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The problem of localization on the plane of two radioactive sources by K detectors is considered. Each detector records a realization of an inhomogeneous Poisson process whose intensity function is the sum of signals arriving from the sources and of a constant Poisson noise of known intensity. The time of the beginning of emission of the sources is known, and the main problem is the estimation of the positions of the sources. The properties of the maximum likelihood and Bayesian estimators are described in the asymptotics of large signals in three situations of different regularities of the fronts of the signals: smooth, cusp-type and change-point type.

Introduction

Suppose that there are two radioactive sources and K detectors on the plane. The sources start emitting at a known time, which can be taken t = 0 without loss of generality. The detectors receive Poisson signals with additive noise. The intensity functions of these processes depend on the positions of the detectors (known) and the positions of the sources (unknown), and the main problem is the estimation of the positions of the sources. An example of a possible configuration of the sources and of the detectors on the plane is given in Fig. 1.

Due to their practical importance, the problems of localization of the sources with Poisson, Gaussian or more general classes of distributions are widely studied in engineering Figure 1: Model of observations: S 1 , S 2 are the positions of the sources and D i , i = 1, . . . , 5, are the positions of the sensors literature, see, e.g., [START_REF] Baidoo-Williams | Some theoretical limits on nuclear source localization and tracking[END_REF][START_REF] Chen | Maximum-likelihood source localization and unknown sensor location estimation for wideband signals in the near field[END_REF][START_REF] Dardari | Satellite and Terrestrial Radio Positioning Techniques: a Signal Processing Perspective[END_REF][START_REF] Knoll | Radiation Detection and Measurement[END_REF][START_REF] Pu | Development of a New Collaborative Ranging Algorithm for RSSI Indor Location Tracking in WSN[END_REF][START_REF] Streit | Poisson Point Processes: Imaging, Tracking, and Sensing[END_REF][START_REF] Wan | Detection and localization of hidden radioactive sources with spacial statistical method[END_REF][START_REF] Wang | Linear least squares localization in sensor networks[END_REF], as well as the Handbook [START_REF] Zekavat | Handbook of Position Location: Theory, Practice and Advances[END_REF] and the references therein. Mathematical statements are less known. This work is a continuation of a study initiated in [START_REF] Farinetto | Radioactive source localization. Change-point case[END_REF] and then developed in [START_REF] Arakelyan | On the identification of the source of emission on the plane[END_REF][START_REF] Chernoyarov | Estimation of the position and time of emission of a source[END_REF][START_REF] Chernoyarov | Poisson source localization on the plane. Cusp case[END_REF][START_REF] Chernoyarov | Poisson source localization on the plane. Smooth case[END_REF][START_REF] Kutoyants | On localization of source by hidden Gaussian processes with small noise[END_REF], where it was always supposed that there is only one source on the plane. In the works [START_REF] Chernoyarov | Poisson source localization on the plane. Cusp case[END_REF][START_REF] Chernoyarov | Poisson source localization on the plane. Smooth case[END_REF][START_REF] Farinetto | Radioactive source localization. Change-point case[END_REF] it was supposed that the moment of the beginning of the emission τ 0 is known and the unknown parameter was just the position of the source. The case where τ 0 is unknown too and we have to estimate both τ 0 and the position of the source was treated in [START_REF] Arakelyan | On the identification of the source of emission on the plane[END_REF][START_REF] Chernoyarov | Estimation of the position and time of emission of a source[END_REF]. In all these works the properties of the maximum likelihood estimator (MLE) and of the Bayesian estimators (BEs) of the position (or of τ 0 and of the position) where described. Moreover, the properties of the least squares estimators where equally described. The inhomogeneous Poisson processes and the diffusion processes were considered as models of observations. The properties of the MLE and of the BEs were described in the asymptotics of large signals or in the asymptotics of small noise.

In the present work we suppose that there are K detectors and two radioactive sources emitting signals which can be described as inhomogeneous Poisson processes and the emission starts at the (known) moment t = 0. So, we need to estimate the positions of the sources only. As in all preceding works, the properties of the estimators are described with the help of the Ibragimov-Khasminskii approach (see [START_REF] Ibragimov | Statistical Estimation. Asymptotic Theory[END_REF]), which consists in the verification of certain properties of the normalized likelihood ratio process.

The information about the positions of the sources is contained in the times of arrival of the signals to the detectors. These times depend on the distances between the sources and the detectors. The estimation of the positions depend on the estimation of these times, and here the form of the fronts of the arriving signals plays an important role. We consider three types of fronts: smooth, cusp-type and change-point type. In the smooth case the Fisher information matrix is finite and the estimators are asymptotically normal. In the cuspcase the fronts are described by a function which is continuous, but the Fisher information does not exist (is infinite). For Poisson processes, statisticaal problems with such type singularities was first considered in [START_REF] Dachian | Estimation of cusp location by Poisson observations[END_REF]. In this case the Bayesian estimators converge to a random vector defined with the help of some functionals of fractional Brownian motions.

In the change-point case with discontinuous intensities the limit distribution of Bayesian estimators is defined with the help of some Poisson processes. In all the three cases we discuss the asymptotic efficiency of the proposed estimators. Special attention is paid to the condition of identifiability, i.e., to the description of the admissible configurations of detectors which allow the consistent estimation of the positions of the sources. It is shown that if the detectors do not lay on a cross, then it is impossible to find two different pairs of sources which provide the same moments of arrival to the detectors and hence the consistent estimation is possible.

Main results

Model of observations

We suppose that there are K detectors D 1 , . . . , D K located on the plane at the (known) points D k = (x k , y k ) ⊤ , k = 1, . . . , K (K ⩾ 4), and two sources S 1 and S 2 located at the (unknown) points

S 1 = (x ′ 1 , y ′ 1 ) ⊤ and S 2 = (x ′ 2 , y ′ 2 ) ⊤ . Therefore, the unknown parameter is ϑ = (x ′ 1 , y ′ 1 , x ′ 2 , y ′ 2 )
⊤ , but it will be convenient to write it as ϑ = (ϑ 1 , . . . , ϑ 4 ) ⊤ ∈ Θ and as ϑ = (ϑ (1) , ϑ (2) ) ⊤ with obvious notations. For the true value of ϑ we will often use the notations ϑ 0 = (ϑ

(1) 0 , ϑ (2) 0 ) ⊤ , ϑ (1) 0 = (ϑ • 1 , ϑ • 2 ) ⊤ = (x ′• 1 , y ′• 1 ) ⊤ , ϑ (2) 0 
= (ϑ • 3 , ϑ • 4 ) ⊤ = (x ′• 2 , y ′• 2 ) ⊤ . The set Θ is an open, bounded, convex subset of R 4 .
We suppose, of course, that the positions of the detectors are all different. We suppose as well that a position of a source does not coincide with a position of a detector.

The sources start emitting at the moment t = 0. The k-th detector records a realization X k = (X k (t), 0 ⩽ t ⩽ T ) of an inhomogeneous Poisson process of intensity function

λ k,n (ϑ, t) = nS 1,k (ϑ (1) , t) + nS 2,k (ϑ (2) , t) + nλ 0 , 0 ⩽ t ⩽ T,
where nλ 0 > 0 is the intensity of the Poisson noise and nS i,k (ϑ (i) , t) is the signal recorded from the i-th source, i = 1, 2. We suppose that the recorded signals have the following structure

S i,k (ϑ (i) , t) = ψ t -τ k (ϑ (i) ) S i,k (t), (1) 
where S i,k (t) > 0 is a bounded function and τ k (ϑ (i) ) is the time of the arrival of the signal from the i-th source to the k-th detector, i.e.,

τ k (ϑ (i) ) = ν -1 ∥D k -S i ∥ 2 = ν -1 |x k -x ′ i | 2 + |y k -y ′ i | 2 1/2 , i = 1, 2,
and ν > 0 is the rate of the propagation of the signals. Here and in the sequel, we denote ∥•∥ 2 and ∥•∥ 4 the Euclidean norms in R 2 and R 4 respectively.

