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Abstract

Is a sample rich enough to determine, at least locally, the parameters of a neural
network? To answer this question, we introduce a new local parameterization of a
given deep ReLU neural network by fixing the values of some of its weights. This
allows us to define local lifting operators whose inverses are charts of a smooth
manifold of a high dimensional space. The function implemented by the deep
ReLU neural network composes the local lifting with a linear operator which
depends on the sample. We derive from this convenient representation a geometric
necessary and sufficient condition of local identifiability. Looking at tangent spaces,
the geometric condition provides: 1/ a sharp and testable necessary condition of
identifiability and 2/ a sharp and testable sufficient condition of local identifiability.
The validity of the conditions can be tested numerically using backpropagation and
matrix rank computations.

1 Introduction

1.1 Context and motivations

Neural networks are famous for their capacity to perform complex tasks in a wide variety of domains
such as image classification [20], object recognition [33, 34], speech recognition [17, 36, 16], natural
language processing [27, 26, 19], anomaly detection [32] or climate sciences [1].

The following properties of the parameters of neural networks have recently drawn attention: iden-
tifiability, inverse stability and stable recovery; from weaker to stronger. Let fθ(X) be the outputs
of a network parameterized by the parameters θ, for given inputs X . Global identifiability means
that if fθ(X) = fθ̃(X) then θ = θ̃, up to identified invariances, for instance neuron permutation and
rescaling for ReLU networks. Local identifiability restricts this analysis for θ and θ̃ sufficiently close.
Then, inverse stability means that the distance between θ and θ̃ (up to invariances) is bounded by a
function of the distance between fθ(X) and fθ̃(X). Finally, stable recovery consists in obtaining an
algorithm to approximately recover θ from a noisy version of fθ(X), with quantitative guarantees. In
all cases, we must distinguish between statements for X being a finite list of inputs, in which case we
would like X to be small, and for infinite X (for instance determining θ from the entire function fθ).

Identifiability from finite X , which is the focus of this paper, is important for different reasons. In
the first place, model extraction attacks for neural networks have been a growing topic over the last
years. Indeed, some algorithms are able to recover in practice the parameters of a neural network
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from queries [9, 35]. This can be a concern since neural network providers may wish to keep these
parameters secret, for security [21], for privacy [13, 8], or for intellectual property [42].

A way of preventing such a recovery can be by guaranteeing that identifiability does not hold, that is
to check that a necessary condition of identifiability is not met. On the opposite side, guaranteeing
that identifiability holds is interesting in the position of an attacker. If the attacker has access to X , to
fθ(X), and is able to compute a θ̃ such that fθ̃(X) = fθ(X), the question then becomes: does this
guarantee that θ̃ = θ or shall the attacker expand X with new queries? The attacker needs a sufficient
condition of identifiability.

Another important motivation for identifiability is having a better understanding and control of
neural networks. Indeed, if the learning sample has the form (X, fθ(X)), with θ the parameters of a
teaching network, global identifiability from X means that the global minimizer of the empirical risk
is unique. In this case, if the global minimizer is reached, there will typically be no variability due
to the optimization parameters (choice of the algorithm, number of epochs,...) and to stochasticity
(for stochastic optimizers). Even if very recent works on double descent phenomena, e.g. [4],
highlight a benefit of overparameterization (thus absence of identifiability) for increasing prediction
performances, a user may be interested in a small enough number of parameters to retain identifiability,
if the loss of performance is mild compared to overparameterization.

Note that, of course, global identifiability is more relevant than local identifiability to the above
motivations. This work nevertheless focuses on local identifiability, which is a necessary condition for
global identifiability, and which analysis can be a first step to analyzing global identifiability. Local
identifiability is also arguably insightful on the geometry of the relationship between the parameter
space of θ and its image {fθ(X), θ varies}. Note that most existing identifiability, inverse stability
and stable recovery results (see the next section) are also local.

1.2 Existing work on identifiability, inverse stability, stable recovery and attacks

Identifiability: Even though it has regained interest recently, the question of identifiability for neural
networks is not new. Indeed, in the 1990s, some positive results of identifiability for networks with
smooth activation functions (tanh, logistic sigmoid or Gaussian for instance) have been established
[40, 2, 22, 18, 12]. These results are mainly theoretical, they concern activation functions which are
not the most used nowadays (in particular, they do not apply to ReLU networks), and assume full
knowledge of the function fθ implemented by the network, which is impossible in practice.

When it comes to ReLU, for shallow [30, 38] as well as deep [31, 5] neural networks, some positive
results of identifiability have been recently established. They show that under some conditions on
the architecture and parameters of the network, the function implemented by the network uniquely
characterizes its parameters, up to neuron permutation and rescaling operations. Although they apply
to ReLU networks, these results share a limitation with those of previous paragraph: they assume the
function implemented by the network to be known on the whole input space, or at least on an open
subset of it.

As far as we know, there exists only one identifiability result for deep ReLU networks assuming the
knowledge of fθ on a finite sample only. Stock and Gribonval [39] give a theoretical condition for
the existence of a finite set which locally identifies the parameters of a deep neural network. It is
an existence result: it does not concretely provide such a finite set, nor does it allow to test local
identifiability for any finite sample, as we propose in this work. The construction in [39] shares
similarities with previous works on deep structured matrix factorization [23, 24, 25]. The present
article also lies in this line of research.

Inverse stability and stable recovery: Closely related to identifiability are the topics of inverse
stability and stable recovery of the parameters of a network. Some negative [29] as well as positive
[11, 23, 24, 25] results of inverse stability exist. The articles [23, 24, 25] examine the case of
structured networks with the identity as activation function. Only [25] considers a finite X . The
authors of [11] consider a general class of networks amongst which ReLU networks, but the result
only holds for one-hidden-layer neural networks. Furthermore this result also requires the knowledge
of fθ on a whole domain.

Several stable recovery algorithms have also been proposed, for one-hidden-layer neural networks
in a first place, for smooth activation function [14], as well as ReLU in the fully-connected case
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Figure 1: The local intersection between the affine space N(X, θ) (in green) and the smooth manifold
Σ∗

1 (color gradient). We also represent in red the tangent space to Σ∗
1 at ϕ(θ). Left: The identifiable

case. The intersection is reduced to {ϕ(θ)}. Right: The non identifiable case. The intersection,
represented with a dashed white line, is not reduced to {ϕ(θ)}.

[15, 44, 45, 46] or in the convolutional case [6, 43]. These references consider a finite X but provide
a large sample complexity under which a smartly constructed initialization followed by a first order
algorithm allows to stably recover the parameters of the network.

For deep networks, some stable recovery algorithms also exist, for instance for Heavyside activation
function [3], or for only recovering the first layer with sparsity assumptions [37] in the ReLU case,
but to the best of our knowledge there does not exist any algorithm recovering fully a deep ReLU
network from a finite sample.

Model inversion attacks: For deep ReLU networks, when one has full access to the function
implemented by the network, a practical algorithm [35] sequentially constructs a sample X and
approximately recovers the architecture and the parameters modulo permutation and rescaling. Simi-
larly, formulating the problem as a cryptanalytic problem, [9] reconstructs a functionally equivalent
network with fewer requests. As mentioned in Section 1.1, these two references are related to
identifiability, but consider a different setting. In this article we consider an arbitrary given X , while
they work mostly on its construction.

1.3 Contributions

1/ We establish a necessary and sufficient geometric condition of local identifiability from a finite
sample X for deep fully-connected ReLU networks. The condition is that the intersection between
an affine space and a smooth manifold is reduced to a single point. See Figure 1 for an illustration.

2/ Considering tangent spaces, we then provide a computable necessary condition of local identi-
fiability from a finite sample X. Since global identifiability implies local identifiability, it is also a
computable necessary condition of global identifiability.

3/ We also establish a computable sufficient condition of local identifiability, which is close to
the necessary condition. To the best of our knowledge, these are the first testable conditions of
local identifiability for any finite input sample. In particular, [39] provides a theoretical condition
equivalent to the existence of a finite sample for which local identifiability holds, but does not provide
the sample explicitly, nor does it characterize local identifiability for any arbitrary sample.

4/ To prove these results, we develop geometric tools which can be of independent interest for
theoretically understanding deep ReLU networks as well as for possible applications. Namely, we
introduce local reparameterizations ρθ of the network by fixing some weight values as constants.
Building on these local parameterizations, we introduce local lifting operators ψθ and we decompose
the function implemented by the network fθ(x) as a composition of ψθ, which only depends on the
parameters, and a piecewise constant operator α which depends on θ and the inputs xi. For almost
any parameterization θ, the operator α is constant in a neighborhood of θ and consists in applying a
linear function to ψθ. We show that in fact, the operators ψθ are the inverses of coordinate charts of a
smooth manifold Σ∗

1, contained in a high dimensional space. We find Σ∗
1 to be of particular interest
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in representing geometrically some properties of the network parameters (in particular to establish 1/,
2/ and 3/ above).

1.4 Overview of the article

This work is structured as follows. We start by introducing basic tools and already known results, and
we state the definition of local identifiability in Section 2. We then introduce the local parameteriza-
tions ρθ and the set Σ∗

1, and we show that the latter is a smooth manifold in Section 3. This allows us
to state our main results in Section 4, that is the geometric and the numerically testable conditions of
local identifiability. Finally we discuss in Section 5 the numerical computations needed to test the
latter conditions. All the proofs are provided in the appendices.

2 ReLU networks, lifting operator and rescaling of the parameters

2.1 ReLU networks

Let us introduce our notations for deep fully-connected ReLU networks. In this paper, a network is a
graph (E, V ) of the following form.

• V is a set of neurons, which is divided in L+ 1 layers, with L ≥ 2: V = (Vl)l∈J0,LK.
V0 is the input layer, VL the output layer and the layers Vl with 1 ≤ l ≤ L−1 are the hidden
layers. Using the notation |C| for the cardinal of a finite set C, we denote, for all l ∈ J0, LK,
Nl = |Vl| the size of the layer Vl.

• E is the set of all oriented edges v → v′ between neurons in consecutive layers, that is

E = {v → v′, v ∈ Vl, v′ ∈ Vl+1, for l ∈ J0, L− 1K}.

A network is parameterized by weights and biases, gathered in its parameterization θ, with

θ = ((wv→v′)v→v′∈E , (bv)v∈B) ∈ RE × RB ,

where B =
⋃L
l=1 Vl. It is also convenient to consider the weights and biases in matrix/vector form:

for a given θ, we denote, for l ∈ J1, LK,

Wl = (wv→v′)v′∈Vl,v∈Vl−1
∈ RNl×Nl−1 and bl = (bv)v∈Vl

∈ RNl .

When dealing with two parameterizations θ and θ̃ ∈ RE × RB , we take as a convention that wv→v′

and bv as well as Wl and bl denote the weights and biases associated to θ, and w̃v→v′ and b̃v as well
as W̃l and b̃l denote those associated to θ̃.

The activation function, denoted σ, is always ReLU: for any p ∈ N∗ and any vector
x = (x1, . . . , xp)

T ∈ Rp, it is defined as σ(x) = (max(x1, 0), . . . ,max(xp, 0))
T .

For a given θ, we define recursively fl : RV0 → RVl (we omit the dependency in θ in the notation for
simplicity), for l ∈ J0, LK, by

• ∀x ∈ RV0 , f0(x) = x ;
• ∀l ∈ J1, L− 1K, ∀x ∈ RV0 , fl(x) = σ (Wlfl−1(x) + bl);
• ∀x ∈ RV0 , fL(x) =WLfL−1(x) + bL .

We define the function fθ : RV0 → RVL implemented by the network of parameter θ as fθ = fL.

2.2 The lifting operator ϕ and the activation operator α

For a fixed x ∈ RV0 , the value of fθ(x) is a non-linear function of θ. The goal of this section is to
obtain a higher-dimensional representation of θ, that will be written ϕ(θ), and such that fθ(x) is
locally a linear function of ϕ(θ). This will be achieved with Proposition 1. The function ϕ is called a
lifting operator, a wording borrowed from category theory and commonly used in compressed sensing
and dictionary learning, for instance in [7]. The components of ϕ(θ) will be associated to paths in the
neural network. Linearity in Proposition 1 will correspond to summing over these paths.
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We now introduce the paths notations. For all l ∈ J0, L− 1K, we define

Pl = Vl × · · · × VL−1,

which is the set of all paths in the network starting from layer l and ending in layer L − 1. We
consider an additional element β which can be interpreted as an empty path and whose role will be
clear once ϕ has been defined and Proposition 1 stated. We define

P =

(
L−1⋃
l=0

Pl
)
∪ {β}.

In a similar way to [39], we can now define the above-mentioned ‘lifting operator’

ϕ : RE × RB −→ RP×VL

θ 7−→ (ϕp,v(θ))p∈P,v∈VL

(1)

by:

• for all l ∈ J0, L− 1K and all p = (vl, . . . , vL−1) ∈ Pl, and for all vL ∈ VL,

ϕp,vL(θ) =

®∏L−1
l′=0 wvl′→vl′+1

if l = 0

bvl
∏L−1
l′=l wvl′→vl′+1

if l ≥ 1;

• for p = β and vL ∈ VL, ϕβ,vL(θ) = bvL .

To define the activation operator, we first define, for all l ∈ J1, L− 1K, all v ∈ Vl, all θ ∈ RE × RB
and x ∈ RV0 ,

av(x, θ) =

®
1 if (Wlfl−1(x) + bl)v ≥ 0

0 otherwise,

which is the activation indicator of neuron v. We then define the ‘activation operator’

α : RV0 ×
(
RE × RB

)
−→ R1×P

(x, θ) 7−→ (αp(x, θ))p∈P
(2)

by:

• for all l ∈ J0, L− 1K and all p = (vl, . . . , vL−1) ∈ Pl:

αp(x, θ) =

®
xv0
∏L−1
l′=1 avl′ (x, θ) if l = 0∏L−1

l′=l avl′ (x, θ) if l ≥ 1;

• for p = β, αβ(x, θ) = 1.

We then have the announced linear representation of the function fθ implemented by the network.

Proposition 1. For all θ ∈ RE × RB and all x ∈ RV0 , fθ(x)
T = α(x, θ)ϕ(θ).

This result, which is proven in Appendix B, is for instance also stated in [39, Sec. 4] with slightly
different notations. Note that each component of the vector fθ(x) above is written as a sum over a
(very large) number of paths.

