
HAL Id: hal-03687348
https://hal.science/hal-03687348

Preprint submitted on 3 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Clustering-based Graph Numbering using Execution
Traces for Cache Misses Reduction in Graph Analysis

Applications
Régis Audran Mogo Wafo, Thomas Messi Nguélé, Xaviera Youh Djam

To cite this version:
Régis Audran Mogo Wafo, Thomas Messi Nguélé, Xaviera Youh Djam. Clustering-based Graph
Numbering using Execution Traces for Cache Misses Reduction in Graph Analysis Applications. 2022.
�hal-03687348�

https://hal.science/hal-03687348
https://hal.archives-ouvertes.fr

Clustering-based Graph Numbering using Execution Traces for Cache
Misses Reduction in Graph Analysis Applications

Regis Audran MOGO WAFO1, Thomas MESSI NGUELÉ1, Xaviera Youh DJAM 1

1University of yaounde 1, Department of Computer Science, PO:812, yaounde, Cameroon

*E-mail : {audran.mogo, thomas.messi, xaviera.kimbi}@facsciences-uy1.cm

Abstract
Social graph analysis is generally based on a local exploration of the underlying graph. That is,
the analysis of a node of the graph is often done after having analyzed nodes located in its vicinity.
However, over the time, networks are bound to grow with the addition of new members, which
inevitably leads to the enlargement of the corresponding graphs. At this level we therefore have a
problem because more the size of the graph increases, more the execution time of graph analysis
applications too. This is due to the very large number of nodes that will need to be treated. Some
recent work in-faces this problem by exploiting the properties of social networks such as the com-
munity structure to renumber the nodes of the graph in order to reduce cache misses. Reducing
cache misses in an application allows to reduce the execution time of this application. In this pa-
per, we argue that combining existing graph ordering with a new numbering that exploit execution
traces analysis can allow to improve cache misses reduction and hence execution time reduction.
The idea is to build graph numbering using execution traces of graph analysis applications and
then combine it with an existing graph numbering (such as cn-order). To build this new ordering,
we define a new distance and then used it to analyse execution traces with well known clustering
algorithms K-means (for Kmeans-order) and hierarchical clustering (for cl-hier-order). Experi-
ments on a user machine (dual-core) and four cores of Grid’5000 node (Neowise) show that this
combination improves slightly existing graph ordering (cn-order, numbaco, rabbit and gorder) in
almost all the cases (the two cores of dual-core, all the four cores of neowise), with PageRank
graph application and astro-ph dataset. For example, on neowise with one thread and Astro-ph
dataset, the best performance is given with the combination kmeans-order_cn-order which allows
to reduce by 42.59% the cache misses (compared to the second numbaco with 40.79%) and there-
fore by 7.27 % the time of execution (compared to 6.89% for the second numbaco).

Keywords
Graph analysis; Execution trace; Machine learning

I INTRODUCTION

Actors and their interconnections in social networks are modeled with graphs where nodes
are actors and links are their interconnections. The advent of computers and communication
networks allows to analyze data (see on [2]) on a large scale and has lead to a shift from the
study of individual properties of nodes in small specific graphs with tens or hundreds of nodes,
to the analysis of macroscopic and statistical properties of large graphs also called complex
networks, consisting of millions and even billions of nodes [2].

1

mailto:

Social networks welcome new members every day. This contributes to enlarging the size of the
corresponding graphs. It should be noted that the larger the graph, the longer the execution of
the analysis applications takes time [5]. This usually results from a large number of [7] cache
misses, themselves caused by many memory accesses in search of certain nodes during the
execution of the graph analysis application.

Graph application consists in analyzing various nodes; process a node usually involves the
analysis of the other ones located in its vicinity. Reducing cache misses in an application allows
to reduce the execution time of this application. In order to reduce cache misses, the main idea
is therefore to renumber the graph such away that the nodes likely to be processed together
become close in the memory. Recent numbering algorithms guided by this idea have been
proposed such as Cn-order[8–10], Gorder [6], Rabbit order [5] and NumBaCo [7]. They stood
out for their efficiency compared to other existing algorithms (see in [8–10]). In this paper we
use the execution traces analysis to build these new numbering, and we combine them with one
of the recent numbering algorithms in order to have better results.

The remainder of this paper is structured as follows. Section II presents recent works on graph
ordering. Section III introduces our main contribution. Experimental results are shown in sec-
tion IV. Section V is devoted to the synthesis of our contribution, together with the conclusion
and future work.

II RELATED WORK

For several years, graph reordering algorithms have attracted the attention of researchers and
this attention is constantly increasing. The most recent graph reordering include NumBaCo
Messi Nguélé, Tchuente, and Méhaut [7], Gorder Wei, Yu, Lu, and Lin [6], Rabbit Order Arai,
Shiokawa, Yamamuro, Onizuka, and Iwamura [5] and Cn-order Nguélé, Tchuente, and Méhaut
[8]. Table1, gives a summarize of the existing numbering methods with their advantages and
their limits.

The main idea of NumbaCo is to exploit the community structure of graph nodes to improve
graph analysis applications performances through cache misses reduction (see [7]).