The function ψ(•) describes the fronts of the signals. As in our preceding works (see, e.g., [START_REF] Chernoyarov | Estimation of the position and time of emission of a source[END_REF]) we take

ψ(s) = s δ κ 1I {0⩽s⩽δ} + 1I {s>δ} ,
where δ > 0 and the parameter κ ⩾ 0 describes the regularity of the statistical problem. If κ ⩾ 1 2 , we have a regular statistical experiment, if κ ∈ 0, 1 2 , we have a singularity of cusp type, and if κ = 0, the intensity is a discontinuous function and we have a change-point model. The examples of these three cases are given in Fig. 2, where we put nS i,k (t) ≡ 2, nλ 0 = 1 and a) κ = 1, b) κ = 1/4, c) κ = 0. Note that ψ(s) = 0 for s < 0, and therefore for t < τ k ϑ (1) ∧ τ k ϑ (2) the intensity function is λ k,n (ϑ, t) = nλ 0 . According to the form of the intensity function, all the information concerning the positions of the sources is clearly contained in the moments of arrival τ k (ϑ (i) ), i = 1, 2, k = 1, . . . , K.

We are interested in the situation where the errors of estimation are small. In the problem of localization it is natural to suppose that the registered intensities take large values. Therefore we study the properties of the estimators of the positions in the asymptotics of large intensities, that is why we introduce in the intensity functions the factor n and the asymptotics corresponds to the limit n → ∞. In Section 3 we explain that the condition K ⩾ 4 is necessary for the existence of consistent estimators.

Maximum likelihood and Bayesian estimators

As the intensity functions λ k,n (•) are bounded and separated from zero, the measures P (n) ϑ , ϑ ∈ Θ, induced by the observations X K = (X 1 , . . . , X K ) on the space of the realizations are equivalent, and the likelihood ratio function is

L ϑ, X K = exp K k=1 T 0 ln λ k,n (ϑ, t) nλ 0 dX k (t) - K k=1 T 0 [λ k,n (ϑ, t) -nλ 0 ]dt , ϑ ∈ Θ
The MLE θn and the BEs for quadratic loss function θn are defined by the usual relations

L θn , X K = sup ϑ∈Θ L ϑ, X K , θn = Θ ϑ p(ϑ)L ϑ, X K dϑ Θ p(ϑ)L ϑ, X K dϑ
, where p(ϑ), ϑ ∈ Θ, is a strictly positive and continuous a priori density of the (random) parameter ϑ.

Smooth fronts

First we consider the regular case in a slightly different setup, which can be seen as more general. The intensities of the observed processes are supposed to be

λ k,n (ϑ, t) = nS 1,k (ϑ (1) , t) + nS 2,k (ϑ (2) , t) + nλ 0 = nλ k (ϑ, t), 0 ⩽ t ⩽ T,
where λ k (ϑ, t) is defined by the last equality and S i,k (ϑ

(i) , t) = s i,k t -τ k (ϑ (i) ) , i = 1, 2, k = 1, . . . , K.
For the derivatives we have the expressions

∂s 1,k t -τ k (ϑ (1) ) ∂ϑ 1 = ν -1 s ′ 1,k t -τ k (ϑ (1) ) x k -x ′ 1 ρ 1,k = ν -1 s ′ 1,k t -τ k (ϑ (1) ) cos(α 1,k ),
where

ρ 1,k = ∥D k -S 1 ∥ 2 and cos(α 1,k ) = (x k -x ′ 1 )ρ -1 1,k . Similarly, we obtain ∂s 1,k t -τ k (ϑ (1) ) ∂ϑ 2 = ν -1 s ′ 1,k t -τ k (ϑ (1) ) sin(α 1,k )
and, of course, we have ∂s 1,k /∂ϑ 3 = ∂s 1,k /∂ϑ 4 = 0. Let us recall here that we use the notations ϑ = (ϑ (1) , ϑ (2) ) ⊤ , ϑ (1) = (ϑ 1 , ϑ 2 ) ⊤ and ϑ (2) = (ϑ 3 , ϑ 4 ) ⊤ . For ∂s 2,k /∂ϑ 3 and ∂s 2,k /∂ϑ 4 we obtain similar expressions:

∂s 2,k t -τ k (ϑ (2) ) ∂ϑ 3 = ν -1 s ′ 2,k t -τ k (ϑ (2) ) cos(α 2,k ), ∂s 2,k t -τ k (ϑ (2) ) ∂ϑ 4 = ν -1 s ′ 2,k t -τ k (ϑ (2) ) sin(α 2,k ).
Let us now introduce the two vectors

m 1,k = m 1,k (ϑ (1) ) = cos(α 1,k ), sin(α 1,k ) ⊤ and m 2,k = m 2,k (ϑ (2) ) = cos(α 2,k ), sin(α 2,k ) ⊤ . We have ∥m i,k ∥ 2 = 1, i = 1, 2.
We will several times use the expansion (below

u (1) = (u 1 , u 2 ) ⊤ , u (2) = (u 3 , u 4 ) ⊤ and φ n → 0) τ k (ϑ (i) 0 + u (i) φ n ) = τ k (ϑ (i) 0 ) -ν -1 ⟨m • i,k , u (1) ⟩ φ n + O(φ 2 n ),
where

m • i,k = m i,k (ϑ (i) 0 ) = cos(α • 1,k ), sin(α • 1,k ) ⊤ .
For simplicity of exposition we will sometimes use the notations τ 1,k = τ k (ϑ (1) ) and τ 2,k = τ k (ϑ (2) ).

The Fisher information matrix is

I(ϑ) 4×4 = K k=1 T 0 λk (ϑ, t) λk (ϑ, t) ⊤ λ k (ϑ, t) dt.
Here and in the sequel dot means derivative w.r.t. ϑ. The elements of this matrix have the following expressions

I(ϑ) 11 = K k=1 τ 1,k s ′2 1,k (t -τ 1,k ) cos 2 (α 1,k ) ν 2 λ k (ϑ, t) dt, I(ϑ) 12 = K k=1 τ 1,k s ′2 1,k (t -τ 1,k ) cos(α 1,k ) sin(α 1,k ) ν 2 λ k (ϑ, t) dt, I(ϑ) 13 = K k=1 τ 1,k ∨τ 2,k s ′ 1,k (t -τ 1,k ) s ′ 2,k (t -τ 2,k ) cos(α 1,k ) cos(α 2,k ) ν 2 λ k (ϑ, t) dt, I(ϑ) 14 = K k=1 τ 1,k ∨τ 2,k s ′ 1,k (t -τ 1,k ) s ′ 2,k (t -τ 2,k ) cos(α 1,k ) sin(α 2,k ) ν 2 λ k (ϑ, t) dt.
The other terms can be written in a similar way.

The regularity conditions are:

Conditions R. R 1 . For all i = 1, 2 and k = 1, . . . , K, the functions s i,k (t) = 0 for t ⩽ 0 and s i,k (t) > 0 for t > 0. R 2 . The functions s i,k (•) ∈ C 2 , i = 1, 2, k = 1, . . . , K. The set Θ ⊂ R 4 is open, bounded and convex.
R 3 . The Fisher information matrix is uniformly non degenerate

inf ϑ∈Θ inf ∥e∥ 4 =1 e ⊤ I(ϑ) e > 0,
where e ∈ R 4 . R 4 . (Identifiability) For any ε > 0, we have

inf ϑ 0 ∈Θ inf ∥ϑ-ϑ 0 ∥ 4 >ε K k=1 T 0 S 1,k (ϑ (1) , t) + S 2,k (ϑ (2) , t) -S 1,k (ϑ (1) 0 , t) -S 2,k (ϑ (2) 0 , t) 2 dt > 0.
Let us note that in the setup of this section, the identifiability condition rewrites as follows:

inf ϑ 0 ∈Θ inf ∥ϑ-ϑ 0 ∥ 4 >ε K k=1 T 0 s 1,k (t-τ 1,k )+s 2,k (t-τ 2,k )-s 1,k (t-τ • 1,k )-s 2,k (t-τ • 2,k ) 2 dt > 0, (2) 
where

τ • i,k = τ k (ϑ (i) 0 ), i = 1, 2.
It can be shown that if the conditions R 1 -R 3 are fulfilled, the family of measures [START_REF] Kutoyants | Statistical Inference for Spatial Poisson Processes[END_REF]), and therefore we have the Hajek-Le Cam's lower bound on the risks of an arbitrary estimator θn (see, e.g., [START_REF] Ibragimov | Statistical Estimation. Asymptotic Theory[END_REF])

P (n) ϑ , ϑ ∈ Θ is locally asymptotically normal (LAN) (see Lemma 2.1 of
lim ε→0 lim n→∞ sup ∥ϑ-ϑ 0 ∥ 4 ⩽ε n E ϑ ∥ θn -ϑ∥ 2 4 ⩾ E ϑ 0 ∥ζ∥ 2 4 , ζ ∼ N 0, I(ϑ 0 ) -1 . (3) 
The asymptotically efficient estimator is defined as an estimator for which there is equality in the inequality (3) for all ϑ 0 ∈ Θ.