Let us reformulate Proposition 1 with several inputs. We consider, for some n ∈ N∗, some given
inputs xi ∈ RV0 , with i ∈ J1, nK. We denote by X ∈ Rn×V0 the matrix whose lines are the transpose
(xi)T of the inputs. For all θ ∈ RE × RB , we denote by fθ(X) ∈ Rn×VL the matrix whose lines are
the transpose fθ(xi)T of the corresponding outputs. We also denote by α(X, θ) ∈ Rn×P the matrix
whose lines are the line vectors α(xi, θ). Using Proposition 1 for all the xi, we have the relation

fθ(X) = α(X, θ)ϕ(θ). (3)

We prove in Appendix B the next proposition, which states that θ 7→ α(X, θ) is piecewise constant.
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Proposition 2. For all n ∈ N∗, for all X ∈ Rn×V0 , the mapping

αX : RE × RB −→ Rn×P

θ 7−→ α(X, θ)

is piecewise-constant, with a finite number of pieces. Furthermore, the boundary of each piece has
Lebesgue measure zero. We call ∆X the union of all these boundaries. The set ∆X ⊂ RE × RB is
closed and has Lebesgue measure zero.

As discussed before, for a given X ∈ Rn×V0 , when studying the function θ 7→ fθ(X), Proposition
2 alongside (3) shows that on a piece over which αX is constant, fθ(X) depends linearly on ϕ(θ).
Since ∆X is closed with measure zero, for almost all θ̃ ∈ RE ×RB , there exists a neighborhood of θ̃
over which αX is constant. As noted for instance by Stock and Gribonval [39, Sec. 2], for any θ in
such a neighborhood, we thus have

fθ(X)− fθ̃(X) = α(X, θ̃)
Ä
ϕ(θ)− ϕ(θ̃)

ä
. (4)

Hence, studying ϕ will allow us to understand better how fθ(X) locally depends on θ.

2.3 Invariant rescaling operations on θ

Some well-known rescaling operations on the parameters θ do not affect the value of ϕ(θ). Before
detailing them, let us define, for all t ∈ R, the sign indicator sign(t) as 1, 0 or −1 depending on
whether t > 0, t = 0 or t < 0 respectively. For any θ ∈ RE × RB , we then define

sign(θ) =
(
(sign(wv→v′)v→v′∈E , (sign(bv))v∈B

)
∈ {−1, 0, 1}E × {−1, 0, 1}B .

We can now describe the rescaling operations.

Definition 3. Let θ ∈ RE × RB and θ̃ ∈ RE × RB .

• We say that θ is equivalent to θ̃ modulo rescaling, and we write θ R∼ θ̃ iff there exists a
family of vectors (λ0, . . . , λL) ∈ (R∗)V0 × · · · × (R∗)VL , with λ0 = 1V0 and λL = 1VL

,
such that, for all l ∈ J1, LK,®

Wl = Diag(λl)W̃lDiag(λl−1)−1

bl = Diag(λl)b̃l.
(5)

• We say that θ is equivalent to θ̃ modulo positive rescaling, and we write θ ∼ θ̃ iff

θ
R∼ θ̃ and sign(θ) = sign(θ̃).

For all l ∈ J1, LK, to satisfy (5) is equivalent to satisfy, for all (vl−1, vl) ∈ Vl−1 × Vl,wvl−1→vl =
λl
vl

λl−1
vl−1

w̃vl−1→vl

bvl = λlvl b̃vl .
(6)

The relations R∼ and ∼ are equivalence relations on the set of parameters RE × RB . The equivalence
modulo positive rescaling ∼ is a well-known invariant for ReLU networks [38, 39, 5, 28, 41]. We
have indeed the following property: if θ ∼ θ̃, for all x ∈ RV0 ,

fθ(x) = fθ̃(x). (7)

One of the interests of the operator ϕ is that it captures this invariant, as described by Stock and
Gribonval [39, Sec. 2.4]. Propositions 4 and 5 are similar to their results and are restated here and
proven in Appendix B for completeness. Indeed, combining the definition of ϕ with (6), we have the
following property.
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Proposition 4. For all θ, θ̃ ∈ RE × RB , we have

θ
R∼ θ̃ =⇒ ϕ(θ) = ϕ(θ̃),

and thus in particular
θ ∼ θ̃ =⇒ ϕ(θ) = ϕ(θ̃).

The reciprocal of Proposition 4 holds provided we exclude some degenerate cases. Let us denote, for
any l ∈ J1, L− 1K and any v ∈ Vl, by w•→v the vector (wv′→v)v′∈Vl−1

∈ RVl−1 and by wv→• the
vector (wv→v′)v′∈Vl+1

∈ RVl+1 . We define the following set, which is close to the notion of ‘non
admissible parameter’ in [39]:

S = {θ ∈ RE × RB ,∃v ∈ V1 ∪ · · · ∪ VL−1, wv→• = 0 or (w•→v, bv) = (0, 0)}.
When wv→• = 0, all the outward weights of v are zero. When (w•→v, bv) = (0, 0), all the inward
weights as well as the bias of v are zero, so for any input the information flowing through neuron v is
always zero. In both cases, the neuron v does not contribute to the output and could be removed from
the network without changing the function fθ. Since the set S is a finite union of linear subspaces
of codimension larger than 1, it is closed and has Lebesgue measure zero. We can thus exclude the
degenerate cases in S without loss of generality. Proposition 5 states that the reciprocal of Proposition
4 holds over

(
RE × RB

)
\S.

Proposition 5. For all θ ∈
(
RE × RB

)
\S, for all θ̃ ∈ RE × RB ,

ϕ(θ) = ϕ(θ̃) =⇒ θ
R∼ θ̃.

2.4 Local identifiability

We have now introduced all the concepts used in the formal definition of ‘local identifiability’.
Definition 6. Let X ∈ Rn×V0 and θ ∈ RE × RB . We say that θ is locally identifiable from X if
there exists ϵ > 0 such that for all θ̃ ∈ RE × RB , if ∥θ − θ̃∥∞ < ϵ,

fθ(X) = fθ̃(X) =⇒ θ ∼ θ̃.

3 The smooth manifold Σ∗
1

We explained in the previous section that studying ϕ allows to better understand how the output
fθ(X) locally depends on θ. The image of ϕ is of particular interest in this study and is the subject of
this section. We define

Σ∗
1 = {ϕ(θ), θ ∈

(
RE × RB

)
\S}.

The main result of this section, Theorem 7, states that Σ∗
1 is a smooth manifold. This result is

a key element of the article. Indeed, it allows to consider tangent spaces to Σ∗
1, and by doing

so, to linearize the geometric characterization of Theorem 8 illustrated in Figure 1. Instead of
considering the intersection between a smooth manifold and an affine space as in Theorem 8, this
indeed allows to consider the intersection between two affine spaces, which can be characterized with
rank computations as in Theorems 9 and 10.

To show this result, we need local injectivity. In this aim, let us consider a fixed θ and analyze the
functions u 7→ fθ+u(X) and u 7→ ϕ(θ + u) for u around 0. We can select N1 + · · ·+NL−1 scalar
scaling parameters (each in a neighborhood of 1), and use them to “rescale” θ + u as in Definition
3, leaving fθ+u(X) and ϕ(θ + u) unchanged ((7) and Proposition 4). Locally, at first order, this
means that there are N1 + · · ·+NL−1 linear combinations of u which leave fθ+u(X) and ϕ(θ + u)
invariant. In order to obtain injectivity with respect to u, locally around 0, we will fixN1+· · ·+NL−1

components of u as follows.

For each neuron v in a hidden layer, we choose the outward edge v → v′ whose weight wv→v′ has
largest (absolute) value (if there are several such edges, we choose one arbitrarily). We denote by
sθmax(v) such a neuron v′. For each neuron v in a hidden layer Vl, there is exactly one neuron sθmax(v)
in the layer Vl+1, and one corresponding edge v → sθmax(v). See Figure 2 for an illustration. We
will set to 0 the components of u corresponding to all the edges of the form v → sθmax(v). Intuitively,
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Figure 2: Left: The outward edges of a hidden neuron v and their weights. In this example,
v1 = sθmax(v), so the weight of the edge in red, v → v1, has its value fixed as wv→v1 . The weights
of the remaining edges, τv→v2 and τv→v3 , are free to vary. Right: In red, all the edges whose weights
are fixed. The remaining edges, in black, constitute the set Fθ.

it will not limit the set of functions fθ̃, in the vicinity of fθ; but will permit to obtain a one-to-one
correspondence between u and fθ+u.

More precisely, let us denote by Fθ ⊂ E the set of remaining edges, which is formally defined as1

Fθ = E \
(
L−1⋃
l=1

{
(v, sθmax(v)), v ∈ Vl

})
. (8)

The mapping from the space of restricted parameters RFθ × RB to the parameter space RE × RB
locally around θ is simply given by the following application

ρθ : RFθ × RB −→ RE × RB

τ 7−→ θ̃ such that


∀(v, v′) ∈ Fθ, w̃v→v′ = τv→v′

∀(v, v′) ∈ E\Fθ, w̃v→v′ = wv→v′

∀v ∈ B, b̃v = τv.

(9)

In particular, if we define τθ ∈ RFθ×RB by (τθ)v→v′ = wv→v′ and (τθ)v = bv , we have ρθ(τθ) = θ.
The function ρθ is affine and injective. We define

Uθ = ρ−1
θ

((
RE × RB

)
\S
)
, (10)

which is an open set of RFθ × RB . We define, for all θ ∈
(
RE × RB

)
\S, the local lifting operator

ψθ : Uθ −→ RP×VL

τ 7−→ ϕ ◦ ρθ(τ). (11)

One can show that ψθ is C∞ and that it is a homeomorphism from Uθ onto its image (see the proofs in
Appendix C), which we denote Vθ and is thus an open subset of Σ∗

1 (with the topology induced on Σ∗
1

by the standard topology on RP×VL ). In particular, since ρθ(τθ) = θ, we have ϕ(θ) = ψθ(τθ) ∈ Vθ.
We have the following fundamental result that will allow us to consider and make use the tangent
spaces of Σ∗

1.
Theorem 7. Σ∗

1 is a smooth manifold of RP×VL of dimension
|Fθ|+ |B| = N0N1 +N1N2 + · · ·+NL−1NL +NL,

and the family (Vθ, (ψ
θ)−1)θ∈(RE×RB)\S is an atlas.

Theorem 7 is proven in Appendix C. Besides being key in Section 4, Theorem 7 (both the smooth
manifold nature of Σ∗

1 and the explicit atlas (Vθ, (ψ
θ)−1)θ∈(RE×RB)\S) may also be considered

of more general independent interest. To our knowledge, such a result has not been established
elsewhere in the literature. Notice that, as announced, despite the use of restricted parameters in
RFθ × RB , we can represent the whole tangent space at any point of Σ∗

1. The only consequence of
the restriction is the uniqueness of the representation of the elements of tangent spaces.

1Note, in the definition of Fθ , the index l starting at l = 1 and not l = 0.
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4 Main results: necessary and sufficient conditions for local identifiability

The main results of this paper rely on the decomposition (4) introduced in Section 2. To reformulate
(4), let us introduce the linear operator A(X, θ), which simply corresponds to the matrix product
with α(X, θ):

A(X, θ) : RP×VL −→ Rn×VL

η 7−→ α(X, θ)η,

where α(X, θ)η is the matrix product between α(X, θ) ∈ Rn×P and η ∈ RP×VL . The operator
A(X, θ) inherits the properties of α(X, θ), in particular those stated in Proposition 2. Using A(X, θ),
the relation (4) satisfied by θ̃ in the neighborhood of θ becomes

fθ(X)− fθ̃(X) = A(X, θ) ·
Ä
ϕ(θ)− ϕ(θ̃)

ä
. (12)

Let us also define the affine space (set-sum of a fixed point and a vector space)

N(X, θ) = ϕ(θ) + KerA(X, θ).

If a parameterization θ̃ ∈ RE ×RB is such that fθ̃(X) = fθ(X) and (12) holds, then ϕ(θ)− ϕ(θ̃) ∈
KerA(X, θ), so by definition ϕ(θ̃) ∈ N(X, θ). Since for θ̃ in the neighborhood of θ, we also have
ϕ(θ̃) ∈ Σ∗

1, we see that local identifiability is closely related to the nature of the intersection between
the smooth manifold Σ∗

1 and the affine subspace N(X, θ).

Indeed, let us denote by B∞(ϕ(θ), ϵ) = {η ∈ RP×VL , ∥ϕ(θ) − η∥∞ < ϵ} the ball of center ϕ(θ)
and of radius ϵ > 0. We have the following geometric necessary and sufficient condition of local
identifiability, which states that local identifiability of θ holds if and only if the intersection between
Σ∗

1 and N(X, θ) is locally reduced to the single point {ϕ(θ)}.
Theorem 8. For any X ∈ Rn×V0 and θ ∈

(
RE × RB

)
\(S ∪∆X), the two following statements

are equivalent.

i) θ is locally identifiable from X .

ii) There exists ϵ > 0 such that B∞(ϕ(θ), ϵ) ∩ Σ∗
1 ∩N(X, θ) = {ϕ(θ)}.

Theorem 8 is proven in Appendix D, and is illustrated in Figure 1. This geometric condition is crucial
for showing the next two results which give testable conditions of identifiability. Theorems 9 and 10
rely on the rank of A(X, θ) and of another linear operator Γ(X, θ), which we now define. Since, as
we said, the function ψθ is C∞, let us denote by Dψθ(τ) : RFθ × RB → RP×VL its differential at
the point τ , for any τ ∈ Uθ. We define the linear operator Γ(X, θ) : RFθ × RB → Rn×VL by

Γ(X, θ) = A(X, θ) ◦Dψθ(τθ). (13)

We denote RA = rank(A(X, θ)) and RΓ = rank(Γ(X, θ)). Since Γ(X, θ) is defined on RFθ ×RB ,
we have 0 ≤ RΓ ≤ |Fθ|+ |B|, and the expression (13) shows that we also have 0 ≤ RΓ ≤ RA. We
can now define the two following conditions.
Condition CN . Condition CN is satisfied by (θ,X) iif RΓ < RA or RΓ = |Fθ|+ |B|.
Condition CS . Condition CS is satisfied by (θ,X) iif RΓ = |Fθ|+ |B|.

The following result states that CN is necessary for local and therefore global identifiability.
Theorem 9 (Necessary condition of identifiability). LetX ∈ Rn×V0 and θ ∈

(
RE × RB

)
\(S∪∆X).

If CN is not satisfied, then θ is not locally identifiable from X (thus not globally identifiable).

