIONS

For the PhD project, we expect the following contributions:

(1) Generation of continuous facial gestures and head movements for a virtual agent.
(2) Development of models taking into account multimodal dyamics and intra- and inter-personal temporal depen-

dencies separately.
(3) A single end-to-end model that generates natural nonverbal behaviors by jointly considering multimodal dyamics

and intra- and inter-personal temporal dependencies of both agent and human.
(4) Real-time application with the integration into the GRETA platform.
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