In the case of G-order, Wei, Yu, Lu, and Lin [6]) offered an order that allows nodes in the direct
neighborhood to be close in memory.

Rabbit-order proposed by Arai, Shiokawa, Yamamuro, Onizuka, and Iwamura [5]) proposes a
numbering method based on two approaches namely:

• – Scheduling based on the community structure of the graphs in the real world: they try
to match the hierarchical communities of the graphs in the real world with the hierarchies
located at the level of the caches of the central processor unit;

• – An incremental aggregation in parallel: this one aggregates in an incremental way the
vertices of the same community in parallel, which has the consequence of reducing the
number of vertices to be processed.

Cn-order proposed by Nguélé, Tchuente, and Méhaut [8] is based on a fusion of the advantages
of previous models such as:

• grouping in memory nodes appearing frequently in direct neighborhood (based on G-
order)

• grouping in memory nodes belonging to the same community or sub-community (based
on Numbaco and Rabbit-order).

2

None of these methods doesn’t exploit former executions of target application. In this paper,
we argue that exploiting former execution of the target applications (for example, exploiting
execution traces analysis) can allow to improve existing performances.

Table 1: Comparison of existing numbering methods

Reference Year Techniques Specifications Limits
[7] 2015 NumBaCo Exploits community Doesn’t take into account

structure of the graph nodes degrees heterogeneity
in order to renumber it Doesn’t exploit former

executions of target applications
[6] 2016 Gorder Consider nodes sibling Does not take into

nodes account communities
Doesn’t exploit former

executions of target applications
[5] 2016 Rabbit-order Based on community Doesn’t taking into account

structure + is parallel nodes degrees heterogeneity
Doesn’t exploit former

executions of target applications
[8] 2017 Cn-order Combines advantages Doesn’t exploit former

of the others executions of target applications

III NUMBERING BASED ON EXECUTION TRACES ANALYSIS

The idea here is to build a graph numbering by analyzing execution traces of graph applications
with clustering algorithms. In this section, we first present execution traces in our case (section
3.1), then we present a distance (see section 3.2) that allows us to build our new numbering al-
gorithm (see section 3.3). Figure 1 present the complete principle of numbering using execution
traces analyses.

Figure 1: Principle of numbering by execution traces analyses

3

3.1 Execution traces

The execution traces allow to see the behavior of the application during its execution. Since
it is a graph analysis application, we are interested to keep the way nodes are accessed during
execution. To obtain these traces, we add in the graph analysis program some code that allow
to print at each line of a file, a node and the list of other nodes directly encountered during the
execution program.

The goal of our work is to analyze this execution traces file in other to build a numbering
that will allow "closer nodes" to have "closer numbering". To carry out this work, we choose
to analyze these execution traces with clustering algorithms such as Kmeans and Hierarchical
clustering. Those algorithms use with a distance that measures the closeness between nodes of
the execution traces file.

The next section present the approach used to compute the distance between nodes in execution
traces file.

3.2 Distance between two nodes

Alex Groce [3] defines the distance between two execution traces x and y of the same program

as follows: D̄(x, y) =
∑n

i=0∆(i) , where ∆(i) =

{
0, if valxi = valyi
1, if valxi ̸= valyi

valxi and valyi are the value of x and y at the time i.

Inspired by this, we define a metric between two nodes a and b encountered in the execution
traces file.

Proximity D between two nodes. Let Γ(a) and Γ(b) the set of nodes encountered directly
after a and b respectively. The proximity D between a and b is defined as follows:

D(a, b) = |Γ(a) ∪ Γ(b)| − |Γ(a) ∩ Γ(b)|
= (|Γ(a)|+ |Γ(b)| − |Γ(a) ∩ Γ(b)|)− |Γ(a) ∩ Γ(b)|
= |Γ(a)|+ |Γ(b)| − 2|Γ(a) ∩ Γ(b)|

Theorem III.1: D is a distance
The proximity D between two nodes as defined is a distance.

The complete proof of theorem is on the Annex (see in A).

3.3 Proposed Algorithms

In this section, we present numbering based on execution trace analysis and the combinations
between these algorithms and the previous existing ones.

4

3.3.1 Kmeans-order and Cl-hier-order

Algorithm 1 : Kmeans-order
Input: G = (V,E), K, F ile,D,
Output: G′′

1: G′′ ← Kmeans(K,G, F ile,D){ K is the desired number of cluster, G input graph, File
contain the execution traces, D distance defined in section3.2}

2: Return G′′

Algorithm 2 presents clustering based on hierarchical clustering.

Algorithm 2 : Cl-hier-order
Input: G = (V,E), F ile,D
Output: G′′

1: G′′ ← HierClus(G,File,D){ G input graph, File contain the execution traces, D distance
defined in section3.2}

2: Return G′′

3.3.2 Combination between Cn-order with Kmeans-order and Cl-hier-order

Algorithm 3 present the combination kmeans-order_cn-order.