The following result states that CS is a sufficient condition of local identifiability.
Theorem 10 (Sufficient condition of local identifiability). Let X ∈ Rn×V0 and θ ∈(
RE × RB

)
\(S ∪∆X). If CS is satisfied, then θ is locally identifiable from X .

Both theorems are proven in Appendix D. To discuss these two results, let us point out that the output
spaces of Γ(X, θ) and A(X, θ) have the same dimension, equal to nNL. Each new input adds NL to
this dimension. One can verify that RA −RΓ is initially 0 and cannot decrease when new inputs are
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added. If a new input leads to RA > RΓ, it can be discarded to preserve RA = RΓ. Moreover, such
an input seems unlikely when RA < |Fθ|+ |B|. If the equality RΓ = RA is enforced, the condition
RΓ = |Fθ|+ |B| is both necessary and sufficient. Finally, to satisfy RΓ = |Fθ|+ |B|, the dimensions
must satisfy nNL ≥ |Fθ|+ |B|. The general belief is that the latter is the condition of identifiability
since nNL is the number of scalar measurements and |Fθ|+ |B| is the number of independent free
parameters, see Theorem 7.

5 Checking the conditions numerically

The key benefit of the conditions CN and CS , compared to the existing literature, is that they can be
numerically tested for any fixed finite sample. They need the computation of the rank of two linear
operators, namely Γ(X, θ) and A(X, θ). The operator Γ(X, θ) satisfies the following:
Proposition 11. Let X ∈ Rn×V0 and θ ∈

(
RE × RB

)
\(S ∪∆X). The function τ 7→ fρθ(τ)(X),

for τ ∈ Uθ is differentiable in a neighborhood of τθ, and we denote by Dτfρθ(τθ)(X) its differential
at τθ. We have

Dτfρθ(τθ)(X) = Γ(X, θ). (14)

The proof of Proposition 11 is in Appendix E. Since the reparameterization with ρθ simply consists in
fixing the weights of the edges v → sθmax(v) to the value wv→sθmax(v)

, (59) shows that the coefficients
of Γ(X, θ) can be computed by a classic backpropagation algorithm NL times for each input xi,
simply omitting the derivatives with respect to the edges of the form v → sθmax(v). An explicit
expression of the coefficients of Γ(X, θ) is given in the Appendix E.

To be satisfied, CS needs the dimensions of Γ(X, θ) to satisfy nNL ≥ |Fθ|+ |B|. One then needs to
compute the rank RΓ of Γ(X, θ), which means computing the rank of a nNL × (|Fθ|+ |B|) matrix.
Existing algorithms allow to do this with a complexity O(nNL(|Fθ| + |B|)ω−1) (up to polylog
terms), where ω is the matrix multiplication exponent and satisfies ω < 2.38 [10].

When it comes to CN , one needs in addition to know the rank RA of A(X, θ), which, as Proposition
12 states, requires to compute the rank of α(X, θ).
Proposition 12. Let X ∈ Rn×V0 and θ ∈ RE × RB . We have RA = NL rank (α(X, θ)).

The dimensions of α(X, θ) are sensibly larger, with |P| columns and n lines, and typically |P| >> n.
However it may have some sparsity properties, as its entries consist in products of activation indicators
(with possibly one input xiv0 ), any one of them being zero causing many entries to vanish. The question
of the efficient computation of RA still needs to be explored and is left as open for future work.

6 Conclusion

This paper is the first to characterize local identifiability for deep ReLU networks for any given
finite sample, with testable conditions. The practical use of these conditions deserves follow-up
research, and so does an extension of our approach to inverse stability. The role of ReLU is crucial
in our approach, especially for the necessary condition of local identifiability and with the linear
representation (Proposition 1). In the end, from Theorem 10 and Proposition 11, the sufficient
condition for local indentifiability is expressed from the Jacobian matrix of the neural network
function with respect to its parameters. Extending this to other activation functions than ReLU is an
interesting perspective.
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[22] Věra Kůrková and Paul C Kainen. Functionally equivalent feedforward neural networks. Neural
Computation, 6(3):543–558, 1994.

[23] François Malgouyres and Joseph Landsberg. On the identifiability and stable recovery of
deep/multi-layer structured matrix factorization. In IEEE, Info. Theory Workshop, Sept. 2016.

[24] François Malgouyres and Joseph Landsberg. Multilinear compressive sensing and an application
to convolutional linear networks. SIAM Journal on Mathematics of Data Science, 1(3):446–475,
2019.

[25] Francois Malgouyres. On the stable recovery of deep structured linear networks under sparsity
constraints. In Mathematical and Scientific Machine Learning, pages 107–127. PMLR, 2020.

[26] Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and Sanjeev Khudanpur. Re-
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A Notations

In this section, we define notations, many of which are standard, that are useful in the proofs.

We denote by N the set of all natural numbers, including 0, and by N∗ the set N without 0. We
denote by Z the set of all integers. For any a, b ∈ Z, we denote by Ja, bK the set of all integers k ∈ Z
satisfying a ≤ k ≤ b. For any finite set A, we denote by |A| the cardinal of A.

For n,N ∈ N∗, we denote by RN the N -dimensional real vector space and by Rn×N the vector
space of real matrices with n lines and N columns. For a vector x = (x1, . . . , xN )T ∈ RN , we
use the norm ∥x∥∞ = maxi∈J1,NK |xi|. For x ∈ RN and r > 0, we denote B∞(x, r) = {y ∈
RN , ∥y − x∥∞ < r}.
For any vector x = (x1, . . . , xN )T ∈ RN , we define sign(x) = (sign(x1), . . . , sign(xN ))T ∈
{−1, 0, 1}N as the vector whose ith component is equal to

sign(xi) =


1 if xi > 0

0 if xi = 0

−1 if xi < 0.

For any matrix M ∈ Rn×N , for all i ∈ J1, nK, we denote by Mi,: the ith line of M . The vector Mi,:

is a line vector whose jth component is Mi,j . Similarly, for j ∈ J1, NK, we denote by M:,j the jth

column of M , which is the column vector whose ith component is Mi,j . For any matrix M ∈ Rn×N ,
we denote by MT ∈ RN×n the transpose matrix of M .

We denote by IdN the N ×N identity matrix and by 1N the vector (1, 1, . . . , 1)T ∈ RN . If λ ∈ RN
is a vector of size N , for some N ∈ N∗, we denote by Diag(λ) the N ×N matrix defined by:

Diag(λ)i,j =

®
λi if i = j

0 otherwise.

If X and Y are two sets and h : X → Y is a function, for a subset A ⊂ Y , we denote by h−1(A) the
preimage of A under f , that is

h−1(A) = {x ∈ X,h(x) ∈ A}.
Note that this does not require the function h to be injective.

For any n,N ∈ N∗ and any differentiable function f : Rn → RN , for all x ∈ Rn, we denote by
Df(x) its differential at the point x, i.e. the linear application Df(x) : Rn → RN satisfying, for all
h ∈ Rn,

f(x+ h) = f(x) +Df(x) · h+ o(h).

If we denote by xj and hj the components of x and h, for j ∈ J1, nK, we have

Df(x) · h =

n∑
j=1

∂f

∂xj
(x)hj ,

where for all j, ∂f
∂xj

(x) ∈ RN . If f : Rn → RN is a linear application, we denote by Ker f the set
{x ∈ Rn, f(x) = 0}, which is a linear subset of Rn.

B The lifting operator ϕ

Let us introduce the notion of ‘path’, extending the definition in Section 2.2. A path is a sequence of
neurons (vk, vk+1, . . . , vl) ∈ Vk × Vk+1 × · · · × Vl, for integers k, l satisfying 0 ≤ k ≤ l ≤ L. In
particular, for all l ∈ J0, L− 1K, the set Pl defined in Section 2.2 contains all the paths starting from
layer l and ending in layer L− 1. We recall

P =

(
L−1⋃
l=0

Pl
)
∪ {β}.
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If k, l,m ∈ N are three integers satisfying 0 ≤ k < l ≤ m ≤ L, and p = (vk, . . . , vl−1) ∈
Vk × · · · × Vl−1 and p′ = (vl, . . . , vm) ∈ Vl × · · · × Vm are two paths such that p ends in the layer
preceding the starting layer of p′, we define the union of the paths by

p ∪ p′ = (vk, . . . , vl−1, vl, . . . vm) ∈ Vk × · · · × Vm.

Before proving Proposition 1, let us compare briefly our construction to [39]. The lifting operator ϕ
introduced in Section 2.2 is similar to the operator Φ in [39], except that Φ does not take a matrix
form. The operator α(x, θ) introduced in Section 2.2 corresponds partly to the object α(θ, x) in
[39]. One of the differences is that α(θ, x) does not include any product with xv0 in its entries, as
does α(x, θ). Finally, a similar statement to Proposition 1 and a similar proof can be found in [39].
However, one of the present contributions is to simplify the construction.

Let us now prove Proposition 1, which we restate here.

Proposition 13. For all θ ∈ RE × RB and all x ∈ RV0 ,

fθ(x)
T = α(x, θ)ϕ(θ).

Proof. Let us prove first the following expression, for all vL ∈ VL:

fθ(x)vL =

( ∑
v0∈V0

...
vL−1∈VL−1

xv0wv0→v1

L−1∏
l=1

avl(x, θ)wvl→vl+1

)

+

(
L−1∑
l=1

∑
vl∈Vl

...
vL−1∈VL−1

bvl

L−1∏
l′=l

avl′ (x, θ)wvl′→vl′+1

)
+ bvL . (15)

We prove this by induction on the number L of layers of the network.

Initialization (L = 2). Let v2 ∈ V2.

fθ(x)v2 = (W2)v2,: σ (W1x+ b1) + bv2

=

( ∑
v1∈V1

wv1→v2 [σ (W1x+ b1)]v1

)
+ bv2

=

( ∑
v1∈V1

wv1→v2σ ((W1)v1,: x+ bv1)

)
+ bv2

=

( ∑
v1∈V1

wv1→v2av1(x, θ)

( ∑
v0∈V0

wv0→v1xv0 + bv1

))
+ bv2

=

Ö∑
v0∈V0
v1∈V1

wv1→v2av1(x, θ)wv0→v1xv0

è
+

( ∑
v1∈V1

wv1→v2av1(x, θ)bv1

)
+ bv2

=

Ö∑
v0∈V0
v1∈V1

xv0wv0→v1av1(x, θ)wv1→v2

è
+

( ∑
v1∈V1

bv1av1(x, θ)wv1→v2

)
+ bv2

which proves (15), when L = 2.

Now let L ≥ 3 and suppose (15) holds for all ReLU networks with L− 1 layers. Let us consider a
network with L layers.
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Let us denote by gθ(x) the output of the L − 1 first layers of the network pre-activation (before
applying the ReLUs of the layer L− 1). The function gθ is that of a ReLU network with L− 1 layers,
and we have

fθ(x) =WLσ(gθ(x)) + bL.

Let vL ∈ VL. We thus have

fθ(x)vL =
∑

vL−1∈VL−1

wvL−1→vLσ(gθ(x)vL−1
) + bvL . (16)

By the induction hypothesis, for all vL−1 ∈ VL−1, gθ(x)vL−1
can be expressed with (15). Considering

that σ(gθ(x)vL−1
) = avL−1

(x, θ)gθ(x)vL−1
and replacing gθ(x)vL−1

by its expression using (15),
(16) becomes

fθ(x)vL =
∑

vL−1∈VL−1

wvL−1→vLavL−1
(x, θ)

[( ∑
v0∈V0

...
vL−2∈VL−2

xv0wv0→v1

L−2∏
l=1

avl(x, θ)wvl→vl+1

)

+

(
L−2∑
l=1

∑
vl∈Vl

...
vL−2∈VL−2

bvl

L−2∏
l′=l

avl′ (x, θ)wvl′→vl′+1

)
+ bvL−1

]
+ bvL

=

( ∑
v0∈V0

...
vL−1∈VL−1

wvL−1→vLavL−1
(x, θ)xv0wv0→v1

L−2∏
l=1

avl(x, θ)wvl→vl+1

)

+

(
L−2∑
l=1

∑
vl∈Vl

...
vL−1∈VL−1

wvL−1→vLavL−1
(x, θ)bvl

L−2∏
l′=l

avl′ (x, θ)wvl′→vl′+1

)

+

( ∑
vL−1∈VL−1

wvL−1→vLavL−1
(x, θ)bvL−1

)
+ bvL

=

( ∑
v0∈V0

...
vL−1∈VL−1

xv0wv0→v1

L−1∏
l=1

avl(x, θ)wvl→vl+1

)

+

(
L−1∑
l=1

∑
vl∈Vl

...
vL−1∈VL−1

bvl

L−1∏
l′=l

avl′ (x, θ)wvl′→vl′+1

)
+ bvL ,

which proves (15) holds for ReLU networks with L layers. This ends the induction, and we conclude
that (15) holds for all ReLU networks.

We can now use this expression to prove Proposition 13. The first sum in (15) is taken over all the
paths p = (v0, . . . , vL−1) ∈ P0, and each summand can be written as

xv0wv0→v1

L−1∏
l=1

avl(x, θ)wvl→vl+1
=

(
xv0

L−1∏
l=1

avl(x, θ)

)(
L−1∏
l=0

wvl→vl+1

)
= αp(x, θ)ϕp,vL(θ).
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For all l ∈ J1, L − 1K, the inner sum of the double sum in (15) is taken over all the paths p =
(vl, . . . , vL−1) ∈ Pl, and each summand can be written as

bvl

L−1∏
l′=l

avl′ (x, θ)wvl′→vl′+1
=

(
L−1∏
l′=l

avl′ (x, θ)

)(
bvl

L−1∏
l′=l

wvl′→vl′+1

)
= αp(x, θ)ϕp,vL(θ).

And finally, we can also write
bvL = αβ(x, θ)ϕβ,vL(θ).

Joining all these sums and denoting ϕ:,vL(θ) = (ϕp,vL(θ))p∈P ∈ RP , we have

fθ(x)vL =
∑
p∈P

αp(x, θ)ϕp,vL(θ) = α(x, θ)ϕ:,vL(θ),

so in other words,
fθ(x)

T = α(x, θ)ϕ(θ).

We restate here and prove Proposition 2.
Proposition 14. For all n ∈ N∗, for all X ∈ Rn×V0 , the mapping

αX : RE × RB −→ Rn×P

θ 7−→ α(X, θ)

appearing in (3) is piecewise-constant, with a finite number of pieces. Furthermore, the boundary of
each piece has Lebesgue measure zero. We call ∆X the union of all the boundaries. The set ∆X is
closed and has Lebesgue measure zero.