Theorem 1. Let the conditions R be fulfilled. Then, uniformly on compacts K ⊂ Θ, the MLE θn and the BEs θn are consistent and asymptotically normal:

√ n θn -ϑ 0 =⇒ ζ, √ n θn -ϑ 0 =⇒ ζ,
the polynomial moments converge: for any p > 0, it holds

n p/2 E ϑ 0 ∥ θn -ϑ 0 ∥ p 4 → E ϑ 0 ∥ζ∥ p 4 , n p/2 E ϑ 0 ∥ θn -ϑ 0 ∥ p 4 → E ϑ 0 ∥ζ∥ p 4
, and both the MLE and the BEs are asymptotically efficient.

Proof. This theorem is a particular case of Theorems 2.4 and 2.5 of [START_REF] Kutoyants | Statistical Inference for Spatial Poisson Processes[END_REF] (see as well [START_REF] Kutoyants | Multidimensional parameter estimation of intensity function of inhomogeneous Poisson process[END_REF]). Note that the model of observations with large intensity asymptotics is equivalent to the model of n → ∞ independent identically distributed inhomogeneous Poisson processes. To verify the condition B4 of the Theorem 2.4, for ∥ϑ -ϑ 0 ∥ 4 ⩽ ε and sufficiently small ε > 0 we can write

K k=1 T 0 λ k (ϑ, t) -λ k (ϑ 0 , t) 2 dt = 1 4 (ϑ -ϑ 0 ) ⊤ I(ϑ 0 ) (ϑ -ϑ 0 ) 1 + O(ε) ⩾ 1 8 (ϑ -ϑ 0 ) ⊤ I(ϑ 0 ) (ϑ -ϑ 0 ) = 1 8 ∥ϑ -ϑ 0 ∥ 2 4 e ⊤ I(ϑ 0 ) e ⩾ κ 1 ∥ϑ -ϑ 0 ∥ 2 4 . (4) 
Here we used the condition R 3 .

For ∥ϑ -ϑ 0 ∥ 4 ⩾ ε, we have

K k=1 T 0 λ k (ϑ, t) -λ k (ϑ 0 , t) 2 dt = K k=1 T 0 λ k (ϑ, t) -λ k (ϑ 0 , t) 2 λ k (ϑ, t) + λ k (ϑ 0 , t) 2 dt ⩾ C K k=1 T 0 λ k (ϑ, t) -λ k (ϑ 0 , t) 2 dt ⩾ C K k=1 T 0 s 1,k (t -τ 1,k ) + s 2,k (t -τ 2,k ) -s 1,k (t -τ • 1,k ) -s 1,k (t -τ • 1,k ) 2 dt ⩾ Cg(ε).
Here we used the boundedness of the functions λ k (ϑ, t) and denoted g(ε) > 0 the left hand side of (2). Let us denote D(Θ) = sup ϑ, θ∈Θ ∥ϑ -θ∥ 4 . Then we have

K k=1 T 0 λ k (ϑ, t) -λ k (ϑ 0 , t) 2 dt ⩾ Cg(ε) ⩾ Cg(ε) ∥ϑ -ϑ 0 ∥ 2 4 D(Θ) 2 ⩾ κ 2 ∥ϑ -ϑ 0 ∥ 2 4 . (5) 
The estimates ( 4) and ( 5) can be joined in

K k=1 T 0 λ k (ϑ, t) -λ k (ϑ 0 , t) 2 dt ⩾ κ∥ϑ -ϑ 0 ∥ 2 4 , (6) 
where κ = κ 1 ∧ κ 2 . Now B4 follows from (6).

Cusp type fronts

Let us now turn to the intensity function with cusp-type singularity. Suppose that the observed Poisson processes

X K = (X k (t), 0 ⩽ t ⩽ T, k = 1, . . . , K) have intensity functions λ k,n (ϑ, t) = nψ κ,δ (t -τ 1,k )S 1,k (t) + nψ κ,δ (t -τ 2,k )S 2,k (t) + nλ 0 = nλ k (ϑ, t), (7) 
where κ ∈ 0, 1 2 and

ψ κ,δ (t -τ i,k ) = t -τ i,k δ κ 1I {0⩽t-τ i,k ⩽δ} + 1I {t-τ i,k >δ} , i = 1, 2, k = 1, . . . , K. (8) 
Note that the intensity function of the Poisson process recorded by one detector has two cusp-type singularities. An example of such an intensity function is given in Fig. 3. 

Recall that

ν τ k (ϑ (1) u ) -τ k (ϑ (1) 0 ) = (x k -x ′• 1 -u 1 φ n ) 2 + (y k -y ′• 1 -u 2 φ n ) 2 1/2 -(x k -x ′• 1 ) 2 + (y k -y ′• 1 ) 2 1/2 = ρ 1,k -u 1 φ n cos(α • 1,k ) -u 2 φ n sin(α • 1,k ) 1 + O(φ n ) -ρ 1,k = -⟨u (1) , m • 1,k ⟩ φ n 1 + O(φ n ) and ν τ k (ϑ (2) u ) -τ k (ϑ (2) 0 ) = -⟨u (2) , m • 2,k ⟩ φ n 1 + O(φ n ) .
B i,k = u (i) : ⟨m • i,k , u (i) ⟩ < 0 , B c i,k = u (i) : ⟨m • i,k , u (i) ⟩ ⩾ 0 , i = 1, 2, I i,k (u (i) ) = Γi,k R v + ν -1 ⟨u (i) , m • i,k ⟩ κ 1I {v⩾-ν -1 ⟨u (i) ,m • i,k ⟩} -v κ 1I {v>0} dW i,k (v), Γ 2 1,k = S 2 1,k (τ • i,k ) δ 2κ λ k (ϑ 0 , τ • i,k ) ν 2κ+1 , Γ 2 2,k = S 2 2,k (τ • i,k ) δ 2κ λ k (ϑ 0 , τ • i,k ) ν 2κ+1 , (9) 
Γ1,k = S 1,k (τ • i,k ) δ κ λ k (ϑ 0 , τ • i,k ) , Γ2,k = S 2,k (τ • i,k ) δ κ λ k (ϑ 0 , τ • i,k ) , Q 2 κ = R |v -1| κ 1I {v⩾1} -v κ 1I {v>0} 2 dv, (10) 
Z (k) (u) = exp 2 i=1 Γi,k I i,k (u (i) ) - Γ 2 i,k Q 2 κ 2 ⟨u (i) , m • i,k ⟩ 2κ+1 , Z(u) = K k=1 Z (k) (u), ξ = R 4 uZ(u) du R 4 Z(u) du
. We have the following lower bound on the risks of an arbitrary estimator θn of the positions of sources: lim

Here W i,k (v), v ∈ R, i = 1, 2 are two-sided Wiener processes, i.e., W i,k (v) = W + i,k (v), v ⩾ 0, and W i,k (v) = W - i,k (-v), v ⩽ 0, where W ± i,k ( 
ε→0 lim n→∞ sup ∥ϑ-ϑ 0 ∥ 4 ⩽ε n 2 2κ+1 E ϑ ∥ θn -ϑ∥ 2 4 ⩾ E ϑ 0 ∥ξ∥ 2 4 .
This bound is a particular case of a more general bound given in Theorem 1.9.1 of [START_REF] Ibragimov | Statistical Estimation. Asymptotic Theory[END_REF].