Algorithm 3 : Kmeans-order_cn-order
Input: G = (V,E), K, F ile,D
Output: G′′

1: G′ ← Kmeans−order(K,G, F ile,D){ K is the desired number of cluster, G input graph,
File contain the execution traces, D distance defined in section3.2}

2: G′′ ← existing − numbering(G′){ Renumbering graph G’ resulting of kmeans-order }
3: Return G′′

Algorithm 4 present the combination Cl-hier-order_cn-order.

Algorithm 4 : Cl-hier-order_cn-order
Input: G = (V,E), F ile,D
Output: G′′

1: G′ ← HierClus(G,File,D){ G input graph, File contain the execution traces, D distance
defined in section3.2}

2: G′′ ← existing − numbering(G′){use cn-order for Renumbering graph G’ resulting of
Cl_hier-order }

3: Return G′′

5

Algorithm 5 present the combination Cn-order_kmeans-order.

Algorithm 5 : Cn-order_kmeans-order
Input: G = (V,E), K, F ile,D
Output: G′′

1: G′ ← existing − numbering(G){use cn-order for numbering graph G }
2: G′′ ← Kmeans(K,G, F ile,D){ using Kmeans-order for renumbering G’}
3: Return G′′

Algorithm 6 present the combination Cn-order_Cl-hier-order.

Algorithm 6 : Cn-order_Cl-hier-order
Input: G = (V,E), F ile,D
Output: G′′

1: G′ ← existing − numbering(G){use cn-order for numbering graph G }
2: G′′ ← HierClus(G,File,D){ using cl_hier-order for renumbering G’}
3: Return G′′

IV EXPERIMENTAL EVALUATION

The experiments were done two platforms:
• A user machine with the following characteristics: 2 cores at 1.80GHz, 4 GB Ram, L3 of

2048 KB, L2 of 256 KB and L1 of 32KB.
• A node of Grid’5000 platform (Neowise) with these characteristics: 10 nodes, each node

has 1 CPU AMD EPYC 7642, each CPU has 48 cores, 512GB RAM, L3 of 256 MB.
For this evaluation, we present results got with the well known graph analysis application,
Pagerank [1]. We used a Posix thread implementation proposed by Nikos Katirtzis1. This im-
plementation uses adjacency list representation. We use Astro-ph dataset [4] that has n=16,046
nodes and m=242,502 edges (that is almost 2.46 MB with the formula presented at Messi
Nguélé and Méhaut [10], the graph size is G_space = 8m+ 40N bytes).

In this section, we compare previously proposed graph numerations (cn-order, rabbit, gorder,
numbaco) with the numeration induced by execution traces analysis in three ways:cache ref-
erence reduction (section 4.1), cache-misses reduction (section 4.2), execution time reduction
(section 4.3). We do this task with two tables:

• Table 2 that compares cache references, cache misses and execution time on the user
machine described above;

• Table 3 that does the same but on four cores of Grid’5000 node (Neowise).
Color signification is as follows: colored numbers on a column express the four best, the two
first are bold (blue for the time, red for the cache misses and orange for the cache references).

1https://github.com/nikos912000/parallel-pagerank

6

https://github.com/nikos912000/parallel-pagerank

Table 2: Graph Ordering Comparison (Pagerank, Astro-ph, dual-core machine)

Heuristic Time (ms) Cache misses Cache references
Astro-ph 1th 607.29475 2832481.5 16569884.75
Gorder 1th 570.486 (6.06%) 2389119.25 (15.65%) 9563592.75 (42.28%)

NumBaCo 1th 571.9995 (5.81%) 2423346.5 (14.44%) 8487259.75 (48.78%)
Rabbit 1th 575.08125 (5.30%) 2536938.75 (10.43%) 9233646.25 (44.27%)
Cn-o 1th 566.20725 (6.76%) 2270193.5 (19.85%) 8237936 (50.28%)

k-means-o 1th 618.528 (-1.85%) 3044132.75 (-7.47%) 17330640.75 (-4.59%)
cl-h-o 1th 594.1935 (2.16%) 2522649.5 (10.94%) 15282698.25 (7.77%)

Cn-o_k-means-o 1th 572.231(5.77%) 2398583.25 (15.32%) 8488329.75 (48.77%)
Cn-o_cl-h-o 1 th 585.329 (3.62%) 2420409.25 (14.55%) 14831642.25 (10.49%)

k-means-o_Cn-o 1 th 564.867 (6.99%) 2248500 (20.62%) 8193249.75 (50.55%)
cl-h-o_Cn-o 1th 569.471 (6.23%) 2357463.75 (16.77%) 8172304.5 (50.68%)

Astro-ph 2th 475.46975 3455467 18489284.5
Gorder 2th 536.18175(-12.76%) 2964778.75(14.20%) 11210821 (39.36%)

NumBaCo 2th 419.18575(11.83%) 2958648.25(14.37%) 10173745.5 (44.97%)
Rabbit 2th 402.621(18.09%) 3026377 (12.41%) 11077611.25 (40.08%)
Cn-o 2th 408.30775(14.12%) 2761599(20.08%) 9923092 (46.33%)

k-means-o 2th 520.92475(-9.56%) 3739659 (-8.22%) 19466981 (-5.28%)
cl-h-o 2th 452.037(4.92%) 3007137.25(12.97%) 17509240.5 (5.30)