Proof. Let us first notice that for any i ∈ J1, nK, for any l ∈ J1, L− 1K,(
av(x

i, θ)
)
v∈V1∪···∪Vl−1

∈ {0, 1}V1∪···∪Vl−1

takes at most 2N1+···+Nl−1 distinct values, so the mapping θ 7→
(
av(x

i, θ)
)
v∈V1∪···∪Vl−1

is piecewise
constant, with a finite number of pieces.

Let i ∈ J1, nK. Let l ∈ J1, L− 1K and v ∈ Vl. Recall the definition of fl−1, as given in Section 2.1.
The function θ → av(x

i, θ) takes only two values, 1 or 0, and its values are determined by the sign
of ∑

v′∈Vl−1

wv′→vfl−1(x
i)v′ + bv. (17)

For all v′ ∈ Vl−1, the value of fl−1(x
i)v′ depends on θ. On a piece P ⊂ RE × RB such that(

av′′(x
i, θ)

)
v′′∈V1∪···∪Vl−1

is constant, this dependence is polynomial. Thus, on P , the value of (17)
is a polynomial function of θ, and since the coefficient applied to bv is equal to 1, the corresponding
polynomial is non constant. Since the values of av(xi, θ) are determined by the sign of (17), inside
P , the boundary between {θ ∈ RE × RB , av(xi, θ) = 0} and {θ ∈ RE × RB , av(xi, θ) = 1} is
included in the set of θ for which (17) equals 0. This piece of boundary is thus contained in a level
set of a non constant polynomial, whose Lebesgue measure is zero.

Since there is a finite number of pieces P , the Lebesgue measure of the boundary between {θ ∈
RE × RB , av(xi, θ) = 0} and {θ ∈ RE × RB , av(xi, θ) = 1}, which is contained in the union of
the boundaries on all the pieces P , is thus equal to 0.

Since this is true for all l ∈ J1, L − 1K and all v ∈ Vl, the boundary of a piece over which(
av(x

i, θ)
)
v∈V1∪···∪VL−1

is constant also has Lebesgue measure zero.

Now since, for all xi, the value of α(xi, θ) only depends on
(
av(x

i, θ)
)
v∈V1∪···∪VL−1

and since αX(θ) is a matrix whose lines are the vectors α(xi, θ), we can conclude that
αX : RE × RB −→ Rn×P

θ 7−→ α(X, θ)
is piecewise-constant, with a finite number of pieces, and that

the boundary of each piece has Lebesgue measure zero.

A boundary is, by definition, closed. Finally, a finite union of closed sets with Lebesgue measure 0,
as ∆X is, is closed and has Lebesgue measure 0.
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For convenience, we introduce the two following notations. Let l ∈ J0, LK. For any l′ ∈ J0, lK and
any path pi = (vl′ , . . . , vl) ∈ Vl′ × · · · × Vl, we denote

θpi =

®∏l−1
k=0 wvk→vk+1

if l′ = 0

bl′
∏l−1
k=l′ wvk→vk+1

if l′ ≥ 1,
(18)

where as a classic convention, an empty product is equal to 1. In particular, if l = 0, for any
pi = (v0) ∈ V0, we have θpi = 1. For any path po = (vl, . . . , vL) ∈ Vl × · · · × VL, we denote

θpo =

L−1∏
k=l

wvk→vk+1
, (19)

with again the convention that an empty product is equal to 1, so if l = L, θpo = 1.

Some attention must be paid to the fact that for any l′ ∈ J1, LK, if we take pi in the case l = L and po
in the case l = l′, it is possible to have

pi = (vl′ , . . . , vL) = po,

but in that case we DO NOT have θpi = θpo , since θpi = bl′
∏L−1
k=l′ wvk→vk+1

and θpo =∏L−1
k=l′ wvk→vk+1

. We will always denote the paths pi and po with an i (as in ‘input’) or an o
(as in ‘output’) to clarify which definition is used.

When considering another parameterization θ̃ ∈ RE ×RB , we denote by θ̃pi and θ̃po the correspond-
ing objects.

We establish different characterizations of the set S defined in Section 2.3 that will be useful in the
proofs. As mentioned in Section 2.3, the subset of parameters

(
RE × RB

)
\S is close to the notion

of ‘admissible’ parameter in [39], but is slightly larger since the condition w•→v ̸= 0 is replaced by
(w•→v, bv) ̸= (0, 0), for each hidden neuron v.
Proposition 15. Let θ ∈ RE × RB . The following statements are equivalent.

i) θ ∈
(
RE × RB

)
\S.

ii) For all l ∈ J1, L−1K and all vl ∈ Vl, there exist l′ ∈ J0, lK, a path pi = (vl′ , . . . , vl) ∈ Vl′×· · ·×Vl
and a path po = (vl, . . . , vL) ∈ Vl × · · · × VL such that

θpi ̸= 0 and θpo ̸= 0.

iii) For all l ∈ J1, L− 1K and all vl ∈ Vl, there exist l′ ∈ J0, lK, a path p = (vl′ , . . . , vl, . . . , vL−1) ∈
Pl′ and vL ∈ VL such that

ϕp,vL(θ) ̸= 0.

Proof. Let us show successively that i)⇒ ii), ii)⇒ iii) and iii)⇒ i).

i)→ ii) Let θ ∈
(
RE × RB

)
\S. Let us show ii) holds.

Let l ∈ J1, LK and vl ∈ Vl. To form a path pi satisfying the condition, we follow the proce-
dure:
pi ← (vl)
k ← l
while k ≥ 1 and bk = 0 do
∃vk−1 ∈ Vk−1, wvk−1→vk ̸= 0
pi ← (vk−1, pi)
k ← k − 1

end while
l′ ← k

The existence of vk−1 in the loop is guaranteed by the fact that θ ̸∈ S and bk = 0 in the condition
of the while loop. In the end, we obtain a path pi = (vl′ , . . . , vl) with either l′ > 0 and bl′ ̸= 0, or
l′ = 0. In both cases, we have by construction

θpi ̸= 0.

We do similarly the other way to form a path po = (vl, . . . , vL). We follow the procedure:
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po ← (vl)
k ← l
while k ≤ L− 1 do
∃vk+1 ∈ Vk+1, wvk→vk+1

̸= 0
po ← (po, vk+1)
k ← k + 1

end while

The existence of vk+1 in the loop is guaranteed by the fact that θ ̸∈ S. In the end, we obtain a path
po = (vl, . . . , vL) satisfying by construction

θpo ̸= 0.

ii)→ iii) Let l ∈ J1, L − 1K and vl ∈ Vl. There exist l′ ∈ J0, lK, a path pi = (vl′ , . . . , vl) ∈
Vl′ × · · · × Vl and a path po = (vl, . . . , vL) ∈ Vl × · · · × VL such that

θpi ̸= 0 and θpo ̸= 0.

Denoting p = (vl′ , . . . , vl, . . . , vL−1), we have
ϕp,vL(θ) = θpiθpo ̸= 0.

iii)→ i) Let us show the contrapositive: let θ ∈ S, and let us show the statement iii) is not true.
Indeed, if θ ∈ S, there exist l ∈ J1, L−1K and vl ∈ Vl such that (w•→vl , bvl) = (0, 0) or wvl→• = 0.
Consider a path p = (vl′ , . . . , vl, . . . , vL−1) and vL ∈ VL. We have

ϕp,vL(θ) =

®
bvl′wvl′→vl′+1

. . . wvl−1→vlwvl→vl+1
. . . wvL−1→vL if l′ ≥ 1

wv0→v1 . . . wvl−1→vlwvl→vl+1
. . . wvL−1→vL if l′ = 0.

If (w•→vl , bvl) = (0, 0), either l′ = l and bvl′ = 0 so ϕp,vL(θ) = 0, or l′ < l and sincewvl−1→vl = 0,
we have ϕp,vL(θ) = 0.

If wvl→• = 0, wvl→vl+1
= 0 so ϕp,vL(θ) = 0. Thus iii) is not satisfied.

We restate and prove Proposition 4.

Proposition 16. For all θ, θ̃ ∈ RE × RB , we have

θ
R∼ θ̃ =⇒ ϕ(θ) = ϕ(θ̃),

and thus in particular
θ ∼ θ̃ =⇒ ϕ(θ) = ϕ(θ̃).

Proof. Let θ, θ̃ ∈ RE × RB such that θ R∼ θ̃. There exists a family (λ0, . . . , λL) ∈ (R∗)V0 × · · · ×
(R∗)VL , with λ0 = 1V0

and λL = 1VL
, such that for all l ∈ J1, LK, for all (vl−1, vl) ∈ Vl−1 × Vl, (6)

holds. We consider first a path p = (v0, . . . , vL−1) ∈ P0 and vL ∈ VL. Using (6) and the fact that
λ0v0 = λLvL = 1, we have

ϕp,vL(θ) =

L∏
l=1

wvl−1→vl =

L∏
l=1

λlvl
λl−1
vl−1

w̃vl−1→vl =
λLvL
λ0v0

L∏
l=1

w̃vl−1→vl = ϕp,vL(θ̃).

Similarly, for l ∈ J1, L − 1K and a path p = (vl, . . . , vL−1) ∈ Pl, and for all vL ∈ VL, we have,
using (6) and the fact that λLvL = 1,

ϕp,vL(θ) = bvl

L∏
l′=l+1

wvl′−1→vl′ = λlvl b̃vl

L∏
l′=l+1

λl
′

vl′

λl
′−1
vl′−1

w̃vl′−1→vl′ = λLvL b̃vl

L∏
l′=l+1

w̃vl′−1→vl′

= ϕp,vL(θ̃).

Finally, for p = β and vL ∈ VL, we have

ϕp,vL(θ) = bvL = λLvL b̃vL = b̃vL = ϕp,vL(θ̃).

This shows ϕ(θ) = ϕ(θ̃).

For the second implication, we simply use the fact that if θ ∼ θ̃, in particular, θ R∼ θ̃.
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Corollary 17. The set
(
RE × RB

)
\S is stable by rescaling equivalence: if θ ∈

(
RE × RB

)
\S,

and θ̃ ∈ RE × RB satisfies θ R∼ θ̃, then θ̃ ∈
(
RE × RB

)
\S.

Proof. Let θ ∈
(
RE × RB

)
\S and θ̃ ∈ RE × RB such that θ R∼ θ̃. Proposition 16 shows that

ϕ(θ̃) = ϕ(θ).

Let l ∈ J1, LK and v ∈ Vl. Since θ ∈
(
RE × RB

)
\S, according to Proposition 15 there exists

l′ ∈ J0, lK, a path p = (vl′ , . . . , vl, . . . , vL−1) and vL ∈ VL such that ϕp,vL(θ) ̸= 0. We have

ϕp,vL(θ̃) = ϕp,vL(θ) ̸= 0,

and since this is true for any l ∈ J1, LK and v ∈ Vl, Proposition 15 shows that θ̃ ∈
(
RE × RB

)
\S.

We restate and prove Proposition 5.

Proposition 18. For all θ ∈
(
RE × RB

)
\S, for all θ̃ ∈ RE × RB ,

ϕ(θ) = ϕ(θ̃) =⇒ θ
R∼ θ̃.

Proof. Let us choose (λ0, . . . , λL) ∈ (R∗)V0 × · · · × (R∗)VL as follows. For all l ∈ J1, L − 1K
and all vl ∈ Vl, since θ ∈

(
RE × RB

)
\S, Proposition 15 shows that there exists a path po(vl) =

(vl, . . . , vL) ∈ Vl × · · · × VL such that θpo(vl) ̸= 0. Let us define λ0 = 1V0
, λL = 1VL

and for all
l ∈ J1, L− 1K,

λlvl =
θ̃po(vl)

θpo(vl)
.

The value of λlvl a priori depends on the choice of the path po(vl), but the first of the two following
facts, that we are going to prove, shows it only depends on vl, since in (20), pi does not depend on
po(vl).

• For all l ∈ J0, LK, for all vl ∈ Vl, for any l′ ∈ J0, lK and any pi = (vl′ , . . . , vl) ∈
Vl′ × · · · × Vl,

θpi = λlvl θ̃pi . (20)

• For all l ∈ J0, LK, for all vl ∈ Vl, λlvl ̸= 0.

Indeed, let l ∈ J0, LK and let us consider l′ ∈ J0, lK and a path pi = (vl′ , . . . , vl) ∈ Vl′ ×
· · · × Vl. Let vl+1, . . . , vL ∈ Vl+1 × · · · × VL such that po(vl) = (vl, vl+1, . . . , vL). Let
p = (vl′ , . . . , vl, . . . , vL−1) ∈ Pl′ so that pi ∪ po(vl) = p ∪ (vL). We have by hypothesis

θpiθpo(vl) = ϕp,vL(θ) = ϕp,vL(θ̃) = θ̃pi θ̃po(vl),

thus

θpi =
θ̃po(vl)

θpo(vl)
θ̃pi = λlvl θ̃pi ,

which proves the first point. To prove the second point, we simply use Proposition 15 to consider a
path pi such that θpi ̸= 0, and (20) shows that λlvl ̸= 0.

Let us now prove the rescaling equivalence. Let l ∈ J1, LK, and let (vl−1, vl) ∈ Vl−1 × Vl. Let us
consider, thanks to Proposition 15, l′ ∈ J0, l− 1K and a path pi = (vl′ , . . . , vl−1) ∈ Vl′ × · · · × Vl−1

such that θpi ̸= 0. The relation (20) shows we also have θ̃pi ̸= 0. Let p′i = pi ∪ (vl). Using (20) with
θp′i we have

θpiwvl−1→vl = θp′i = λlvl θ̃p′i = λlvl θ̃piw̃vl−1→vl .

At the same time, using (20) with θpi we have,

θpiwvl−1→vl = λl−1
vl−1

θ̃piwvl−1→vl ,
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so combining both equalities, we have

λlvl θ̃piw̃vl−1→vl = λl−1
vl−1

θ̃piwvl−1→vl .

Using the fact that θ̃pi ̸= 0 and λl−1
vl−1
̸= 0, we finally obtain, for all l ∈ J1, LK and all (vl−1, vl) ∈

Vl−1 × Vl:

wvl−1→vl =
λlvl
λl−1
vl−1

w̃vl−1→vl .

For all l ∈ J1, LK and all vl ∈ Vl, using (20) with pi = (vl), we obtain

bvl = λlvl b̃vl .

This shows that (6) is satisfied for all (vl−1, vl) ∈ Vl−1 × Vl, and thus θ R∼ θ̃.