Theorem 2. Let the conditions C be fulfilled. Then, uniformly on compacts K ⊂ Θ, the BEs θn are consistent, converge in distribution:

n 1 2κ+1
θnϑ 0 =⇒ ξ, the polynomial moments converge: for any p > 0, it holds

lim n→∞ n p 2κ+1 E ϑ ∥ θn -ϑ 0 ∥ p 4 = E ϑ 0 ∥ξ∥ p 4 ,
and the BEs are asymptotically efficient.

Proof. Let us study the normalized likelihood ratio

Z n (u) = Z (ϑ 0 ) n (u) = L ϑ 0 + uφ n , X K L ϑ 0 , X K , u ∈ U n = u : ϑ 0 + uφ n ∈ Θ ,
where φ n = n -1 2κ+1 . The properties of Z n (•) which we need are described in the following three lemmas.

Lemma 1. For any compact K ⊂ Θ, the finite-dimensional distributions of Z n (•) converge, uniformly on ϑ 0 ∈ Θ, to the finite-dimensional distributions of Z(•).

Proof. Put ϑ u = ϑ 0 + uφ n , ϑ (1) 
u = ϑ (1) 0 + u (1) φ n and ϑ (2) u = ϑ (2)
0 + u (2) φ n . For a fixed u denote γ n = sup 0⩽t⩽T λ k (ϑ 0 , t) -1 λ k (ϑ u , t) -λ k (ϑ 0 , t) and note that γ n → 0 as n → ∞. Therefore, by Lemma 1.5 of [START_REF] Kutoyants | Introduction to the Statistics of Poisson Processes and Applications[END_REF], the likelihood ratio admits the representation

ln Z n (u) = K k=1 T 0 λ k (ϑ u , t) -λ k (ϑ 0 , t) λ k (ϑ 0 , t) dX k (t) -λ k (ϑ 0 , t) dt 1 + O(γ n ) - n 2 K k=1 T 0 λ k (ϑ u , t) -λ k (ϑ 0 , t) 2 λ k (ϑ 0 , t) dt 1 + O(γ n ) . Suppose that τ • 1,k < τ • 2,k and set 2τ = τ • 1,k + τ • 2,k .
Then the second integral can be written as

T 0 λ k (ϑ u , t) -λ k (ϑ 0 , t) 2 λ k (ϑ 0 , t) dt = τ 0 λ k (ϑ u , t) -λ k (ϑ 0 , t) 2 λ k (ϑ 0 , t) dt + T τ λ k (ϑ u , t) -λ k (ϑ 0 , t) 2 λ k (ϑ 0 , t) dt = τ 0 ψ κ,δ t -τ k (ϑ (1) u ) -ψ κ,δ (t -τ • 1,k ) S 1,k (t) + A k (ϑ u , ϑ 0 , t) 2 λ k (ϑ 0 , t) dt + T τ B k (ϑ u , ϑ 0 , t) + ψ κ,δ t -τ k (ϑ (2) u ) -ψ κ,δ (t -τ • 2,k ) S 2,k (t) 2 λ k (ϑ 0 , t) dt = J 1,k,n (u (1) ) + J 2,k,n (u (2) ) (11) 
with obvious notations. Note that for t ∈ [0, τ ] the function A k (ϑ, ϑ 0 , t) have bounded derivatives w.r.t. ϑ, and that for t ∈ [τ, T ] the same is true for the function B k (ϑ, ϑ 0 , t).

Suppose that u (1) ∈ B 1,k . Then for large n we have τ k (ϑ

u ) > τ • 1,k , and therefore

J 1,k,n (u (1) ) = n τ τ • 1,k ψ κ,δ t -τ k (ϑ (1) u ) -ψ κ,δ (t -τ • 1,k ) S 1,k (t) + A k (ϑ u , ϑ 0 ) 2 λ k (ϑ 0 , t) dt = n τ τ • 1,k ψ κ,δ t -τ k (ϑ (1) u ) -ψ κ,δ (t -τ • 1,k ) S 1,k (t) 2 λ k (ϑ 0 , t) dt + o(1) = n τ -τ • 1,k 0 ψ κ,δ s -τ k (ϑ (1) 
u ) + τ • 1,k -ψ κ,δ (s) S 1,k (s + τ • 1,k ) 2 λ k (ϑ 0 , s + τ • 1,k ) dt + o(1) = n τ -τ • 1,k 0 ψ κ,δ s + ν -1 ⟨u (1) , m • 1,k ⟩ φ n -ψ κ,δ (s) S 1,k (s + τ • 1,k ) 2 λ k (ϑ 0 , s + τ • 1,k ) dt + o(1) = n S 2 1,k (τ • 1,k ) δ 2κ λ k (ϑ 0 , τ • 1,k ) -ν -1 ⟨u (1) ,m • 1,k ⟩ φn 0 s 2κ dt + τ -τ • 1,k -ν -1 ⟨u (1) ,m • 1,k ⟩ φn s + ν -1 ⟨u (1) , m • 1,k ⟩ φ n κ -s κ 2 dt + o(1) = nφ 2κ+1 n Γ 2 1,k ⟨u (1) , m • 1,k ⟩ 2κ+1 1 0 v 2κ dv + c/φn 1 |v -1| κ -v κ 2 dv + o(1) = Γ 2 1,k ⟨u (1) , m • 1,k ⟩ 2κ+1 ∞ 0 |v -1| κ 1I {v⩾1} -v κ 2 dv + o(1) = Γ 2 1,k ⟨u (1) , m • 1,k ⟩ 2κ+1 Q 2 κ + o(1), (12) 
where we changed the variable s = -ν -1 ⟨u (1) , m • 1,k ⟩ v and used the relation nφ 2κ+1 n = 1 and the notations ( 9) and [START_REF] Zekavat | Handbook of Position Location: Theory, Practice and Advances[END_REF].

For the values u (2) ∈ B 2,k we have a similar expression

J 2,k,n (u (2) ) = Γ 2 2,k ⟨u (2) , m • 2,k ⟩ 2κ+1 Q 2 κ + o(1).
If u (1) ∈ B c 1,k and u (2) ∈ B c 2,k , then similar calculations lead to the same integrals.

Hence T 0 λ k (ϑ u , t) -λ k (ϑ 0 , t) 2 λ k (ϑ 0 , t) dt = Γ 2 1,k ⟨u (1) , m • 1,k ⟩ 2κ+1 + Γ 2 2,k ⟨u (2) , m • 2,k ⟩ 2κ+1 Q 2 κ + o(1).
Let us suppose that τ k (ϑ

(1) 0 + u (1) φ n ) > τ • 1,k .
Introduce the centered Poisson process dπ k,n (t) = dX k (t) -λ k,n (ϑ 0 , t) dt and consider the stochastic integral

T 0 λ k,n (ϑ u , t) -λ k,n (ϑ 0 , t) λ k,n (ϑ 0 , t) dπ k,n (t) = τ τ • 1,k λ k (ϑ u , t) -λ k (ϑ 0 , t) λ k (ϑ 0 , t) dπ k,n (t) + T τ λ k (ϑ u , t) -λ k (ϑ 0 , t) λ k (ϑ 0 , t) dπ k,n (t) = I 1,k,n (u (1) ) + I 2,k,n (u (2) ), where 2τ = τ k (ϑ (1) 
u ) + τ • 1,k . Using the same relations as above, for u (1) ∈ B 1,k we can write

I 1,k,n (u (1) ) = τ -τ • 1,k 0 ψ κ,δ s + ν -1 ⟨u (1) , m • 1,k ⟩ φ n -ψ κ,δ (s) S 1,k (s + • 1,k ) λ k (ϑ 0 , s + τ • 1,k ) dπ k,n (t) + o(1) = S 1,k (τ • 1,k ) δ κ λ k (ϑ 0 , τ • 1,k ) -ν -1 ⟨u (1) ,m • 1,k ⟩ φn 0 s κ dπ k,n (s + τ • 1,k ) + τ -τ • 1,k -ν -1 ⟨u (1) ,m • 1,k ⟩ φn s + ν -1 ⟨u (1) , m • 1,k ⟩ φ n κ -s κ dπ k,n (s + τ • 1,k ) + o(1) = Γ1,k c/φn 0 v + ν -1 ⟨u (1) , m • 1,k ⟩ κ 1I {v⩾-ν -1 ⟨u (1) ,m • 1,k ⟩} -v κ dW 1,k,n (v) + o(1).
Here we changed the variable s = vφ n , used the relation √ n φ κ+1/2 n = 1 and denoted

W 1,k,n (v) = π k,n (vφ n + τ • 1,k ) -π k,n (τ • 1,k ) nφ n λ k (ϑ 0 , τ • 1,k )
.