Cn-o_k-means-o 2th 460.95275(3.05%) 2950742(14.60%) 10542184.25 (42.98%)
Cn-o_cl-h-o 2 th 432.43575 (9.05%) 3000986(13.15%) 16928641 (8.44%)

k-means-o_Cn-o 2 th 437.171 (8.05%) 2833740.5 (17.99%) 9975563.25 (46.04%)
cl-h-o_Cn-o 2th 449.738(5.41%) 2819274.75(18.41%) 9858212.75 (46.68%)

7

Table 3: Graph Ordering Comparison (Pagerank, Astro-ph, 4 thread, Neowise[grid’5000])

Heuristic Time (ms) Cache misses Cache references
Astro-ph 1th 266.905 10276724.75 42293956
Gorder 1th 250.212 (6.25%) 6761279 (34.20%) 27140765.5 (35.82%)

NumBaCo 1th 248.50975 (6.89%) 6084717.75 (40.79%) 29021769.5(31.38%)
Rabbit 1th 253.89025(4.87%) 7325485.25(34.57%) 27670585(34.57%)
Cn-o 1th 249.2455 (6.61%) 6220675 (39.46%) 26241990 (37.95%))

k-means-o 1th 269.25375(-0.87%) 10216968(0.58%) 39365789.5(6.92%)
cl-h-o 1th 256.76975 (3.79%) 7417636(27.82%) 54311434(-28.41%)

Cn-o_k-means-o 1th 250.4(6.18%) 6437387.75(37.35%) 25798704.75 (39.00%)
Cn-o_cl-h-o 1 th 255.4765(4.28%) 7529694.25(26.73%) 48205558.75(-13.97%)

k-means-o_Cn-o 1 th 247.4955 (7.27%) 5899736.5 (42.59%) 27898282 (34.03%)
cl-h-o_Cn-o 1th 249.75525 (6.42%) 5818206.25 (43.38%) 27789259 (34.29%)

Astro-ph 2th 184.07075 11069265 48044309.75
Gorder 2th 209.2585(-13.68%) 7236403(34.62%) 32165345 (33.05%)

NumBaCo 2th 158.03575(14.14%) 6797367.75(38.59%) 33022849.75(31.26%)
Rabbit 2th 148.01475 (19.57%) 7976793.25(27.93%) 35010926.75 (27.12%)
Cn-o 2th 164.0755(10.86%) 6765081(38.88%) 31541515 (34.35%)

k-means-o 2th 184.31575(-0.13%) 11660819(-5.34%) 46860805.5 (2.46%)
cl-h-o 2th 143.2345 (22.18%) 9089591.5(17.88%) 61258435 (-27.50)

Cn-o_k-means-o 2th 165.903(9.86%) 7194631.5(35.00%) 30722091.25 (36.05%)
Cn-o_cl-h-o 2 th 139.3905 (24.27%) 8760113.75(20.86%) 56590441.75 (-17.79%)

k-means-o_Cn-o 2 th 162.779(11.56%) 6751559(39.00%) 31312716.75 (34.82%)
cl-h-o_Cn-o 2th 157.9145 (14.20%) 6754098.25(38.98%) 31498630.5 (34.43%)

Astro-ph 3th 136.47175 12759681.25 54466648.25
Gorder 3th 173.27525(-26.23%) 7975692.5(37.49%) 35949448.5 (33.99%)

NumBaCo 3th 120.644(11.59%) 7749122.5(39.26%) 36747591.5 (32.53%)
Rabbit 3th 110.48925(19.03%) 9079863.5(28.83%) 40484777.75 (25.67%)
Cn-o 3th 124.16175(9.02%) 7613301.75(40.33%) 34903471.25 (35.91%)

k-means-o 3th 137.493(-0.74%) 12949269.75(-1.48%) 52550052.75 (3.51%)
cl-h-o 3th 135.2245(0.91%) 9967014.5(21.88%) 61710753.75 (-13.30%)

Cn-o_k-means-o 3th 125.599(7.96%) 8101565.5(36.50%) 34615031.75 (36.45%)
Cn-o_cl-h-o 3 th 133.95425(1.84%) 9917300.75(22.27%) 57836840.25 (6.18%)

k-means-o_Cn-o 3 th 129.6565(4.99%) 7724722(39.45%) 34273040.25 (37.07%)
cl-h-o_Cn-o 3th 121.89275(10.68%) 7493254(41.27%) 34177652.75 (37.25%)

Astro-ph 4th 266.07925 12270609.5 54432887.75
Gorder 4th 245.762(7.63%) 7763059.75 (36.73%) 38749439 (28.81%)

NumBaCo 4th 233.7525(12.14%) 7508885.25 (38.80%) 38274430.75 (29.68%)
Rabbit 4th 247.38(7.02%) 8379379.5 (31.71%) 40160100.5 (26.22%)
Cn-o 4th 231.7295(12.90%) 7408551.5 (39.62%) 36283533.5 (33.34%)

k-means-o 4th 289.7065(-8.87%) 11881925.25 (3.16%) 52188152.5 (4.12%)
cl-h-o 4th 305.36675(-14.76%) 9241197.75 (24.69%) 64502363.25 (18.49%)