The following proposition is useful in the proof of Theorem 26 and allows to improve identifiability
modulo rescaling into identifiability modulo positive rescaling.

Proposition 19. For all θ ∈
(
RE × RB

)
\S, there exists ϵ > 0 such that for all θ̃ ∈ RE × RB ,

∥θ − θ̃∥∞ < ϵ and θ R∼ θ̃ =⇒ θ ∼ θ̃.

Proof. Let θ ∈
(
RE × RB

)
\S. We define

ϵ = min
({
|wv→v′ |, v → v′ ∈ E and wv→v′ ̸= 0

}
∪
{
|bv|, v ∈ B and bv ̸= 0

})
.

Let θ̃ ∈ RE × RB such that ∥θ − θ̃∥∞ < ϵ and θ R∼ θ̃. To prove θ ∼ θ̃, we simply have to
prove sign(θ) = sign(θ̃). There exists (λ0, . . . , λL) ∈ (R∗)V0 × · · · × (R∗)VL , with λ0 = 1V0 and
λL = 1VL

, such that, for all l ∈ J1, LK, for all (vl−1, vl) ∈ Vl−1 × Vl, (6) holds. Let us show that
sign(θ) = sign(θ̃).

Indeed, let l ∈ J1, LK, and let (v, v′) ∈ Vl−1 × Vl. If wv→v′ ̸= 0, then since |wv→v′ − w̃v→v′ | < ϵ
and by definition ϵ ≤ |wv→v′ |, we have sign(wv→v′) = sign(w̃v→v′). Otherwise, if wv→v′ = 0, (6)
shows that we have

w̃v→v′ =
λl−1
v

λlv′
wv→v′ = 0,

so we still have sign(wv→v′) = sign(w̃v→v′).

Now let l ∈ J1, LK and let v ∈ Vl. Similarly, if bv ̸= 0, we have |bv − b̃v| < ϵ ≤ |bv|, so
sign(bv) = sign(b̃v), and if bv = 0, we have

b̃v =
bv
λlv

= 0,

so again sign(bv) = sign(b̃v).

This shows sign(θ) = sign(θ̃), so θ ∼ θ̃.

C The smooth manifold structure of Σ∗
1

In this section, we prove Theorem 7, which is restated as Theorem 25. Before doing so, we establish
intermediary results, some of which are evoked in Section 3.

Let us discuss the cardinal of Fθ defined in Section 3. The set Fθ is obtained by removing the edges
of the form v → sθmax(v) for v ∈ V1 ∪ · · · ∪ VL−1. Note that we do not remove the edges of the form
v → sθmax(v) for v ∈ V0. For all l ∈ J1, L−1K, there are precisely Nl edges of the form (v, sθmax(v))
with v ∈ Vl, so

|Fθ| = |E| − (N1 + · · ·+NL−1)

= N0N1 + · · ·+NL−1NL −N1 − · · · −NL−1.
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As a consequence, since |B| = N1 + · · ·+NL, we have in particular

|Fθ|+ |B| = N0N1 + · · ·+NL−1NL −N1 − · · · −NL−1 +N1 + · · ·+NL
= N0N1 + · · ·+NL−1NL +NL. (21)

The following proposition is a first step towards Proposition 21, which states that ψθ is a homeomor-
phism.
Proposition 20. For all θ ∈

(
RE × RB

)
\S, the function ψθ : Uθ → RP×VL is injective.

Proof. Let τ, τ̃ ∈ Uθ such that ψθ(τ) = ψθ(τ̃). Let us show τ = τ̃ . We have ϕ(ρθ(τ)) = ϕ(ρθ(τ̃))
and by definition of Uθ, ρθ(τ) ∈

(
RE × RB

)
\S, so by Proposition 18 we have the rescaling

equivalence
ρθ(τ)

R∼ ρθ(τ̃).
By definition of the rescaling equivalence, in its formulation (6), there exists (λ0, . . . , λL) ∈ (R∗)V0×
· · ·×(R∗)VL , with λ0 = 1V0

and λL = 1VL
, such that, for all l ∈ J1, LK, for all (vl−1, vl) ∈ Vl−1×Vl,{

ρθ(τ)vl−1→vl =
(λl)vl

(λl−1)vl−1

ρθ(τ̃)vl−1→vl

bvl = λlvl b̃vl .
(22)

Let l ∈ J2, LK and let vl−1 ∈ Vl−1. Let vl = sθmax(vl−1). According to (22) we have

ρθ(τ)vl−1→vl =
(λl)vl

(λl−1)vl−1

ρθ(τ̃)vl−1→vl .

But since vl = sθmax(vl−1) and vl−1 ∈ Vl−1 with l − 1 ∈ J1, L− 1K, we have vl−1 → vl ∈ E\Fθ,
so by definition of ρθ in (9),

ρθ(τ)vl−1→vl = wvl−1→vl = ρθ(τ̃)vl−1→vl ̸= 0,

so (λl)vl
(λl−1)vl−1

= 1.

We have shown that for all l ∈ J2, LK, for all vl−1 ∈ Vl−1, there exists vl ∈ Vl such that

(λl−1)vl−1
= (λl)vl .

As a consequence, if l is such that λl = 1Vl
, then λl−1 = 1Vl−1

.

Starting from λL = 1VL
, this shows by induction that for all l ∈ J1, LK,

λl = 1Vl
.

By hypothesis we also have λ0 = 1V0 . Using (22), this shows that

ρθ(τ) = ρθ(τ̃).

The injectivity of ρθ allows us to conclude that

τ = τ̃ .

The following proposition shows, as mentioned in Section 3, that ψθ is a homeomorphism. This is a
necessary step to prove that (Vθ, (ψθ)−1)θ∈(RE×RB)\S is an atlas of Σ∗

1.

Proposition 21. For all θ ∈
(
RE × RB

)
\S, ψθ is a homeomorphism from Uθ onto its image Vθ.

Proof. We already know from Proposition 20 that ψθ is injective, so we need to prove that ψθ is
continuous and its inverse is continuous. The function ρθ is affine and ϕ is a polynomial function, so
the function ψθ = ϕ ◦ ρθ is a polynomial function, and in particular it is continuous.

To prove that (ψθ)−1 is continuous, we consider a sequence (τn) taking values in Uθ and τ ∈ Uθ
such that ψθ(τn)→ ψθ(τ), and we want to show that τn → τ .
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Let us first show that for all v ∈ B, (τn)v → τv. Indeed, let l ∈ J1, LK and let vl ∈ Vl, so that vl is
an arbitrary element of B. Let us define vl+1 = sθmax(vl), then vl+2 = sθmax(vl+1) and so on up to
vL = sθmax(vL−1). Since for all l′ ∈ Jl, L− 1K, vl′+1 = sθmax(vl′), by definition of Fθ and ρθ (see
(8) and (9)), we have

ρθ(τn)vl′→vl′+1
= wvl′→vl′+1

, (23)

and
ρθ(τ)vl′→vl′+1

= wvl′→vl′+1
. (24)

In particular, since θ ̸∈ S, for all l′ ∈ Jl, L − 1K we have wvl′→• ̸= 0, so by definition of sθmax,
wvl′→vl′+1

̸= 0. We thus have

wvl→vl+1
. . . wvL−1→vL ̸= 0. (25)

If we denote p = (vl, . . . , vL−1), we have, using the definition of ϕ and (23),

ψθp,vL(τn) = (τn)vlwvl→vl+1
. . . wvL−1→vL

and using (24),
ψθp,vL(τ) = (τ)vlwvl→vl+1

. . . wvL−1→vL .

Using (25) and the fact that
ψθ(τn)→ ψθ(τ),

we conclude that
(τn)vl → τvl .

Let us now prove that for all (v, v′) ∈ E, (τn)v→v′ → τv→v′ . Let us show by induction on l ∈ J1, LK
the following hypothesis

∀l′ ∈ J1, lK, ∀(v, v′) ∈ (Vl′−1 × Vl′) ∩ Fθ, (τn)v→v′ −→ τv→v′ . (Hl)

Initialization. Let (v0, v1) ∈ (V0 × V1) ∩ Fθ. We define v2 = sθmax(v1), then we define v3 =
sθmax(v2), and so on up to vL = sθmax(vL−1). Let p = (v0, . . . , vL−1) ∈ P .

As above, using the definition of ρθ, Fθ and ϕ, we have

ψθp,vL(τn) = (τn)v0→v1wv1→v2 . . . wvL−1→vL

and
ψθp,vL(τ) = (τ)v0→v1wv1→v2 . . . wvL−1→vL ,

and since θ ̸∈ S, we also have , as above,

wv1→v2 . . . wvL−1→vL ̸= 0. (26)

Since
ψθ(τn) −→ ψθ(τ)

we conclude using (26) that
(τn)v0→v1 −→ τv0→v1 .

We have shown H1.

Induction step. Let l ∈ J2, LK and let us assume that Hl−1 holds.

Let (vl−1, vl) ∈ (Vl−1 × Vl) ∩ Fθ. We define vl+1 = sθmax(vl), vl+2 = sθmax(vl+1), and so on up to
vL = sθmax(vL−1). Let us denote po = (vl, . . . , vL). Recalling the notation defined in (19), we have

ρθ(τn)po = wvl→vl+1
. . . wvL−1→vL = ρθ(τ)po ̸= 0. (27)

At the same time, since τ ∈ Uθ, Proposition 15 shows there exist l′ ∈ J0, l − 1K and a path
pi = (vl′ , . . . , vl−2, vl−1) such that

ρθ(τ)pi ̸= 0. (28)
If l′ ≥ 1, we have shown in the first part of the proof that (τn)vl′ −→ τvl′ . Moreover, whatever the
value of l′ is, for k ∈ Jl′, l − 2K, if (vk, vk+1) ∈ E\Fθ,

ρθ(τn)vk→vk+1
= wvk→vk+1

= ρθ(τ)vk→vk+1
,
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and if (vk, vk+1) ∈ Fθ, according to Hl−1,

ρθ(τn)vk→vk+1
= (τn)vk→vk+1

−→ τvk→vk+1
= ρθ(τ)vk→vk+1

.

We therefore have
ρθ(τn)pi −→ ρθ(τ)pi , (29)

and in particular, since ρθ(τ)pi ̸= 0, there exists n0 ∈ N such that for all n ≥ n0,

ρθ(τn)pi ̸= 0. (30)

We can write
ψθp,vL(τn) = ρθ(τn)pi (τn)vl−1→vl ρθ(τn)po

and
ψθp,vL(τ) = ρθ(τ)pi (τ)vl−1→vl ρθ(τ)po ,

so using (27), (30) and (29), we have

(τn)vl−1→vl =
ψθp,vL(τn)

ρθ(τn)piρθ(τn)po
−→ ψθp,vL(τ)

ρθ(τ)piρθ(τ)po
= τvl−1→vl .

We have shown Hl, which concludes the induction step.

In particular, HL is satisfied, and finally τn → τ .

This shows that ψθ is a homeomophism.

The following lemma is necessary for the proof of Proposition 23.
Lemma 22. Let θ ∈

(
RE × RB

)
\S. Let (v, v′) ∈ E (resp. v ∈ B). If wv→v′ ̸= 0 (resp. bv ̸= 0),

then there exists ϵ > 0 such that for all θ̃ ∈ RE × RB , if ∥ϕ(θ) − ϕ(θ̃)∥∞ < ϵ, then w̃v→v′ ̸= 0

(resp. b̃v ̸= 0).

Proof. Let θ ∈
(
RE × RB

)
\S and (v, v′) ∈ E such that wv→v′ ̸= 0. Denote l ∈ J0, L− 1K such

that v ∈ Vl. If l = 0, we take pi = (v) so that by convention θpi = 1 ̸= 0, and if l ≥ 1, we use
Proposition 15 which states that there exists l′ ∈ J0, l − 1K and a path pi = (vl′ , . . . , vl−2, v) such
that θpi ̸= 0. Similarly, if l = L − 1, we take po = (v′) so that by convention θpo = 1 ̸= 0 and if
l < L− 1, we use Proposition 15 which states that there exists a path po = (v′, vl+1, . . . , vL) such
that θpo ̸= 0. If we denote

p =


(v, v′, vl+2, . . . , vL−1) if l = 0

(vl′ , . . . , vl−1, v, v
′) if l = L− 1

(vl′ , . . . , vl−1, v, v
′, vl+2, . . . , vL−1) otherwise,

we have
ϕp,vL(θ) = θpiwv→v′θpo ̸= 0.

We define ϵ = |ϕp,vL(θ)| > 0. For all θ̃ ∈ RE × RB such that ∥ϕ(θ̃)− ϕ(θ)∥∞ < ϵ we have

ϕp,vL(θ̃) ̸= 0.

Since ϕp,vL(θ̃) = θ̃piw̃v→v′ θ̃po , this implies in particular that

w̃v→v′ ̸= 0.

The proof is similar in the case v ∈ B and bv ̸= 0.

The following proposition, which states that for any θ ∈
(
RE × RB

)
\S, Vθ = ψθ(Uθ) is open with

respect to the topology induced on Σ∗
1 by the standard topology of RP×VL , is necessary to show that

(Vθ, (ψ
θ)−1)θ∈(RE×RB)\S is an atlas of Σ∗

1.

Proposition 23. For any θ ∈
(
RE × RB

)
\S, for any τ ∈ Uθ, there exists ϵ > 0 such that

Σ∗
1 ∩B∞(ψθ(τ), ϵ) ⊂ Vθ.
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Proof. Let us first construct ϵ and then consider an element of the set on the left of the inclusion and
prove it belongs to Vθ. Let θ ∈

(
RE × RB

)
\S and τ ∈ Uθ. For all l ∈ J1, L− 1K, for all v ∈ Vl, by

definition of Fθ and ρθ, we have ρθ(τ)v→sθmax(v)
= wv→sθmax(v)

, and since θ ̸∈ S, by definition of
sθmax, wv→sθmax(v)

̸= 0, so according to Lemma 22 there exists ϵv > 0 such that for all θ̃ ∈ RE ×RB ,

∥ϕ(ρθ(τ))− ϕ(θ̃)∥∞ < ϵv =⇒ w̃v→sθmax(v)
̸= 0.

Let ϵ = minv∈V1∪···∪VL−1
ϵv .

Let us now show the inclusion: let θ̃ ∈
(
RE × RB

)
\S such that ∥ϕ(ρθ(τ)) − ϕ(θ̃)∥∞ < ϵ, and

let us show that ϕ(θ̃) ∈ Vθ. Notice first that for all l ∈ J1, L − 1K and v ∈ Vl, by definition of ϵ,
wv→sθmax(v)

̸= 0 and w̃v→sθmax(v)
̸= 0. We are going to define τ̃ ∈ Uθ such that ρθ(τ̃)

R∼ θ̃, so that
using Proposition 16, ψθ(τ̃) = ϕ(θ̃).