This process has the following first two moments:

E ϑ 0 W 1,k,n (v) = 0, E ϑ 0 W 1,k,n (v) 2 = 1 φ n λ k (ϑ 0 , τ • 1,k ) τ • 1,k +vφn τ • 1,k λ k (ϑ 0 , t) dt = v 1 + o(1) , E ϑ 0 W 1,k,n (v 1 )W 1,k,n (v 2 ) = 1 φ n λ k (ϑ 0 , τ • 1,k ) τ • 1,k +(v 1 ∧v 2 )φn τ • 1,k λ k (ϑ 0 , t) dt = (v 1 ∧ v 2 ) 1 + o(1)
.

By the central limit theorem (see, e.g., Theorem 1.2 of [START_REF] Kutoyants | Statistical Inference for Spatial Poisson Processes[END_REF])

I 1,k,n (u (1) ) = Γ1,k c/φn 0 v + ν -1 ⟨u (1) , m • 1,k ⟩ κ 1I {v⩾-ν -1 ⟨u (1) ,m • 1,k ⟩} -v κ dW 1,k,n (v) =⇒ Γ1,k ∞ 0 v + ν -1 ⟨u (1) , m • 1,k ⟩ κ 1I {v⩾-ν -1 ⟨u (1) ,m • 1,k ⟩} -v κ dW + 1,k (v) = Γ1,k I 1,k (u (1) ),
where W + 1,k (v), v ⩾ 0, is a standard Wiener process. A similar limit for the integral I 2,k,n (u (2) ) can be obtained in the same way.

Suppose that u (2) ∈ B c 2,k , i.e., ⟨u (2) , m • 2,k ⟩ ⩾ 0. Then

I 2,k,n (u (2) ) = Γ2,k c/φn -ν -1 ⟨u (2) ,m • 2,k ⟩ v + ν -1 ⟨u (2) , m • 2,k ⟩ κ -v κ 1I {v⩾0} dW 2,k,n (v) =⇒ Γ2,k ∞ -ν -1 ⟨u (2) ,m • 2,k ⟩ v + ν -1 ⟨u (2) , m • 2,k ⟩ κ -v κ 1I {v⩾0} dW + 2,k (v) = Γ2,k I 2,k (u (2) ),
Therefore we obtain ln

Z (k),n (u) = T 0 λ k (ϑ u , t) -λ k (ϑ 0 , t) λ k (ϑ 0 , t) dX k (t) -λ k (ϑ 0 , t) dt - n 2 T 0 λ k (ϑ u , t) -λ k (ϑ 0 , t) 2 λ k (ϑ 0 , t) dt + o(1) =⇒ Γ1,k I 1,k (u (1) ) - Γ 2 1,k Q 2 κ 2 ⟨u (1) , m • 1,k ⟩ 2κ+1 + Γ2,k I 2,k (u (2) ) - Γ 2 2,k Q 2 κ 2 ⟨u (2) , m • 2,k ⟩ 2κ+1 = ln Z (k) (u).
The Wiener processes W i,k (•), i = 1, 2, k = 1, . . . , K, are independent and this convergence provides the convergence of one-dimensional distributions

Z n (u) =⇒ Z(u) = K k=1 Z (k) (u), u ∈ R 4 .
The convergence of finite-dimensional distributions can be proved following the same lines, but we omit it since it is too cumbersome and does not use new ideas or tools. Lemma 2. There exists a constant C > 0 such that for any L > 0, it holds

sup |u|<L E ϑ 0 Z n (u) 1/2 -Z n (u ′ ) 1/2 2 ⩽ C (1 + L 1-2κ ) ∥u -u ′ ∥ 1+2κ 4
.

Proof. By Lemma 1.5 of [START_REF] Kutoyants | Statistical Inference for Spatial Poisson Processes[END_REF], we have

E ϑ 0 Z n (u) 1/2 -Z n (u ′ ) 1/2 2 ⩽ K k=1 T 0 λ k,n (ϑ u , t) -λ k,n (ϑ u ′ , t) 2 dt ⩽ Cn K k=1 T 0 λ k (ϑ u , t) -λ k (ϑ u ′ , t) 2 dt. ( 13 
)
Note that the parts of integrals in [START_REF] Ibragimov | Statistical Estimation. Asymptotic Theory[END_REF] containing differentiable functions A k (ϑ u , ϑ 0 , t) and B k (ϑ u , ϑ 0 , t) have estimates like

n τ 0 A k (ϑ u , ϑ 0 , t) -A k (ϑ u ′ , ϑ 0 , t) 2 dt ⩽ C nφ 2 n ∥u -u ′ ∥ 2 = C n -1+2κ ∥u -u ′ ∥ 2 4 .
Therefore, following [START_REF] Knoll | Radiation Detection and Measurement[END_REF], we obtain the relations

K k=1 T 0 λ k (ϑ u , t) -λ k (ϑ u ′ , t) 2 dt ⩽ C ∥u (1) -u ′(1) ∥ 1+2κ 2 +∥u (2) -u ′(2) ∥ 1+2κ 2 + C n -1+2κ ∥u -u ′ ∥ 2 4 ⩽ C ∥u -u ′ ∥ 1+2κ 4 + C n -1+2κ ∥u -u ′ ∥ 2 4 ⩽ C (1 + L 1-2κ ) ∥u -u ′ ∥ 1+2κ 4
.

Lemma 3. There exist c * > 0 such that

P ϑ 0 Z T (u) > e -c * ∥u∥ 2κ+1 4 ⩽ e -c * ∥u∥ 2κ+1 4
Proof. By the same Lemma 1.5 of [START_REF] Kutoyants | Statistical Inference for Spatial Poisson Processes[END_REF], we have

P ϑ 0 Z T (u) > e -c * ∥u∥ 2κ+1 4 ⩽ e c * 2 ∥u∥ 2κ+1 4 E ϑ 0 Z n (u) 1/2 = exp c * 2 ∥u∥ 2κ+1 4 - 1 2 K k=1 T 0 λ k,n (ϑ u , t) -λ k,n (ϑ u , t) 2 dt .
Using calculations similar to those of ( 11) and ( 12), we obtain for ∥ϑ u -ϑ 0 ∥ 4 ⩽ ε and sufficiently small ε > 0 the estimate

K k=1 T 0 λ k,n (ϑ u , t) -λ k,n (ϑ u , t) 2 dt ⩾ c 1 ∥u∥ 2κ+1 4 .
Consider now the case ∥ϑ u -ϑ 0 ∥ 4 > ε. Let us denote

g(ε) = inf ∥ϑ-ϑ 0 ∥ 4 >ε K k=1 T 0 S 1,k (ϑ (1) , t) + S 2,k (ϑ (2) , t) -S 1,k (ϑ (1) 0 , t) -S 2,k (ϑ (2) 0 , t) 2 dt and remark that φ n ∥u∥ 4 ⩽ D = sup ϑ,ϑ ′ ∈Θ ∥ϑ -ϑ ′ ∥ 4 . Hence n > D -(2κ+1) ∥u∥ 2κ+1 4 . As g(ε) > 0 we can write K k=1 T 0 λ k,n (ϑ u , t) -λ k,n (ϑ u , t) 2 dt ⩾ c K k=1 T 0 λ k,n (ϑ u , t) -λ k,n (ϑ 0 , t) 2 dt ⩾ c n g(ε) ⩾ c g(ε)D -(2κ+1) ∥u∥ 2κ+1 4 = c 2 ∥u∥ 2κ+1 4 .
Finally, denoting c = c 1 ∧ c 2 and setting c * = c/3, we obtain

c * 2 ∥u∥ 2κ+1 4 - 1 2 K k=1 T 0 λ k,n (ϑ u , t) -λ k,n (ϑ u , t) 2 dt ⩽ -c * ∥u∥ 2κ+1 4 .
The properties of the process Z n (•) established in Lemmas 1-3 allow us to cite Theorem 1.10.2 of [START_REF] Ibragimov | Statistical Estimation. Asymptotic Theory[END_REF] and, therefore, to obtain the properties of BEs stated in Theorem 2.