Cn-o_k-means-o 4th 251.41425(5.51%) 7714594.25 (37.13%) 36841011.75 (32.31%)
Cn-o_cl-h-o 4 th 298.334(-12.12%) 8885607.5 (27.59%) 62234059 (-14.33%)

k-means-o_Cn-o 4 th 242.103(9.01%) 7386400.25 (39.80%) 36492023.25 (32.95%)
cl-h-o_Cn-o 4th 242.649(8.80%) 7394821.25 (39.73%) 36160439.75 (33.56%)

4.1 Cache-References Reduction

Cache references correspond to the number of time the program (Pagerank in this case) looks
for data at L3 cache memory. So when the data required by the processor is not present at L1
and L2 cache memory, it is looked at L3 cache memory and this causes a cache reference. This
means that, the number of cache references increases with the increasing of L1 and L2 cache
misses.

In Table 2, we can see that:
• With one thread, the two combinations (Kmean-order_cn-order) and (cl-hier-order_cn-

order) produce the best cache-references reduction 50.55% and 50.68% respectively. Cn-
order is the third with 50.28%.

8

• With two threads, the combination (cl-hier-order_cn-order) produces the best reduction
with 46.68 %, Cn-order is the second with 46.33% and the combination (Kmean-order_cn-
order) is the third with 46.04%.

In Table 3, we can remark that:
• With one thread, the combination (cn-order_Kmean-order) produces the best cache-references

reduction 39%, Cn-order is the second with 37.95% and Gorder is the third with 35.82%.
• With two threads, the combinations (cn-order_Kmean-order, Kmean-order_cn-order, cl-

hier-order_cn-order) produce the best reduction with 36.05%, 34.82% and 34.43% re-
spectively.

• With three threads, the combinations (cl-hier-order_cn-order, Kmean-order_cn-order, cn-
order_Kmean-order) produce the best reduction with 37.25%, 37.07% and 36.45% re-
spectively.

• With four threads, the combination (cl-hier-order_cn-order) produces the best reduction
with 33.56%, Cn-order is the second with 33.34% and the combination (Kmean-order_cn-
order) is the third with 32.95%.

According to these observations, we can say that the combination of cn-order with the num-
bering induces by execution traces analysis (kmeans-order and cl-hier-order) allows to reduce
cache references more than existing graph ordering heuristics. Therefore, using execution traces
analysis allows to reduce cache misses on L1 and L2 cache memory.

4.2 Cache-Misses Reduction

Cache misses correspond to the number of time the program looks for data at L3 cache memory
and doesn’t find it. When the data required by the processor is not present at L3 cache memory,
it is looked at central memory and this causes a cache miss.

In Table 2, we can see that:
• With one thread, the combination (Kmean-order_cn-order) produces the best cache-misses

reduction 20.62%, Cn-order is the second with 19.85% and the combination (cl-hier-
order_cn-order) is the third with 16.77%.

• With two threads, cn-order is the first with 20.08%, the combination (cl-hier-order_cn-
order) is the second with 18.41% and the combination (Kmean-order_cn-order) is the
third with 17.99%.

In Table 3, we remark that:
• With one thread, the combinations (cl-hier-order_cn-order) and (Kmean-order_cn-order)

produces the best cache-misses reduction with respectively 43.38% and 42.59%. Num-
BaCo is the third with 40.79%.

• With two threads, the combinations (Kmean-order_cn-order, cl-hier-order_cn-order) pro-
duce the best reduction with 39.00% and 38.98% respectively, and cn-order is the third
with 38.88% .

• With three threads, the combination (cl-hier-order_cn-order) produces the best reduction
with 41.27%, cn-order is second with 40.33% and the third is the combination (Kmean-
order_cn-order,) with 39.45% .

• With four threads, the combinations (Kmean-order_cn-order , cl-hier-order_cn-order)
produces the best reduction with 39.80% and 39.73% respectively. NumBaCo is the third
with 38.80%.

9

These observations show that the combination of cn-order with the numbering induces by ex-
ecution traces analysis (kmeans-order and cl-hier-order) is almost always among the best in
terms of cache misses reduction compare to existing graph ordering heuristics. Therefore, us-
ing execution traces analysis allows to reduce cache misses on L3 cache memory.

4.3 Execution Time Reduction

Execution time correspond to duration taken by the program (Pagerank in this case) to analyse
the graph passed to it as parameter.

In Table 2, we can see that:
• With one thread, the combination (Kmean-order_cn-order) produces the best time reduc-

tion 6.99%, cn-order is the second with 6.76% and the combination (cl-hier-order_cn-
order) is third with 6.23%.

• With two threads, Rabbit, cn-order and NumBaCo produces the best reduction with
18.09%, 14.12% and 11.83% respectively. The combination (cn-order_cl-hier-order) is
fourth with 9.05%.

In Table 3, we can remark that:
• With one thread, the combination (Kmean-order_cn-order) produces the best time re-

duction with 7.27%, NumBaCo is the second with 6.89% and cn-order is the third with
6.61%.