Let us define recursively a family (λ0, . . . , λL) ∈ (R∗)V0 × · · · × (R∗)VL as follows:

• we define λL = 1VL
;

• for all l ∈ J1, L− 1K, for all v ∈ Vl, we define

λlv =
w̃v→sθmax(v)

wv→sθmax(v)

λl+1
sθmax(v)

. (31)

• we define finally λ0 = 1V0
.

Note that for all l ∈ J0, LK and for all v ∈ Vl, λlv ̸= 0. Also note that for all l ∈ J2, LK, for all
v ∈ Vl−1, reformulating (31) in a way that will be useful later, we have

λlsθmax(v)

λl−1
v

=
wv→sθmax(v)

w̃v→sθmax(v)

. (32)

We then define τ̃ ∈ RFθ × RB by:

• for all l ∈ J1, LK, for all (v, v′) ∈ (Vl−1 × Vl) ∩ Fθ,

τ̃v→v′ =
λlv′

λl−1
v

w̃v→v′ ; (33)

• for all l ∈ J1, LK, for all v ∈ Vl,
τ̃v = λlv b̃v. (34)

Let us show ρθ(τ̃)
R∼ θ̃. Indeed, let l ∈ J1, LK and let (v, v′) ∈ Vl−1 × Vl. If v ∈ V0 or v ∈

V1 ∪ · · · ∪ VL−1 and v′ ̸= sθmax(v), then by definition (8) of Fθ, we have v → v′ ∈ Fθ, so using (9)
and (33) we have

ρθ(τ̃)v→v′ = τ̃v→v′ =
λlv′

λl−1
v

w̃v→v′ . (35)

If v ∈ V1 ∪ · · · ∪ VL−1 and v′ = sθmax(v), then by definition (8) of Fθ, we have v → v′ ∈ E\Fθ,
and since in that case, l ≥ 2, using (9) and (32), we see that

ρθ(τ̃)v→v′ = wv→v′ =
λlv′

λl−1
v

w̃v→v′ . (36)

If v ∈ B, using (9) and (34), we have

ρθ(τ̃)v = τ̃v = λlv b̃v. (37)

Equations (35), (36) and (37) prove that

ρθ(τ̃)
R∼ θ̃.
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Using Corollary 17, since θ̃ ∈
(
RE × RB

)
\S and ρθ(τ̃)

R∼ θ̃, we also have ρθ(τ̃) ∈
(
RE × RB

)
\S.

Since, by definition, Uθ = ρ−1
θ

((
RE × RB

)
\S
)
, we have τ̃ ∈ Uθ. We have shown

Σ∗
1 ∩B∞(ψθ(τ), ϵ) ⊂ Vθ.

The following proposition is necessary in order to show that (Vθ, (ψθ)−1)θ∈(RE×RB)\S is an atlas of
Σ∗

1.

Proposition 24. For all θ ∈
(
RE × RB

)
\S, the function ψθ is C∞ and its differential Dψθ(τ) is

injective for all τ ∈ Uθ.

Proof. Let θ ∈
(
RE × RB

)
\S. First of all, ψθ is a polynomial function as a composition of ϕ and

ρθ which are both polynomial functions. So, ψθ is C∞.

In order to show the injectivity of the differential Dψθ(τ) for all τ ∈ Uθ, let us compute the partial
derivatives of ψθp,vL(τ). Let p ∈ P and vL ∈ VL. Using the definition of ψθ and ϕ, three cases are
possible.

Case 1. The path p is of the form (v0, v1, . . . , vL−1). We have

ψθp,vL(τ) = ρθ(τ)v0→v1 . . . ρθ(τ)vL−1→vL .

Case 2. The path p is of the form (vl, . . . , vL−1) with l ∈ J1, L− 1K. We have, for all τ ∈ Uθ,

ψθp,vL(τ) = τvlρθ(τ)vl→vl+1
. . . ρθ(τ)vL−1→vL .

Case 3. For p = β, we have, for all τ ∈ Uθ,

ψθp,vL(τ) = τvL .

Let (v, v′) ∈ Fθ, and let us compute
∂ψθ

p,vL

∂τv→v′
(τ).

Case 1. We have p = (v0, . . . , vL−1) ∈ P0. If {v, v′} ⊂ {v0, . . . , vL}, there exists l ∈ J0, L− 1K
such that (v, v′) = (vl, vl+1), in which case, since (v, v′) ∈ Fθ, ρθ(τ)vl→vl+1

= τvl→vl+1

and
∂ψθp,vL
∂τv→v′

(τ) =
∏

k∈J0,L−1K
k ̸=l

ρθ(τ)vk→vk+1
. (38)

Otherwise if {v, v′} ̸⊂ {v0, . . . , vL},

∂ψθp,vL
∂τv→v′

(τ) = 0.

Case 2. We have p = (vl, . . . , vL−1) ∈ Pl, for l ∈ J1, L − 1K. If {v, v′} ⊂ {vl, . . . , vL}, there
exists l′ ∈ Jl, L − 1K such that (v, v′) = (vl′ , vl′+1), in which case, since (v, v′) ∈ Fθ,
ρθ(τ)vl′→vl′+1

= τvl′→vl′+1
and

∂ψθp,vL
∂τv→v′

(τ) = τvl
∏

k∈Jl,L−1K
k ̸=l′

ρθ(τ)vk→vk+1
. (39)

Otherwise if {v, v′} ̸⊂ {vl, . . . , vL},

∂ψθp,vL
∂τv→v′

(τ) = 0.
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Case 3. We have p = β. In that case, we have

∂ψθp,vL
∂τv→v′

(τ) = 0.

Now let v ∈ B, and let us compute
∂ψθ

p,vL

∂τv
(τ).

Case 1. We have p = (v0, . . . , vL−1) ∈ P0 and

∂ψθp,vL
∂τv

(τ) = 0.

Case 2. We have p = (vl, . . . , vL−1) ∈ Pl for l ∈ J1, L− 1K. If v = vl, then

∂ψθp,vL
∂τv

(τ) =
∏

k∈Jl,L−1K

ρθ(τ)vk→vk+1
.

If v ̸= vl,
∂ψθp,vL
∂τv

(τ) = 0.

Case 3. We have p = β and
∂ψθp,vL
∂τv

(τ) =

®
1 if v = vL
0 if v ̸= vL.

Now that we know the partial derivatives, let us show Dψθ(τ) is injective for all τ ∈ Uθ. Let τ ∈ Uθ
and let h ∈ RFθ × RB such that

Dψθ(τ) · h = 0.

We need to prove that h = 0.

Let us show first that for all v ∈ B, hv = 0. Let l ∈ J1, L−1K, and let vl ∈ Vl so that vl is arbitrary in
B\VL. Let us define vl+1 = sθmax(vl), then vl+2 = sθmax(vl+1), and so on up to vL = sθmax(vL−1).
Let us denote p = (vl, . . . , vL−1). We have

ψθp,vL(τ) = τvlwvl→vl+1
. . . wvL−1→vL ,

so [
Dψθ(τ) · h

]
p,vL

=
∂ψθp,vL
∂τvl

(τ)hvl = wvl→vl+1
. . . wvL−1→vLhvl .

Since
[
Dψθ(τ) · h

]
p,vL

= 0 and wvl→vl+1
. . . wvL−1→vL ̸= 0, we conclude that hvl = 0. Now let

vL ∈ VL. We consider p = β and we have[
Dψθ(τ) · h

]
p,vL

= hvL .

Since
[
Dψθ(τ) · h

]
p,vL

= 0, we also conclude in that case that hvL = 0.

Let us now show that for all (v, v′) ∈ Fθ, hv→v′ = 0. Let l ∈ J1, LK and let (vl−1, vl) ∈
(Vl−1 × Vl) ∩ Fθ so that (vl−1, vl) is arbitrary in Fθ. If l = 1, we define pi = (vl−1) and we
have by convention θpi = 1 ̸= 0. If l > 1, using Proposition 15 there exist l′ ∈ J0, l − 1K and
a path pi = (vl′ , . . . , vl−1) such that ρθ(τ)pi ̸= 0. If l < L, we define vl+1 = sθmax(vl), then
vl+2 = sθmax(vl+1), and so on up to vL = sθmax(vL−1), and we denote p = pi∪ (vl−1, vl, . . . , vL−1).
If l = L, we denote p = pi. Let us show the following expression.

[
Dψθ(τ) · h

]
p,vL

=
∑

k∈Jl′,l−1K
(vk,vk+1)∈Fθ

∂ψθp,vL
∂τvk→vk+1

(τ)hvk→vk+1
(40)
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Indeed, if l′ ≥ 1, we have

ψθp,vL(τ) = τvl′

l−1∏
k=l′

ρθ(τ)vk→vk+1

L−1∏
k=l

wvk→vk+1
,

with the classical convention that if l = L, the product on the right is empty thus equal to 1. We thus
have [

Dψθ(τ) · h
]
p,vL

=
∂ψθp,vL
∂τvl′

(τ)hvl′ +
∑

k∈Jl′,l−1K
(vk,vk+1)∈Fθ

∂ψθp,vL
∂τvk→vk+1

(τ)hvk→vk+1

=
∑

k∈Jl′,l−1K
(vk,vk+1)∈Fθ

∂ψθp,vL
∂τvk→vk+1

(τ)hvk→vk+1
,

since we have already shown that hvl′ = 0.

If l′ = 0, we have

ψθp,vL(τ) =

l−1∏
k=0

ρθ(τ)vk→vk+1

L−1∏
k=l

wvk→vk+1
,

with the same convention that when l = L the product on the right is equal to 1, so again[
Dψθ(τ) · h

]
p,vL

=
∑

k∈J0,l−1K
(vk,vk+1)∈Fθ

∂ψθp,vL
∂τvk→vk+1

(τ)hvk→vk+1
.

This concludes the proof of (40).

We can now show by induction the following statement, for l ∈ J0, LK.

∀l′ ∈ J1, lK, ∀(v, v′) ∈ (Vl′−1 × Vl′) ∩ Fθ, hv→v′ = 0. (Hl)

Since J1, 0K = ∅, H0 is trivially true. Now let l ∈ J1, LK and suppose Hl−1 is true. We consider
(vl−1, vl) ∈ (Vl−1 × Vl)∩Fθ, and l′ ∈ J0, lK, pi and p just as before. Since for all k ∈ J0, l− 2K, the
induction hypothesis guarantees that hvk→vk+1

= 0, (40) becomes

[
Dψθ(τ) · h

]
p,vL

=
∂ψθp,vL
∂τvl−1→vl

(τ)hvl−1→vl .

Using (38) and (39), we obtain[
Dψθ(τ) · h

]
p,vL

=

®
ρθ(τ)piwvl→vl+1

. . . wvL−1→vLhvl−1→vl if l < L

ρθ(τ)pihvl−1→vl if l = L.

Since ρθ(τ)pi ̸= 0, and for l < L, wvl→vl+1
. . . wvL−1→vL ̸= 0, we conclude that hvl−1→vl = 0 and

that Hl holds.

This induction leads to the conclusion that h = 0 and Dψθ(τ) is injective.

We are now equipped to prove Theorem 7, which we restate here.
Theorem 25. Σ1

∗ is a smooth manifold of RP×VL of dimension

|Fθ|+ |B| = N0N1 +N1N2 + · · ·+NL−1NL +NL,

and the family (Vθ, (ψ
θ)−1)θ∈(RE×RB)\S is an atlas.

Proof. Our goal is to show that the family (Vθ, (ψ
θ)−1)θ∈(RE×RB)\S is a smooth atlas, which will

show that Σ∗
1 is a smooth manifold.

We already know from Proposition 23 that for any θ ∈
(
RE × RB

)
\S, Vθ is an open subset of

Σ∗
1 and from Proposition 21 that (ψθ)−1 is a homeomorphism from Vθ onto Uθ. Since for any
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η0•

τ0•
τ1• Uθ̃Uθ

Vθ̃Vθ

Σ∗
1

ψθ̃ψθ

Figure 3: The points η0, τ0, τ1 and the inverse charts ψθ and ψθ̃.

θ ∈
(
RE × RB

)
\S, τθ ∈ Uθ, we have ϕ(θ) = ψθ(τθ) ∈ Vθ which shows that (Vθ)θ∈(RE×RB)\S

covers Σ∗
1.

Let θ, θ̃ ∈
(
RE × RB

)
\S, let us show that the transition map

(ψθ)−1 ◦ ψθ̃ : (ψθ̃)−1(Vθ ∩ Vθ̃) → (ψθ)−1(Vθ ∩ Vθ̃)
is smooth.

Let τ0 ∈ Uθ̃ such that τ0 ∈ (ψθ̃)−1(Vθ ∩ Vθ̃). We are going to show that the function (ψθ)−1 ◦ ψθ̃ is
C∞ in a neighborhood of τ0.

For ease of reading, let us denote ψθ̃(τ0) by η0. By definition, η0 ∈ Vθ ∩ Vθ̃. In particular, since
η0 ∈ Vθ, we can define τ1 = (ψθ)−1(η0). See Figure 3 for a representation.

Let T = ImDψθ(τ1), and let us consider a linear subspace G such that T ⊕ G = RP×VL . Let
NC = |P|NL − |Fθ| − |B| = dim(G). Let i : RNC → G be linear and invertible. Let us consider
the function

φθ : Uθ × RNC −→ RP×VL

(τ, x) 7−→ ψθ(τ) + i(x).

We are going to show that there exist an open neighborhood Ũ of (τ1, 0) in (RFθ × RB) × RNC

and an open neighborhood Ṽ of η0 in RP×VL such that φθ is a C∞ diffeomorphism from Ũ onto Ṽ
satisfying

φθ

Å [
(RFθ × RB)× {0}NC

]
∩ Ũ
ã
= Σ∗

1 ∩ Ṽ .

Let us first show that φθ is a C∞-diffeomorphism from a neighborhood of (τ1, 0) in (RFθ × RB)×
RNC onto a neighborhood of η0 in RP×VL . As shown in Proposition 24, ψθ is C∞ and i is a
linear function, so φθ is C∞. Let us prove that the differential Dφθ(τ1, 0) is injective. For all
(τ, x) ∈

(
RFθ × RB

)
× RNC ,

Dφθ(τ1, 0) · (τ, x) = Dψθ(τ1) · τ + i(x).