Change point type fronts

Suppose that the intensity functions of the observed inhomogeneous Poisson processes have jumps at the moments of arrival of the signals, i.e., the intensities are

λ k,n (ϑ, t) = n1I {t>τ k (ϑ (1) )} S 1,k (t) + n1I {t>τ k (ϑ (2) )} S 2,k (t) + nλ 0 = nλ k (ϑ, t), (14) 
where 0 ⩽ t ⩽ T , k = 1, . . . , K. As before, ϑ = (ϑ (1) , ϑ (2) ) ⊤ ∈ Θ, where

ϑ (1) = (ϑ 1 , ϑ 2 ) ⊤ = (x ′ 1 , y ′ 1 ) ⊤ (position of the source S 1 ) and ϑ (2) = (ϑ 3 , ϑ 4 ) ⊤ = (x ′ 2 , y ′ 2 ) ⊤ (position of the source S 2 ), and τ k (ϑ (i) ) = ν -1 (x k -x ′ i ) 2 + (y k -y ′ i ) 2 1/2 = τ i,k .
Introduce the notations

ℓ i,k = ln λ 0 S i,k (τ • i,k ) + λ 0 , B i,k = u (i) : ⟨u (i) , m • i,k ⟩ < 0 , i = 1, 2, k = 1, . . . , K, Z (k) (u) = exp 2 i=1 ℓ i,k x + i,k -ν -1 ⟨u (i) , m • i,k ⟩ -⟨u (i) , m • i,k ⟩ ν -1 S i,k (τ • i,k ) 1I B i,k - 2 i=1 ℓ i,k x - i,k -ν -1 ⟨u (i) , m • i,k ⟩ -⟨u (i) , m • i,k ⟩ ν -1 S i,k (τ • i,k ) 1I B c i,k , Z(u) = K k=1 Z (k) (u), η = R 4 u Z(u) du R 4 Z(u) du . Here x + i,k -ν -1 ⟨u (i) , m • i,k ⟩ = y + i,k (s) s=-ν -1 ⟨u (i) ,m • i,k ⟩ , s ⩾ 0,
where y + i,k (s), s ⩾ 0, is a Poisson process with unit intensity. Similarly 

x - i,k -ν -1 ⟨u (i) , m • i,k ⟩ = y - i,k (-s) s=ν -1 ⟨u (i) ,m • i,k ⟩ , s ⩽ 0, with another Poisson process y - i,k (s), s ⩾ 0 with unit intensity. All Poisson processes y ± i,k (s), s ⩾ 0, i = 1, 2, k = 1, . . . , K are independent.
n 2 E ϑ ∥ θn -ϑ∥ 2 4 ⩾ E ϑ 0 ∥η∥ 2 4
holds. This bound is another particular case of Theorem 1.9.1 of [START_REF] Ibragimov | Statistical Estimation. Asymptotic Theory[END_REF].

Theorem 3. Let the conditions D be fulfilled. Then, uniformly on compacts K ⊂ Θ, the BEs θn are consistent, converge in distribution:

n θn -ϑ 0 =⇒ η,
the polynomial moments converge: for any p > 0, it holds

n p E ϑ 0 ∥ θn -ϑ 0 ∥ p Proof.
The normalized likelihood ratio function in this problem is given by ln

Z n (u) = ln Z (ϑ 0 ) n (u) = K k=1 T 0 ln λ k (ϑ 0 + n -1 u, t) λ k (ϑ 0 , t) dX k (t) -n K k=1 T 0 λ k (ϑ 0 + n -1 u, t) -λ k (ϑ 0 , t) dt.
We have to check once more the conditions of Theorem 1.10.1 of [START_REF] Ibragimov | Statistical Estimation. Asymptotic Theory[END_REF] and to prove three lemmas.

Lemma 4. For any compact K ⊂ Θ, the finite-dimensional distributions of Z n (•) converge, uniformly on ϑ 0 ∈ Θ, to the finite-dimensional distributions of Z(•).

Proof. Let us set ϑ u = ϑ 0 + n -1 u and suppose that u (1) ∈ B 1,k and u (2) ∈ B 2,k . For n sufficiently large we have τ k (ϑ

(1) u ) > τ • 1,k and τ k (ϑ (2) u ) > τ • 2,k > τ k (ϑ (1) 
u ), and so

T 0 ln λ k (ϑ u , t) λ k (ϑ 0 , t) dX k (t) = τ k (ϑ (1) 
u ) τ • 1,k ln λ 0 S 1,k (t) + λ 0 dX k (t) + τ k (ϑ (2) u ) τ • 2,k ln λ 0 S 2,k (t) + λ 0 dX k (t).
and

T 0 λ k (ϑ u , t) -λ k (ϑ 0 , t) dt = - τ 1,k (ϑu) τ 1,k (ϑ 0 ) S 1,k (t) dt - τ 2,k (ϑu) τ 2,k (ϑ 0 ) S 2,k (t) dt. 
For a fixed u, using Taylor expansion we can write (recall that τ • i,k = τ k (ϑ

(i) 0 ), i = 1, 2) τ k (ϑ (1) 
u )

τ • 1,k S 1,k (t) dt = τ k (ϑ (1) u ) -τ • 1,k S 1,k (τ • 1,k ) + 1 n τ k (ϑ (1) 
u )

τ • 1,k S ′ 1,k ( t) dt = -(nν) -1 ⟨u (1) , m • 1,k ⟩ S 1,k (τ • 1,k ) 1 + O(n -1 )
and

τ k (ϑ (2) u ) τ • 2,k S 2,k (t) dt = -(nν) -1 ⟨u (2) , m • 2,k ⟩ S 2,k (τ • 2,k ) 1 + O(n -1 ) .
For stochastic integrals, similar calculations provide

τ k (ϑ (1) 
u ) τ • 1,k ln λ 0 S 1,k (t) + λ 0 dX k (t) = ln λ 0 S 1,k (τ • 1,k ) + λ 0 X k τ k (ϑ (1) u ) -X k (τ • 1,k ) 1 + O(n -1 ) . Further X k τ k (ϑ (1) u ) -X k (τ • 1,k ) = X k τ • 1,k -n -1 ν -1 ⟨u (1) , m • 1,k ⟩ -X k (τ • 1,k ) + X k τ k (ϑ (1) u ) -X k τ • 1,k -n -1 ν -1 ⟨u (1) , m • 1,k ⟩ = x + 1,k -ν -1 ⟨u (1) , m • 1,k ⟩ + O(n -1/2 ). Here x + 1,k -ν -1 ⟨u (1) , m • 1,k ⟩ = X k τ • 1,k -n -1 ν -1 ⟨u (1) , m • 1,k ⟩ -X k (τ • 1,k
) is a Poisson random process and the last estimate was obtained as follows:

E ϑ 0 X k τ k (ϑ (1) u ) -X k τ • 1,k -n -1 ν -1 ⟨u (1) , m • 1,k ⟩ 2 = n τ • 1,k -n -1 ν -1 ⟨u (1) ,m • 1,k ⟩ τ k (ϑ (1) u 
) λ k (ϑ 0 , t) dt + n τ • 1,k -n -1 ν -1 ⟨u (1) ,m • 1,k ⟩ τ k (ϑ (1) u 
) λ k (ϑ 0 , t) dt 2 ⩽ C n . Hence, if u (1) ∈ B 1,k and u (2) ∈ B 2,k , it holds T 0 ln λ k (ϑ 0 + n -1 u, t) λ k (ϑ 0 , t) dX k (t) = ln λ 0 S 1,k (τ • 1,k ) + λ 0 x + 1,k -ν -1 ⟨u (1) , m • 1,k ⟩ + ln λ 0 S 2,k (τ • 2,k ) + λ 0 x + 2,k -ν -1 ⟨u (2) , m • 2,k ⟩ + O(n -1/2 ). If u (1) ∈ B c 1,k and u (2) ∈ B c 2,k , we have T 0 ln λ k (ϑ 0 + n -1 u, t) λ k (ϑ 0 , t) dX k (t) = ln 1 + S 1,k (τ • 1,k ) λ 0 x - 1,k -ν -1 ⟨u (1) , m • 1,k ⟩ + ln 1 + S 2,k (τ • 2,k ) λ 0 x - 2,k ν -1 ⟨u (2) , m • 2,k ⟩ + O(n -1/2 ).
Lemma 5. There exists a constant C > 0 such that

E ϑ 0 Z n (u) 1/2 -Z n (u ′ ) 1/2 2 ⩽ C ∥u -u ′ ∥ 4 .
Proof. We have (see [START_REF] Kutoyants | Multidimensional parameter estimation of intensity function of inhomogeneous Poisson process[END_REF])

sup ϑ 0 ∈K E ϑ 0 Z n (u) 1/2 -Z n (u ′ ) 1/2 2 ⩽ K k=1 n T 0 λ k (ϑ u , t) -λ k (ϑ u ′ , t) 2 dt. Suppose that τ k (ϑ (1) 
u ) > τ k (ϑ (1) 
u ′ ) and τ k (ϑ

(2) u ) > τ k (ϑ (2) 
u ′ ) > τ k (ϑ (1) 
u ). Then

n T 0 S 1,k (t) 1I {τ k (ϑ (1) u ′ )⩽t⩽τ k (ϑ (1) 
u )} + S 2,k (t) 1I {τ k (ϑ (2) u ′ )⩽t⩽τ k (ϑ (2) u )} 2 dt = n τ k (ϑ (1) u ) τ k (ϑ (1) u ′ ) S 2 1,k (t) dt + n τ k (ϑ (2) u ) τ k (ϑ (2) u ′ ) S 2 2,k (t) dt ⩽ Cn τ k (ϑ (1) u ) -τ k (ϑ (1) 
u ′ ) + Cn τ k (ϑ (2) u ) -τ k (ϑ (2) u ′ ) ⩽ C ⟨u ′(1) -u (1) , m • 1,k ⟩ + ⟨u ′(2) -u (2) , m • 2,k ⟩ ⩽ C ∥u ′(1) -u (1) ∥ 2 + ∥u ′(2) -u (2) ∥ 2 ⩽ C ∥u ′ -u∥ 4 .
Lemma 6. There exists a constant κ > 0 such that

E ϑ 0 Z n (u) 1/2 ⩽ e -κ ∥u∥ 4 .
Proof. We have

ln E ϑ 0 Z n (u) 1/2 = - 1 2 K k=1 T 0 λ k,n (ϑ u , t) -λ k,n (ϑ 0 , t) 2 dt ⩽ -C K k=1 T 0 λ k,n (ϑ u , t) -λ k,n (ϑ 0 , t) 2 dt. Suppose that τ k (ϑ (i) u ) > τ • i,k , τ • 2,k > τ k (ϑ (1) 
u ) and ∥ϑ u -ϑ 0 4 ⩽ ε.

Then T 0 λ k,n (ϑ u , t) -λ k,n (ϑ 0 , t) 2 dt ⩾ c n T 0 S 1,k (t) 1I {τ • 1,k <t<τ k (ϑ (1) 
u )} + S 2,k (t) 1I {τ • 2,k <t<τ k (ϑ (2) u )} 2 dt ⩾ c n τ k (ϑ (1) u 
) τ • 1,k S 2 1,k (t) dt + τ k (ϑ (2) u ) τ • 2,k S 2 2,k (t) dt ⩾ c n τ k (ϑ (1) u ) -τ • 1,k + τ k (ϑ (2) u ) -τ • 2,k ⩾ c -⟨u (1) , m • 1,k ⟩ -⟨u (2) , m • 2,k ⟩ ⩾ c -⟨u (1) , m • 1,k ⟩ -⟨u (2) , m • 2,k ⟩ ∥u∥ 4 ∥u∥ 4 = -c √ 2 ⟨e, m k ⟩ ∥u∥ 4 .
Here -⟨e, m k ⟩ > 0 and the vectors are e = u ∥u∥ 4

,

∥e∥ 4 = 1, m k = x k -x ′• 1 √ 2ρ k , y k -y ′• 1 √ 2ρ k , x k -x ′• 2 √ 2ρ k , y k -y ′• 2 √ 2ρ k , ∥m k ∥ 4 = 1. Note that inf ∥e∥ 4 =1 K k=1 -⟨e, m k ⟩ = c > 0.
Indeed, if for some e we have c = 0, then all scalar products ⟨u (i) , m • i,k ⟩ = 0, i = 1, 2, k = 1, . . . , K, but such configuration of detectors is impossible.

Let ∥ϑ u -ϑ 0 ∥ 4 > ε. Then as in the proof of Lemma 3 we obtain the estimate

K k=1 T 0 λ k,n (ϑ u , t) -λ k,n (ϑ 0 , t) 2 dt ⩾ n g(ε) ⩾ D -1 ∥u∥ 4 = c ∥u∥ 4 .
Therefore Once more, according to Theorem 1.10.2 of [START_REF] Ibragimov | Statistical Estimation. Asymptotic Theory[END_REF], the properties of the normalized likelihood ratio Z n (•) established in Lemmas 4-6 provide us the properties of the BEs stated in Theorem 3.

On identifiability

Recall that we consider the situation where K ∈ N * detectors D 1 , . . . , D K ∈ R 2 receive signals from two sources S 1 , S 2 ∈ R 2 . In this section we make no distinction between detectors/sources and their positions, and we suppose that the two signals received by a detector are identical, i.e., we have S 1,k (•) = S 2,k (•) = S k (•) in the right hand side of (1), and so the signals recorded by the k-th detector are S i,k (ϑ (i) , t) = ψ(tτ i,k ) S k (t), i = 1, 2.

Considering the identifiability condition R 4 , we can see that if for some ϑ ∈ Θ and some ε > 0 satisfying ∥ϑ -ϑ 0 ∥ 4 ⩾ ε > 0 we have

K k=1 T 0 ψ(t -τ 1,k ) S k (t) + ψ(t -τ 2,k ) S k (t) -ψ(t -τ • 1,k ) S k (t) -ψ(t -τ • 2,k ) S k (t) 2 dt = 0,
then, taking into account that S k (t) > 0 and that ψ(t) = 0 for t < 0 and ψ(t) ̸ = 0 for t > 0, we should have (for each k) either We see that the question of identifiability is reduced to the following one: when having the distances from each detector to the two sources (without knowing which distance corresponds to which source) is it possible to find ϑ? So, the system will be identifiable if and We need to distinguish several cases.