• With two threads, the combination (cn-order_cl-hier-order) produces the best reduction
with 24.27%, cl-hier-order is second with 22.18%, Rabbit-order is the third with 19.57%.

• With three threads, Rabbit-order produces the best reduction with 19.03%, NumBaCo is
second with 11.59% and the combination (cl-hier-order_cn-order) is third with 10.68%.

• With four threads, Cn-order produces the best reduction with 12.90%, NumBaCo is
the second with 12.14% and the combination (Kmean-order_cn-order) is the third with
9.01%.

These observation show that, even with the execution time reduction, the combination of cn-
order with the numbering induces by execution traces analysis (kmeans-order and cl-hier-order)
is almost always among the best compare to the existing graph ordering heuristics.

V CONCLUSION

In this paper, we proposed a new numbering that exploit execution traces analysis in order to im-
prove cache misses reduction and hence execution time reduction in graph application. To build
this ordering, we defined a new distance and then we used it to analyse execution traces with
well known clustering algorithms K-means (for Kmeans-order) and hierarchical clustering (for
cl-hier-order). This numbering is intended to be combined with existing graph numbering (such
as cn-order). We showed on a user machine (dual-core) and four cores of Grid’5000 node (Neo-
wise) that the gotten combination improves slightly existing graph ordering (cn-order, numbaco,
rabbit and gorder) in almost all the cases with PageRank and astro-ph dataset. For example, on
neowise with one thread, the best performance is given with the combination kmeans-order_cn-
order which allows to reduce by 42.59% the cache misses (compared to the second numbaco
with 40.79%) and therefore by 7.27 % the time of execution (compared to 6.89% for the second
numbaco).

During the executions, we saw that the new numbering takes long execution time due the dis-
tance computation. So, build this numbering could be unfeasible with huge graphs. Therefore a

10

direct perspective could be to see the way to reduce the time taken by the distance computation
during clustering.

Publications

[1] L. Page, S. Brin, R. Motwani, and T. Winograd. “The PageRank citation ranking: bring-
ing order to the web.” In: (1999).

[2] M. E. Newman. “The structure and function of complex networks”. In: SIAM 45.2 (2003),
pages 167–256.

[3] A. Groce. “Error explanation with distance metrics”. In: International Conference on
Tools and Algorithms for the Construction and Analysis of Systems. Springer. 2004,
pages 108–122.

[4] J. Leskovec and A. Krevl. SNAP Datasets: Stanford Large Network Dataset Collection.
http://snap.stanford.edu/data. June 2014.

[5] J. Arai, H. Shiokawa, T. Yamamuro, M. Onizuka, and S. Iwamura. “Rabbit order: Just-
in-time parallel reordering for fast graph analysis”. In: 2016 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). IEEE. 2016, pages 22–31.

[6] H. Wei, J. X. Yu, C. Lu, and X. Lin. “Speedup graph processing by graph ordering”.
In: Proceedings of the 2016 International Conference on Management of Data. 2016,
pages 1813–1828.

[7] T. Messi Nguélé, M. Tchuente, and J.-F. Méhaut. “Social network ordering based on
communities to reduce cache misses”. In: Revue ARIMA Volume 24 - 2016-2017 - Special
issue CRI 2015 (May 2017).

[8] T. M. Nguélé, M. Tchuente, and J. Méhaut. “Using Complex-Network Properties for
Efficient Graph Analysis”. In: Parallel Computing is Everywhere, Proceedings of the
International Conference on Parallel Computing, ParCo 2017, 12-15 September 2017,
Bologna, Italy. 2017, pages 413–422.

[9] T. M. Nguélé. DSL for Social Network Analysis On Multicore Architecture. Sept. 2018.
[10] T. Messi Nguélé and J.-F. Méhaut. “Applying Data Structure Succinctness to Graph

Numbering For Efficient Graph Analysis”. In: (2021).

A ANNEX:PROVING THAT D IS A DISTANCE

Proof:. In other to show that D is a distance, we prove that it respects the four properties of a distance. Let N
be the set of nodes:

1. ∀a, b ∈ N,D(a, b) ≥ 0.
This is because |Γ(a)|+ |Γ(b)| ≥ 2|Γ(a) ∩ Γ(b)|

2. ∀a, b ∈ N,D(a, b) = 0 ⇐⇒ a = b.
In fact, when a = b, |Γ(a)|+ |Γ(b)| = 2|Γ(a) ∩ Γ(b)|

3. ∀a, b ∈ N,D(a, b) = D(b, a)
This is because, |Γ(a)|+ |Γ(b)| = |Γ(b)|+ |Γ(a)| and |Γ(a) ∩ Γ(b)| = |Γ(b) ∩ Γ(a)|

4. ∀a, b, c ∈ N,D(a, c) ≤ D(a, b) +D(b, c)

For this last case, we should show that,

|Γ(a)|+ |Γ(c)| − 2|Γ(a) ∩ Γ(c)| ≤ |Γ(a)|+ |Γ(b)| − 2|Γ(a) ∩ Γ(b)|+ |Γ(b)|+ |Γ(c)| − 2|Γ(b) ∩ Γ(c)|