Since Dψθ(τ1) · τ ∈ T , i(x) ∈ G, and T and G are in direct sum, if Dφθ(τ1, 0) · (τ, g) = 0, then
we have ®

Dψθ(τ1) · τ = 0

i(x) = 0.

Since as shown in Proposition 24 Dψθ(τ1) is injective, and since i is invertible, we have

(τ, x) = (0, 0).
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Hence, Dφθ(τ1, 0) is injective. Since dim(
(
RFθ × RB

)
× RNC ) = |Fθ| + |B| + NC = |P|NL,

the differential Dφθ(τ1, 0) is bijective. Using the inverse function theorem, there exists an open
set U ⊂ Uθ × RNC containing (τ1, 0), an open set V ⊂ RP×VL containing η0 such that φθ is a
C∞-diffeomorphism from U onto V .

We have

φθ

Å [
(RFθ × RB)× {0}NC

]
∩ U
ã
⊂ Vθ ∩ V.

In fact, if V is small enough, this inclusion is an equality. We are going to construct open subsets
Ũ ⊂ U and Ṽ ⊂ V so that it is the case. Let us define

O = {τ ∈ Uθ, (τ, 0) ∈ U}.
Since U is an open set containing (τ1, 0), O is an open set containing τ1 = (ψθ)−1(η0). Since,
according to Proposition 21, ψθ is a homeomorphism, ψθ(O) is an open subset of Vθ so there exists
ϵ > 0 such that

Vθ ∩B∞(η0, ϵ) ⊂ ψθ(O). (41)

We can now define Ṽ = V ∩B∞(η0, ϵ), and Ũ = {(τ, x) ∈ U, φθ(τ, x) ∈ Ṽ }, which are open sets
such that (τ1, 0) ∈ Ũ , η0 ∈ Ṽ , and φθ is a C∞-diffeomorphism from Ũ onto Ṽ . Let us show that

φθ

Å [
(RFθ × RB)× {0}NC

]
∩ Ũ
ã
= Vθ ∩ Ṽ . (42)

The direct inclusion is immediate: if (τ, 0) ∈
[
(RFθ × RB)× {0}NC

]
∩ Ũ , then

φθ(τ, 0) = ψθ(τ) ∈ Vθ ∩ Ṽ .
For the reciprocal inclusion, if τ ∈ Uθ is such that ψθ(τ) ∈ Vθ ∩ Ṽ , then by definition of ϵ and Ṽ ,
(41) guarantees, since ψθ is injective, that τ ∈ O. By definition of O, we have (τ, 0) ∈ U , and since

φθ(τ, 0) = ψθ(τ) ∈ Ṽ ,
this shows (τ, 0) ∈ Ũ . This shows the reciprocal inclusion, and thus (42) holds.

Let us now define
Pθ : RFθ × RB × RNC −→ RFθ × RB

(τ, x) 7−→ τ

the restriction to the first component, and let us observe that over Vθ ∩ Ṽ , we have

Pθ ◦ (φθ)−1 = (ψθ)−1. (43)

Indeed, if η ∈ Vθ ∩ Ṽ , then by (42) there exists τ ∈ Uθ such that (τ, 0) ∈ Ũ and φθ(τ, 0) = η. Since
φθ(τ, 0) = ψθ(τ), this shows that τ = (ψθ)−1(η) and thus

(ψθ)−1(η) = Pθ(τ, 0) = Pθ ◦ (φθ)−1(η).

Now recall that η0 = ψθ̃(τ0). By continuity of ψθ̃, there exists ϵ′ > 0 such that B∞(τ0, ϵ
′) ⊂

(ψθ̃)−1(Vθ ∩ Vθ̃) and
ψθ̃(B∞(τ0, ϵ

′)) ⊂ Ṽ .
For any τ ∈ B∞(τ0, ϵ

′), we have ψθ̃(τ) ∈ Vθ ∩ Ṽ so, as we just proved with (43), (ψθ)−1 ◦ψθ̃(τ) =
Pθ ◦ (φθ)−1 ◦ ψθ̃(τ). Since the functions ψθ̃, (φθ)−1 and Pθ are all C∞, we conclude that the
transition map (ψθ)−1 ◦ ψθ̃ is C∞ over B∞(τ0, ϵ

′), for all τ0 ∈ (ψθ̃)−1(Vθ ∩ Vθ̃). We conclude that
(ψθ)−1 ◦ ψθ̃ is C∞ over (ψθ̃)−1(Vθ ∩ Vθ̃).
We have showed that (Vθ, (ψθ)−1)θ∈(RE×RB)\S is a smooth atlas, and thus that Σ∗

1 is a smooth
submanifold of RP×VL . As computed in (21), its dimension is

|Fθ|+ |B| = N0N1 +N1N2 + · · ·+NL−1NL +NL.
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D Conditions of local identifiability

Let us restate (using Definition 6) and prove Theorem 8.

Theorem 26. For any X ∈ Rn×V0 and θ ∈
(
RE × RB

)
\(S ∪∆X), the two following statements

are equivalent.

i) θ is locally identifiable from X .

ii) There exists ϵ > 0 such that B∞(ϕ(θ), ϵ) ∩ Σ∗
1 ∩N(X, θ) = {ϕ(θ)}.

Proof.

i)⇒ ii) Suppose i) is satisfied for some ϵ1 > 0. We first construct ϵ′ > 0 and then consider η ∈
B∞(ϕ(θ), ϵ′) ∩Σ∗

1 ∩N(X, θ), and we prove that η = ϕ(θ). Since θ ∈
(
RE × RB

)
\(S ∪∆X) and

since, according to Proposition 14, ∆X is closed, there exists ϵ2 > 0 such that for any θ̃ ∈ B∞(θ, ϵ2),

α(X, θ) = α(X, θ̃),

i.e.
A(X, θ) = A(X, θ̃).

Consider ϵ = min(ϵ1, ϵ2). Since, according to Proposition 21, ρθ ◦ (ψθ)−1 is continuous at ϕ(θ) ∈
ψθ(Uθ), and since ρθ ◦ (ψθ)−1(ϕ(θ)) = ρθ(τθ) = θ, there exists ϵ′ > 0 such that for all τ ∈ Uθ,

∥ψθ(τ)−ϕ(θ)∥∞ < ϵ′ =⇒ ∥ρθ(τ)−θ∥∞ = ∥ρθ◦(ψθ)−1(ψθ(τ))−ρθ◦(ψθ)−1(ϕ(θ))∥∞ < ϵ.
(44)

Since ϕ(θ) = ψθ(τθ), Proposition 23 guarantees that, modulo a decrease of ϵ′, we can assume that

B∞(ϕ(θ), ϵ′) ∩ Σ∗
1 ⊂ ψθ(Uθ). (45)

Now let η ∈ B∞(ϕ(θ), ϵ′) ∩ Σ∗
1 ∩ N(X, θ). Let us prove that η = ϕ(θ). Using (45), there exists

τ ∈ Uθ such that η = ψθ(τ). Since ∥ϕ(θ)− η∥∞ < ϵ′, we have using (44)

∥ρθ(τ)− θ∥∞ < ϵ. (46)

Since ϵ < ϵ2, we have
A(X, θ) = A(X, ρθ(τ)). (47)

Since ψθ(τ) = η ∈ N(X, θ), we have by definition of N(X, θ) that ψθ(τ)− ϕ(θ) ∈ KerA(X, θ),
so

A(X, θ) · ψθ(τ) = A(X, θ) · ϕ(θ) (48)

Using successively (3), (47), (48) and (3) again, we have

fρθ(τ)(X) = A(X, ρθ(τ)) · ϕ(ρθ(τ))
= A(X, θ) · ϕ(ρθ(τ))
= A(X, θ) · ϕ(θ)
= fθ(X).

Since the hypothesis i) holds for ϵ1, using (46) and the fact that ϵ < ϵ1, we have

θ ∼ ρθ(τ).
We conclude using Proposition 16 that

η = ϕ(ρθ(τ)) = ϕ(θ),

which shows
B∞(ϕ(θ), ϵ′) ∩ Σ∗

1 ∩N(X, θ) ⊂ {ϕ(θ)}.
The converse inclusion trivially holds and therefore ii) holds.
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ii)⇒ i) Suppose ii) is satisfied for some ϵ′ > 0.

We first construct ϵ and prove i) holds. Since θ ∈
(
RE × RB

)
\(S ∪∆X), using Proposition 14,

there exists ϵ1 > 0 such that for all θ̃ ∈ B∞(θ, ϵ1),

α(X, θ) = α(X, θ̃),

i.e.
A(X, θ) = A(X, θ̃). (49)

Since ϕ is continuous, there exists ϵ2 > 0 such that

∥θ − θ̃∥∞ < ϵ2 =⇒ ∥ϕ(θ)− ϕ(θ̃)∥∞ < ϵ′.

Using Proposition 19, there exists ϵ3 > 0 such that

θ
R∼ θ̃ and ∥θ − θ̃∥∞ < ϵ3 =⇒ θ ∼ θ̃.

Since θ ̸∈ S and S is closed, there exists ϵ4 > 0 such that for all θ̃ ∈ RE × RB , if ∥θ − θ̃∥∞ < ϵ4,
then

θ̃ ̸∈ S.

Let ϵ = min(ϵ1, ϵ2, ϵ3, ϵ4). Let θ̃ ∈ B∞(θ, ϵ), and suppose

fθ(X) = fθ̃(X).

Let us prove that θ ∼ θ̃. Reformulating the above equality using (3) for both sides, and using the
definition of A given in the beginning of Section 4, we have

A(X, θ) · ϕ(θ) = A(X, θ̃) · ϕ(θ̃).

Since ∥θ − θ̃∥∞ < ϵ ≤ ϵ1, we have the equality (49) and thus

A(X, θ) · ϕ(θ) = A(X, θ) · ϕ(θ̃).

In other words, ϕ(θ̃) − ϕ(θ) ∈ KerA(X, θ). Since ϵ < ϵ4, ϕ(θ̃) ∈ Σ∗
1. Since ϵ < ϵ2, ϕ(θ̃) ∈

B∞(ϕ(θ), ϵ′). Summarizing,

ϕ(θ̃) ∈ B∞(ϕ(θ), ϵ′) ∩ Σ∗
1 ∩N(X, θ),

and using the hypothesis ii), we conclude that

ϕ(θ̃) = ϕ(θ).

By Proposition 18, we have θ R∼ θ̃, and since ϵ < ϵ3, we conclude that

θ ∼ θ̃.

We are now going to prove Theorems 9 and 10, which we restate as Theorems 27 and 28 respectively
(using Definition 6).

Theorem 27 (Necessary condition). Let X ∈ Rn×V0 and θ ∈
(
RE × RB

)
\(S ∪∆X). If CN is not

satisfied, then θ is not locally identifiable from X (thus not globally identifiable).

Theorem 28 (Sufficient condition). Let X ∈ Rn×V0 and θ ∈
(
RE × RB

)
\(S ∪ ∆X). If CS is

satisfied, then θ is locally identifiable from X .

To prove the theorems, we need to prove first the following lemmas.

Lemma 29. Let us denote by T = ImDψθ(τθ) the direction of the tangent plane to Σ∗
1 at ϕ(θ). Let

us denote by H the intersection KerA(X, θ) ∩ T . We have

dim(H) = |Fθ|+ |B| −RΓ. (50)
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Proof. Let η ∈ T . There exists h ∈ RFθ × RB such that η = Dψθ(τθ) · h. We have the following
equivalence:

η ∈ KerA(X, θ) ⇐⇒ A(X, θ) · η = 0

⇐⇒ A(X, θ) ◦Dψθ(τθ) · h = 0

⇐⇒ Γ(X, θ) · h = 0

⇐⇒ h ∈ KerΓ(X, θ).

This shows that Dψθ(τθ)−1(KerA(X, θ) ∩ T ) = Ker Γ(X, θ) ⊂ RFθ × RB .

Since Dψθ(τθ) is injective, we thus have

dim(H) = dim(Ker Γ(X, θ)) = |Fθ|+ |B| −RΓ.

Lemma 30. Let G be a supplementary subspace of KerA(X, θ) such that

H ⊕G = KerA(X, θ). (51)

If RΓ = RA, there exist an open set O ⊂ Uθ ×G containing (τθ, 0) and an open set V ⊂ RP×VL

containing ϕ(θ) such that
ξ : O −→ V

(τ, g) 7−→ ψθ(τ) + g

is a diffeomorphism from O onto V .

Proof. Let us first show that
T ⊕G = RP×VL . (52)

Indeed, since KerA(X, θ) = H ⊕ G and T ∩ KerA(X, θ) = H , we have T ∩ G = {0}. We of
course have

T ⊕G ⊂ RP×VL . (53)

Let us show that dim(G) = dim(RP×VL)− dim(T ). First note that we have

dim(KerA(X, θ)) = dim(RP×VL)− rank(A(X, θ)) = |P|NL −RA. (54)

Using (51) and (54), we have

dim(G) = dim(KerA(X, θ))− dim(H)

= |P|NL −RA − dim(H).

Using (50) and the hypothesis RΓ = RA we thus have

dim(G) = |P|NL −RA +RΓ − |Fθ| − |B|
= |P|NL − |Fθ| − |B|
= |P|NL − dim(T ),

where the last equality comes from the injectivity of Dψθ(τθ), shown in Proposition 24. Together
with (53), this proves (52).

Let us now consider the function

ξ : Uθ ×G −→ RP×VL

(τ, g) 7−→ ψθ(τ) + g.

For all (h, g) ∈ (RFθ × RB)×G, we have

Dξ(τθ, 0) · (h, g) = Dψθ(τθ)h+ g.

The differential Dξ(τθ, 0) is injective. Indeed, if

Dξ(τθ, 0) · (h, g) = 0,
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then since Dψθ(τθ)h ∈ T and g ∈ G, we have®
Dψθ(τθ)h = 0

g = 0,

and since Dψθ(τθ) is injective, h = 0 and Dξ(τθ, 0) is injective. Since, using (52),

dim(RFθ × RB) + dim(G) = |P|NL,
Dξ(τθ, 0) is bijective.

We can thus apply the inverse function theorem: there exists an open set O ⊂ Uθ ×G containing
(τθ, 0), an open set V ⊂ RP×VL containing ϕ(θ) such that ξ is a diffeomorphism from O into V .

We can now prove the theorems.

Proof of Theorem 27. If CN is not satisfied, then we have RΓ = RA < |Fθ| + |B|. We can thus
apply Lemma 30: there exist an open setO ⊂ Uθ×G containing (τθ, 0) and an open set V ⊂ RP×VL

containing ϕ(θ) such that
ξ : O −→ V

(τ, g) 7−→ ψθ(τ) + g

is a diffeomorphism from O onto V .