If in one of the two pairs the sources are located at the same point (say S 1 = S 2 ), then at least one of the points S ′ 1 and S ′ 2 (say S ′ 1 ) must be different from S 1 and S 2 (see the left picture in Fig. 5). Then, if our two pairs of sources provide the same pair of distances to a point D, we should have, in particular, ρ(D, S 1 ) = ρ(D, S ′ 1 ), and hence D ∈ b S 1 S ′ 1 . Here and in the sequel, we denote ρ the Euclidean distance, and for any two distinct points A and B, we denote b AB the perpendicular bisector of the segment AB. Therefore, all the detectors must belong to the line b S 1 S ′ 1 (and, in particular, they lay on a cross).

b S 1 S 1 So, from now on, we can suppose that S 1 ̸ = S 2 and S ′ 1 ̸ = S ′ 2 . Now we consider the case when the two pairs of sources have a point in common (say S 1 = S ′ 1 ). Note that in this case, we must have S 2 ̸ = S ′ 2 , since otherwise the pairs of sources will not be different (see the left picture in Fig. 5). Then, our two pairs of sources

S 1 = S 2 S 1 b S 2 S 2 S 1 = S 1 S 2 S 2
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 2 Figure 2: Intensities with three types of fronts of arriving signals
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 3 Figure 3: Intensity with two cusp type singularities
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 123 •) are independent Wiener processes. Conditions C . The intensities of the observed processes are given by (7)-(8), where the functions S i,k (y) ∈ C 1 and are positive. The configuration of the detectors and the set Θ are such that all signals from the both sources arrive at the detectors during the period [0, T ]. The condition R 4 is fulfilled.
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 123 The intensities of the observed processes are (14), where the functions S i,k (y) ∈ C 1 and are positive. The set Θ ⊂ R 4 is open, bounded and convex. The configuration of the detectors and the set Θ are such that the signals from the both sources arrive at the detectors during the period [0, T ]. The condition R 4 is fulfilled.

2 dt ⩾ 2κ ∥u∥ 4 ,

 24 n (ϑ u , t) -λ k,n (ϑ 0 , t)with a corresponding κ > 0.

τ 1 ,k = τ • 1 ,k and τ 2 ,k = τ • 2 ,k or τ 1 ,k = τ • 2 ,k and τ 2

 1122122 ,k = τ • 1,k .Of course, in such situation the consistent estimation is impossible, because for two different values of the unknown parameter we have the same statistical model.
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 4511224 Figure 4: Non identifiability for detectors laying on a cross
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 5 Figure 5: Cases with coinciding sources

-→ E ϑ 0 ∥η∥ p 4 , and the BEs are asymptotically efficient.
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only if there exist no two different pairs of sources providing the same K pairs of distances to the detectors.

We introduce the following definition. Definition 1. We say that n ∈ N * points A 1 , . . . , A n ∈ R 2 "lay on a cross" if there exist a pair of orthogonal lines ℓ 1 and ℓ 2 such that A i ∈ ℓ 1 ∪ ℓ 2 for all i = 1, . . . , n. Now we can state the theorem providing a necessary and sufficient condition for identifiability.

Theorem 4. A sufficient condition for a system with K detectors to be identifiable is that the detectors do not lay on a cross.

In absence of restrictions on the positions of the sources (i.e., if we could suppose that Θ = R 4 ) this condition would be also necessary.

Before proving this theorem, let us note that at least 4 detectors are necessary for the system to be identifiable. Indeed, any three detectors D 1 , D 2 , D 3 lay on a cross (take, for example, the line ←-→ D 1 D 2 and the perpendicular to this line passing by D 3 ).

Note also that 4 detectors do not lay on a cross if (and only if) they are in general linear position (any 3 of them are not aligned) and cannot be split in two pairs such that the lines passing by these pairs are orthogonal.

Finally, note that if 5 (or more) detectors are in general linear position, then they necessarily do not lay on a cross (and hence the system is identifiable). Indeed, if they laid on a cross, at least one of the lines forming the cross would contain at least three of them, and so, they would not be in general linear position.

Proof. Note that if the system is identifiable with Θ = R 4 , it will be also identifiable with any Θ ⊂ R 4 . So we can suppose Θ = R 4 and reformulate the theorem using the contrapositions as follows: the detectors D 1 , . . . , D K lay on a cross if and only if there exist two different pairs of sources providing the same K pairs of distances to them.

In order to show the necessity, we suppose that the detectors D 1 , . . . , D K lay on a cross formed by a pair of orthogonal line ℓ 1 and ℓ 2 , and we need to find two different pairs of sources {S 1 , S 2 } and {S ′ 1 , S ′ 2 } providing the same K pairs of distances to the detectors. Let us denote O the point of intersection of ℓ 1 and ℓ 2 , take an arbitrary point S 1 not belonging to neither ℓ 1 , nor ℓ 2 , and denote S ′ 1 , S ′ 2 and S 2 the points symmetric to S 1 with respect to ℓ 1 , ℓ 2 and O respectively (see Fig. 4).

Then, clearly, the pairs of sources {S 1 , S 2 } and {S ′ 1 , S ′ 2 } provide the same pair of distances to any point of a cross, and hence the same K pairs of distances to the detectors D 1 , . . . , D K . Now we turn to the proof of the sufficiency. We suppose that two different pairs of sources {S 1 , S 2 } and {S ′ 1 , S ′ 2 } provide the same K pairs of distances to the detectors D 1 , . . . , D K , and we need to show that the detectors lay on a cross. 

) . We need again to distinguish several (sub)cases depending on whether the lines in each of these pairs coincide or not.

First we suppose that b

1 (see the left picture in Fig. 6). Then each of these pairs of lines meet in at most one point. So, all the detectors must belong to a set consisting of at most two points (and, therefore, there is at most two detectors and they trivially lay on a cross). 

). Note that in this case, the points S 1 and S ′ 1 , as well as the points S 2 and S ′ 2 , are symmetric with respect to the line b S 1 S ′ 1 , and hence the lines b S 1 S ′ 2 and b S 2 S ′ 1 either do not meet, or meet in a point belonging to b S 1 S ′ 1 (see the middle picture in Fig. 6). So, finally all the detectors must belong to the line b S 1 S ′ 1 (and, in particular, they lay on a cross).

It remains to consider the case when b

1 (see the right picture in Fig. 6). In this case, as the segments S 1 S ′ 1 and S 2 S ′ 2 have a common perpendicular bisector, they must, in particular, be parallel (including the case where they lay on a same line). The same reasoning applies to the segments S 1 S ′ 2 and S 2 S ′ 1 . Now, the case when the points S 1 , S ′ 1 , S 2 , S ′ 2 lay on a same line is impossible, since these points being all different, we clearly can not have common perpendicular bisectors at the same time for S 1 S ′ 1 and S 2 S ′ 2 and for S 1 S ′ 2 and S 2 S 1 . Thus, S 1 S ′ 1 S 2 S ′ 2 is a parallelogram. Moreover, as its opposite sides have common perpendicular bisectors, S 1 S ′ 1 S 2 S ′ 2 is necessarily a rectangle. But in this case, the perpendicular bisectors b S 1 S ′ 1 and b S 1 S ′ 2 are orthogonal. Hence, as all the detectors belong to b S 1 S ′ 1 ∪ b S 1 S ′ 2 , they lay again on a cross.

Discussions

The considered models in the cases of cusp and change-point singularities can be easily generalized to the models with signals s i,k tτ k (ϑ) . The proofs will be more cumbersome but the rates and the limit distributions of the studied estimators will be the same.

Remark that the same mathematical models are used in the applications related to the detection of weak optical signals from two sources.

Of course, it will be interesting to see the conditions of identifiability in the situation where the beginning of the emissions of these sources are unknown and have to be estimated together with the positions. In the case of one source such problem was discussed in the work [START_REF] Chernoyarov | Estimation of the position and time of emission of a source[END_REF].

All useful information about the position of sources, according to the statements of this work, is contained in the times of arrival of the signals τ

It is possible to study another statement of the problem supposing that these moments are estimated separately by observations X k = (X k (t), 0 ⩽ t ⩽ T ) for each k, say by τi,k,n = τi,k,n (X k ), and then the positions of the sources are estimated on the base of the obtained estimators τi,k,n , i = 1, 2, k = 1, . . . , K. Such approach was considered in the works [START_REF] Chernoyarov | Estimation of the position and time of emission of a source[END_REF][START_REF] Chernoyarov | Poisson source localization on the plane. Smooth case[END_REF] (see as well [START_REF] Kutoyants | Introduction to the Statistics of Poisson Processes and Applications[END_REF]).

Note that in the works on Poisson source localization, the intensities of Poisson processes are sometimes taken in the form

where F (•) is a known strictly decreasing function of the distance ρ k between the source and the k-th detector. The developed in the present work approach (smooth case) can be applied for such models too, because here all the useful information is contained in the distances ρ k (ϑ).
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