Now we permute the elements of left and rigth and we also change the signe:

|Γ(a)|+ |Γ(b)| − 2|Γ(a) ∩ Γ(b)|+ |Γ(b)|+ |Γ(c)| − 2|Γ(b) ∩ Γ(c)| ≥ |Γ(a)|+ |Γ(c)| − 2|Γ(a) ∩ Γ(c)|

the |Γ(a)| and the |Γ(c)| will cancel out and the |Γ(b)| will add up;

We also pass −2|Γ(a) ∩ Γ(c)| on the other side of the inequality in order to have 0 on one side. Thus, we have:

11

http://arima.episciences.org/3318
http://arima.episciences.org/3318
http://dx.doi.org/10.3233/978-1-61499-843-3-413
http://dx.doi.org/10.3233/978-1-61499-843-3-413

2|Γ(b)| − 2|Γ(a) ∩ Γ(b)| − 2|Γ(b) ∩ Γ(c)|+ 2|Γ(a) ∩ Γ(c)| ≥ 0

⇐⇒ 2[|Γ(b)| − |Γ(a) ∩ Γ(b)| − |Γ(b) ∩ Γ(c)|+ |Γ(a) ∩ Γ(c)|] ≥ 0

⇐⇒ |Γ(b)| − |Γ(a) ∩ Γ(b)| − |Γ(b) ∩ Γ(c)|+ |Γ(a) ∩ Γ(c)| ≥ 0

We group those who have the negative sign on one side and we have:

|Γ(b)|+ |Γ(a) ∩ Γ(c)| − |Γ(a) ∩ Γ(b)| − |Γ(b) ∩ Γ(c)| ≥ 0

⇐⇒ |Γ(b)|+ |Γ(a) ∩ Γ(c)| − [|Γ(a) ∩ Γ(b)|+ |Γ(b) ∩ Γ(c)|] ≥ 0

So to show that D(a, b) ≤ D(a, b) + D(b, c), it suffices to show that |Γ(b)| + |Γ(a) ∩ Γ(c)| − [|Γ(a) ∩ Γ(b)| +
|Γ(b) ∩ Γ(c)|] ≥ 0.

Let us show that: |Γ(b)|+ |Γ(a) ∩ Γ(c)| − [|Γ(a) ∩ Γ(b)|+ |Γ(b) ∩ Γ(c)|] ≥ 0

|Γ(b)|+ |Γ(a) ∩ Γ(c)| − [|Γ(a) ∩ Γ(b)|+ |Γ(b) ∩ Γ(c)|] ≥ 0

⇐⇒ |Γ(b)|+ |Γ(a) ∩ Γ(c)| ≥ [|Γ(a) ∩ Γ(b)|+ |Γ(b) ∩ Γ(c)|]

With this inequality, the factors that can have different values are:
i0) |Γ(a) ∩ Γ(c)| ≤ |Γ(a)| If |Γ(a)| < |Γ(c)| Or ≤ |Γ(c)| If |Γ(c)| < |Γ(a)|

ii0) |Γ(a) ∩ Γ(b)| ≤ |Γ(a)| If |Γ(a)| < |Γ(b)| Or ≤ |Γ(b)| If |Γ(b)| < |Γ(a)|
iii0) |Γ(b) ∩ Γ(c)| ≤ |Γ(b)| If |Γ(b)| < |Γ(c)| Or ≤ |Γ(c)| If |Γ(c)| < |Γ(b)|

For this inequality to no longer hold, the right side would have to be greater than the left side. The maximum cases
for this to happen are:

1st Case : |Γ(a) ∩ Γ(b)| = |Γ(a)| et |Γ(b) ∩ Γ(c)| = |Γ(b)|
2nd Case: |Γ(a) ∩ Γ(b)| = |Γ(a)| et |Γ(b) ∩ Γ(c)| = |Γ(c)|
3rd Case: |Γ(a) ∩ Γ(b)| = |Γ(b)| et |Γ(b) ∩ Γ(c)| = |Γ(b)|
4th Case: |Γ(a) ∩ Γ(b)| = |Γ(b)| et |Γ(b) ∩ Γ(c)| = |Γ(c)|

From these different cases, we can determine the probable maximum value of |Γ(a) ∩ Γ(c)| contained in the left
part of the inequality and see if the inequality will always be respected.

1.0.1 1st case : (|Γ(a) ∩ Γ(b)| = |Γ(a)| et |Γ(b) ∩ Γ(c)| = |Γ(b)|)
In this first case we have the following information:

(|Γ(a)| < |Γ(b)| et |Γ(b)| < |Γ(c)|) =⇒ |Γ(a)| ≤ |Γ(b)| ≤ |Γ(c)|

=⇒ |Γ(a) ∩ Γ(c)| = |Γ(a)|

The inequality |Γ(b)|+ |Γ(a) ∩ Γ(c)| ≥ [|Γ(a) ∩ Γ(b)|+ |Γ(b) ∩ Γ(c)|]

thus becomes |Γ(b)|+ |Γ(a)| ≥ |Γ(a)|+ |Γ(b)|

And the inequality is therefore verified.