Consider ϵ > 0. We define the open set Õ = O ∩ (ψθ)−1(B(ϕ(θ), ϵ)×G and its image Ṽ = ξ(Õ).
Using the computation of dim(H) shown in Lemma 29, we have

dim(H) = |Fθ|+ |B| −RΓ > 0,

so there exists a nonzero w ∈ H such that ϕ(θ) + w ∈ Ṽ . Since ξ induces a diffeomorphism from Õ
onto Ṽ , there exists (τ, g) ∈ Õ such that

ϕ(θ) + w = ψθ(τ) + g

i.e.
ψθ(τ)− ϕ(θ) = w − g. (55)

Let us denote θ̃ = ρθ(τ) and let us show that Theorem 26.ii) does not hold. By definition, ϕ(θ̃) =
ψθ(τ) and since (τ, g) ∈ Õ, ∥ϕ(θ)− ϕ(θ̃)∥∞ < ϵ. Since H ∩G = {0}, w ∈ H , g ∈ G and w ̸= 0,
(55) shows that

ϕ(θ̃)− ϕ(θ) ̸= 0.

Furthermore, since w ∈ H ⊂ KerA(X, θ) and g ∈ G ⊂ KerA(X, θ), (55) shows that

ϕ(θ̃)− ϕ(θ) ∈ KerA(X, θ),

so
ϕ(θ̃) ∈ N(X, θ).

Summarizing, for any ϵ > 0 there exists θ̃ ∈
(
RE × RB

)
\S such that ϕ(θ̃) ∈ B∞(ϕ(θ), ϵ) ∩ Σ∗

1 ∩
N(X, θ)\{ϕ(θ)}. The second item of Theorem 26 does not hold. Since it is equivalent, the first item
of Theorem 26 does not hold either. In other words, the conclusion of Theorem 27 holds.

Proof of Theorem 28. Suppose that CS is satisfied. Using Lemma 29 and using CS , we obtain

dim(T ∩KerA(X, θ)) = |Fθ|+ |B| −RΓ = 0.

We thus have
T ∩KerA(X, θ) = {0}. (56)

In order to apply Theorem 26, let us show by contradiction that there exists ϵ > 0 such that

B∞(ϕ(θ), ϵ) ∩ Σ∗
1 ∩N(X, θ) = {ϕ(θ)}. (57)
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More precisely, we suppose that for all n ∈ N∗, there exists ϕn ∈ N(X, θ)∩Σ∗
1 such that ϕn ̸= ϕ(θ)

and ∥ϕ(θ)− ϕn∥∞ < 1
n and prove that it leads to T ∩KerA(X, θ) ̸= {0}, which contradicts (56).

Using Proposition 23, there exists n0 ∈ N∗ such that for all n ≥ n0, there exists τn ∈ Uθ such that
ϕn = ψθ(τn). Since ψθ is a homeomorphism and ψθ(τθ) = ϕ(θ),

ϕn → ϕ(θ)

implies that
τn → τθ.

Moreover, for all n ≥ n0, τn ̸= τθ.

When n tends to infinity, we can thus write

ϕn − ϕ(θ) = ψθ(τn)− ψθ(τθ) = Dψθ(τθ) · (τn − τθ) + o(τn − τθ).
Let us apply A(X, θ) and divide by ∥τn − τθ∥.

1

∥τn − τθ∥
A(X, θ)·(ϕn−ϕ(θ)) = A(X, θ)◦Dψθ(τθ)·

Å
τn − τθ
∥τn − τθ∥

ã
+

1

∥τn − τθ∥
A(X, θ)o (τn − τθ) .

(58)
Since ϕn ∈ N(X, θ) for all n ∈ N∗,

1

∥τn − τθ∥
A(X, θ) · (ϕn − ϕ(θ)) = 0.

Since τn−τθ
∥τn−τθ∥ belongs to the unit sphere, we can extract a subsequence that converges to a limit h

with norm equal to 1. Taking the limit in (58) according to this subsequence, we obtain

0 = A(X, θ) ◦Dψθ(τθ) · h,
which shows thatDψθ(τθ) ·h ∈ KerA(X, θ). Since h ̸= 0 andDψθ(τθ) is injective,Dψθ(τθ)h ̸= 0
and

T ∩KerA(X, θ) ̸= {0}.
This is in contradiction with (56).

We have proven (57). We can now conclude thanks to Lemma 26: there exists ϵ′ > 0 such that for
any θ̃ ∈ RE × RB , if ∥θ − θ̃∥ < ϵ′, then

fθ(X) = fθ̃(X) =⇒ θ ∼ θ̃.

E Checking the conditions numerically

We restate and prove Proposition 12.
Proposition 31. Let X ∈ Rn×V0 and θ ∈ RE × RB . We have

RA = NL rank (α(X, θ)) .

Proof. Let η ∈ RP×VL . We have

A(X, θ) · η = α(X, θ)η.

If we denote by η1, . . . , ηNL ∈ RP the NL columns of η, the columns of A(X, θ) · η are
α(X, θ)η1, . . . , α(X, θ)ηNL . If we consider the matrix η as a family of NL vectors of RP and
the matrix A(X, θ) ·η as a family of NL vectors of Rn, the operator A(X, θ) can then be equivalently
described as

A(X, θ) : (RP)NL −→ (Rn)NL

(η1, . . . , ηNL) 7−→ (α(X, θ)η1, . . . , α(X, θ)ηNL).

The rank of such an operator is NL rank(α(X, θ)).
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We restate and prove Proposition 11.
Proposition 32. Let X ∈ Rn×V0 and θ ∈

(
RE × RB

)
\(S ∪∆X). The function

Uθ −→ Rn×VL

τ 7−→ fρθ(τ)(X)

is differentiable in a neighborhood of τθ, and we denote by Dτfρθ(τθ)(X) its differential at τθ. We
have

Dτfρθ(τθ)(X) = Γ(X, θ). (59)

Proof. Using (3) at ρθ(τ) and the definition of ψθ in (11), we have

fρθ(τ)(X) = A(X, θ) · ψθ(τ).
Taking the differential of

Uθ −→ Rn×VL

τ 7−→ fρθ(τ)(X)

at τθ, and using (13), we obtain

Dτfρθ(τθ)(X) = A(X, θ) ◦Dψθ(τθ) = Γ(X, θ).

To finish with, the following proposition gives explicit expressions of the coefficients of Γ(X, θ).
These expressions are given for the sake of theoretical completeness. Note that when it comes to com-
puting Γ(X, θ) in practice (in order to compute RΓ), the correct approach is using backpropagation
as described in Section 5 rather than evaluating the expressions in Proposition 33 which involve sums
with very large numbers of summands.

Proposition 33. If we decompose it in the canonical bases of RFθ × RB and RJ1,nK×VL , Γ(X, θ)
is a (nNL)× (|Fθ|+ |B|) matrix. For lighter notations, let us drop the dependency in (X, θ) and
denote by γi,vL the lines of Γ(X, θ), for i ∈ J1, nK and vL ∈ VL, which satisfy (γi,vL)T ∈ RFθ ×RB .
For any (i, vL) ∈ J1, nK× VL, let us express the coefficients of γi,vL , i.e. express γi,vLvl→vl+1

for any
vl → vl+1 ∈ Fθ and express γi,vLvl

for any vl ∈ B.

• For any l ∈ J0, L− 1K and any (vl, vl+1) ∈ Vl × Vl+1 such that vl → vl+1 ∈ Fθ,

γi,vLvl→vl+1
=

∑
v0∈V0

...
vl−1∈Vl−1

vl+2∈Vl+2

...
vL−1∈VL−1

xiv0wv0→v1avl(x
i, θ)

∏
1≤k≤L−1

k ̸=l

avk(x
i, θ)wvk→vk+1

+

L∑
l′=1

∑
vl′∈Vl′

...
vl−1∈Vl−1

vl+2∈Vl+2

...
vL−1∈VL−1

bvl′avl(x
i, θ)

∏
l′≤k≤L−1

k ̸=l

avk(x
i, θ)wvk→vk+1

, (60)

where wv0→v1 = wv0→v1 and avl(x
i, θ) = avl(x

i, θ) except when l = 0 in which case
wv0→v1 = 1 and avl(x

i, θ) = 1.

• For any l ∈ J1, LK and any vl ∈ Vl,
γi,vLvl

=
∑

vl+1∈Vl+1

...
vL−1∈VL−1

∏
l≤k≤L−1

avk(x
i, θ)wvk→vk+1

. (61)
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Proof. Let (i, vL) ∈ J1, nK× VL.

Let us compute γi,vLvl→vl+1
, for l ∈ J0, L− 1K and (vl, vl+1) ∈ Vl × Vl+1 such that vl → vl+1 ∈ Fθ.

γi,vLvl→vl+1
is the coefficient corresponding to the line (i, vL) and the column (vl → vl+1) of Γ(X, θ).

Let us denote by hvl→vl+1 ∈ RFθ × RB the vector whose component indexed by vl → vl+1 is equal
to 1 and whose other components are zero. Let us denote by di,vL ∈ Rn×VL the element whose
component indexed by (i, vL) is equal to 1 and whose other components are zero. Let us denote by
⟨·, ·⟩Rn×VL the scalar product of the euclidean space Rn×VL . We have

γi,vLvl→vl+1
=
〈
di,vL , Γ(X, θ) · hvl→vl+1

〉
Rn×VL

=
〈
di,vL , A(X, θ) ◦Dψθ(τθ) · hvl→vl+1

〉
Rn×VL

=

Æ
di,vL , A(X, θ) · ∂ψθ

∂τvl→vl+1

(τθ)

∏
Rn×VL

=

Æ
di,vL , α(X, θ)

∂ψθ

∂τvl→vl+1

(τθ)

∏
Rn×VL

=

ñ
α(X, θ)

∂ψθ

∂τvl→vl+1

(τθ)

ô
i,vL

,

where
[
α(X, θ) ∂ψθ

∂τvl→vl+1
(τθ)

]
i,vL

denotes the coefficient (i, vL) of the product

α(X, θ) ∂ψθ

∂τvl→vl+1
(τθ). Let us remind the dimensions in this product. For the left factor, re-

calling the definition given in the beginning of Section D, we have α(X, θ) ∈ Rn×P . Concerning
the right factor, since for any τ ∈ Uθ, we have ψθ(τ) ∈ RP×VL , the partial derivative satisfies

∂ψθ

∂τvl→vl+1
(τθ) ∈ RP×VL . Hence, the dimension of the product is

α(X, θ)
∂ψθ

∂τvl→vl+1

(τθ) ∈ Rn×VL .

To obtain the coefficient (i, vL) of this product, we keep the ith line of the left factor, which is equal

to α(xi, θ), and the column vL of the right factor, which is equal to
∂ψθ

vL

∂τvl→vl+1
(τθ). We thus haveñ

α(X, θ)
∂ψθ

∂τvl→vl+1

(τθ)

ô
i,vL

= α(xi, θ)
∂ψθvL

∂τvl→vl+1

(τθ) =
∑
p∈P

αp(x
i, θ)

∂ψθp,vL
∂τvl→vl+1

(τθ).

Let p ∈ P . If p = (v0, . . . , vL) ∈ P0, looking at the case 1 in the proof of Proposition 24, we have

∂ψθp,vL
∂τvl→vl+1

(τθ) = 1{vl→vl+1∈p}
∏

k∈J0,L−1K
k ̸=l

wvk→vk+1
.

Recalling the definition of αp(xi, θ) in the case p ∈ P0, given in (2), we also have

αp(x
i, θ) = xiv0

L−1∏
k=1

avk(x
i, θ),

and thus

αp(x
i, θ)

∂ψθp,vL
∂τvl→vl+1

(τθ) = 1{vl→vl+1∈p} x
i
v0

L−1∏
k=1

avk(x
i, θ)

∏
k∈J0,L−1K

k ̸=l

wvk→vk+1
. (62)

Now if p = (vl′ , . . . , vL) ∈ Pl′ , for l′ ∈ J1, . . . , L − 1}, looking at the case 2 in the proof of
Proposition 24, we have

∂ψθp,vL
∂τvl→vl+1

(τθ) = 1{vl→vl+1∈p} bvl′
∏

k∈Jl′,L−1K
k ̸=l

wvk→vk+1
.
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Recalling the definition of αp(xi, θ) in the case p ∈ Pl′ , given in (2), we also have

αp(x
i, θ) =

L−1∏
k=l′

avk(x
i, θ),

and thus

αp(x
i, θ)

∂ψθp,vL
∂τvl→vl+1

(τθ) = 1{vl→vl+1∈p} bvl′

L−1∏
k=l′

avk(x
i, θ)

∏
k∈Jl′,L−1K

k ̸=l

wvk→vk+1
. (63)

Finally, if p = β, looking at the case 3 in the proof of Proposition 24, we have

∂ψθp,vL
∂τvl→vl+1

(τθ) = 0,

and thus

αp(x
i, θ)

∂ψθp,vL
∂τvl→vl+1

(τθ) = 0. (64)

Assembling (62), (63) and (64), we can sum over all p ∈ P , and obtain

γi,vLvl+1→vl
=

∑
p∈P0

p=(v0,...,vL−1)

1{vl→vl+1∈p} x
i
v0

L−1∏
k=1

avk(x
i, θ)

∏
k∈J0,L−1K

k ̸=l

wvk→vk+1

+

L∑
l′=1

∑
p∈Pl′

p=(vl′ ,...,vL−1)

1{vl→vl+1∈p} bvl′

L−1∏
k=l′

avk(x
i, θ)

∏
k∈Jl′,L−1K

k ̸=l

wvk→vk+1

which can be reformulated, getting rid of the zero sums when vl → vl+1 ̸∈ p, as

γi,vLvl+1→vl
=

∑
v0∈V0

...
vl−1∈Vl−1

vl+2∈Vl+2

...
vL−1∈VL−1

xiv0wv0→v1avl(x
i, θ)

∏
k∈J1,L−1K

k ̸=l

avk(x
i, θ)wvk→vk+1

+

L∑
l′=1

∑
vl′∈Vl′

...
vl−1∈Vl−1

vl+2∈Vl+2

...
vL−1∈VL−1

avl(x
i, θ)bv′l

∏
k∈Jl′,L−1K

k ̸=l

avk(x
i, θ)wvk→vk+1

,

which shows (60).

The proof of (61) is similar to the one of (60).
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