12

1.0.2 2nd case : (|Γ(a) ∩ Γ(b)| = |Γ(a)| et |Γ(b) ∩ Γ(c)| = |Γ(c)|)
Here |Γ(a)| < |Γ(b)| and |Γ(c)| < |Γ(b)| =⇒ |Γ(a)| ≤ |Γ(b)| ≥ |Γ(c)|

In this case, we cannot directly conclude. We can however say that: ∃ q1, q2 ⊂ N / |Γ(b)| = |Γ(a)| + |q1| and
|Γ(b)| = |Γ(c)|+ |q2|

Thereby

|Γ(a)| = |Γ(b)| − |q1|et|Γ(c)| = |Γ(b)| − |q2| =⇒ |Γ(a) ∩ Γ(c)| = |Γ(a)|+ |Γ(c)| − |Γ(a) ∪ Γ(b)|

or

|Γ(a) ∪ Γ(b)| = |Γ(b)| car |Γ(b)| > |Γ(a)|

The inequality can be written:

|Γ(b)|+ |Γ(a)|+ |Γ(c)| − |Γ(b)| ≥ |Γ(a)|+ |Γ(c)|

We note that the |Γ(a)| and |Γ(c)| will cancel on either side of the inequality and we will have:

|Γ(b)| − |Γ(b)| ≥ 0;

The |Γ(b)| will cancel out and we will therefore have a valid expression.

1.0.3 3rd case : (|Γ(a) ∩ Γ(b)| = |Γ(b)| et |Γ(b) ∩ Γ(c)| = |Γ(b)|)

For the 3ith case, we have |Γ(b)| < |Γ(a)| and |Γ(b)| < |Γ(c)| =⇒ |Γ(a)| ≥ |Γ(b)| ≤ |Γ(c)|

In this case, we cannot directly conclude. However We can say that: ∃ q3, q4 ⊂ N / |Γ(a)| = |Γ(b)| + |q3| and
|Γ(c)| = |Γ(b)|+ |q4| .

Thus, Γ(a) ∩ Γ(c) = (Γ(b) ∪ q3) ∩ (Γ(b) ∪ q4) = Γ(b) ∪ (q3 ∩ q4)

Hence |Γ(a) ∩ Γ(c)| = |Γ(b) ∪ (q3 ∩ q4)| = |Γ(b)|+ |q3 ∩ q4| − |Γ(b) ∩ (q3 ∩ q4)|

The inequality therefore becomes:

|Γ(b)|+ |Γ(b)|+ |q3 ∩ q4| − |Γ(b) ∩ (q3 ∩ q4)| ≥ |Γ(b)|+ |Γ(b)|

The |Γ(b)| will all cancel out and we will have:

|q3 ∩ q4| − |Γ(b) ∩ (q3 ∩ q4)| ≥ 0 ⇐⇒ |q3 ∩ q4| ≥ |Γ(b) ∩ (q3 ∩ q4)|

But by definition, |q3 ∩ q4| ≥ |Γ(b) ∩ (q3 ∩ q4)

The result is therefore valid, which allows us to verify our 3ieme case.

1.0.4 4th case: (|Γ(a) ∩ Γ(b)| = |Γ(b)| et |Γ(b) ∩ Γ(c)| = |Γ(c)|)
For this last case, |Γ(c)| < |Γ(b)| and |Γ(b)| < |Γ(a)| =⇒ |Γ(a)| ≥ |Γ(b)| ≥ |Γ(c)|

=⇒ |Γ(a) ∩ Γ(c)| = |Γ(c)|.

The inequality therefore becomes: |Γ(b)|+ |Γ(c)| ≥ |Γ(b)|+ |Γ(c)|

This gives us a valid result.

All cases could be tested and verified. So we have the proof that D is a distance.

B BIOGRAPHY
Regis Audran MOGO WAFO Computer Science Student/Phd in University of yaounde 1

Thomas Messi Nguélé Computer Science Doctor/PhD in University of yaounde 1

Xaviera Youth Kimbi Computer Science Doctor/PhD in University of yaounde 1

13

	I Introduction
	II RELATED WORK
	III Numbering Based on Execution Traces Analysis
	3.1 Execution traces
	3.2 Distance between two nodes
	3.3 Proposed Algorithms
	3.3.1 Kmeans-order and Cl-hier-order
	3.3.2 Combination between Cn-order with Kmeans-order and Cl-hier-order

	IV Experimental Evaluation
	4.1 Cache-References Reduction
	4.2 Cache-Misses Reduction
	4.3 Execution Time Reduction

	V Conclusion
	A ANNEX:Proving That D is a distance
	1.0.1 1st case : (|(a)(b)| = |(a)| et |(b)(c)| = |(b)|)
	1.0.2 2nd case :(|(a)(b)| = |(a)| et |(b)(c)| = |(c)|)
	1.0.3 3rd case :(|(a)(b)| = |(b)| et |(b)(c)| = |(b)|)
	1.0.4 4th case:(|(a)(b)| = |(b)| et |(b)(c)| = |(c)|)

	B Biography

