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Abstract

The problem of localization on the plane of two radioactive sources by K detec-
tors is considered. Each detector records a realization of an inhomogeneous Poisson
process whose intensity function is the sum of signals arriving from the sources and of
a constant Poisson noise of known intensity. The time of the beginning of emission of
the sources is known, and the main problem is the estimation of the positions of the
sources. The properties of the maximum likelihood and Bayesian estimators are de-
scribed in the asymptotics of large signals in three situations of different regularities
of the fronts of the signals: smooth, cusp-type and change-point type.

MSC 2000 Classification: 62M02, 62G10, 62G20.
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1 Introduction

Suppose that there are two radioactive sources and K detectors on the plane. The sources
start emitting at a known time, which can be taken t = 0 without loss of generality.
The detectors receive Poisson signals with additive noise. The intensity functions of these
processes depend on the positions of the detectors (known) and the positions of the sources
(unknown), and the main problem is the estimation of the positions of the sources. An
example of a possible configuration of the sources and of the detectors on the plane is given
in Fig. 1.

Due to their practical importance, the problems of localization of the sources with
Poisson, Gaussian or more general classes of distributions are widely studied in engineering
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Figure 1: Model of observations: Sy, S, are the positions of the sources and D;, i =1, ..., 5,
are the positions of the sensors

literature, see, e.g., [2,3,8,12,17-20], as well as the Handbook [10] and the references therein.
Mathematical statements are less known. This work is a continuation of a study initiated
in [9] and then developed in [1,4-6,15], where it was always supposed that there is only one
source on the plane. In the works [5,6,9] it was supposed that the moment of the beginning
of the emission 7y is known and the unknown parameter was just the position of the source.
The case where 7; is unknown too and we have to estimate both 79 and the position of the
source was treated in [1,4]. In all these works the properties of the maximum likelihood
estimator (MLE) and of the Bayesian estimators (BEs) of the position (or of 75 and of the
position) where described. Moreover, the properties of the least squares estimators where
equally described. The inhomogeneous Poisson processes and the diffusion processes were
considered as models of observations. The properties of the MLE and of the BEs were
described in the asymptotics of large signals or in the asymptotics of small noise.

In the present work we suppose that there are K detectors and two radioactive sources
emitting signals which can be described as inhomogeneous Poisson processes and the emis-
sion starts at the (known) moment ¢ = 0. So, we need to estimate the positions of the
sources only. As in all preceding works, the properties of the estimators are described with
the help of the Ibragimov-Khasminskii approach (see [11]), which consists in the verification
of certain properties of the normalized likelihood ratio process.

The information about the positions of the sources is contained in the times of arrival of
the signals to the detectors. These times depend on the distances between the sources and
the detectors. The estimation of the positions depend on the estimation of these times, and
here the form of the fronts of the arriving signals plays an important role. We consider three
types of fronts: smooth, cusp-type and change-point type. In the smooth case the Fisher
information matrix is finite and the estimators are asymptotically normal. In the cusp-
case the fronts are described by a function which is continuous, but the Fisher information
does not exist (is infinite). For Poisson processes, statisticaal problems with such type
singularities was first considered in [7]. In this case the Bayesian estimators converge to a
random vector defined with the help of some functionals of fractional Brownian motions.



In the change-point case with discontinuous intensities the limit distribution of Bayesian
estimators is defined with the help of some Poisson processes. In all the three cases we
discuss the asymptotic efficiency of the proposed estimators.

Special attention is paid to the condition of identifiability, i.e., to the description of the
admissible configurations of detectors which allow the consistent estimation of the positions
of the sources. It is shown that if the detectors do not lay on a cross, then it is impossible
to find two different pairs of sources which provide the same moments of arrival to the
detectors and hence the consistent estimation is possible.

2 Main results

2.1 Model of observations

We suppose that there are K detectors Dy,...,Dg located on the plane at the (known)
points Dy = (zg, k), k=1,..., K (K > 4), and two sources S; and S, located at the
(unknown) points Sy = (z},y])" and Sy = (24, 95)". Therefore, the unknown parameter
is 0 = (z},9), 25, 95) ", but it will be convenient to write it as ¥ = (¥1,...,94)" € © and
as ¥ = (9, 9@)T with obvious notations. For the true value of ¥ we will often use the

: 0 9@NT  9(1) _ 90 qo\T _ (00 00\T 9(2) _ (9o 9o\T __ (.40 ,10\T
notations Jo = (Jy",05") ", dp° = (01,03)" = (a,97) ", I5" = (U5,93)" = (25,97) -
The set © is an open, bounded, convex subset of R*. We suppose, of course, that the
positions of the detectors are all different. We suppose as well that a position of a source
does not coincide with a position of a detector.

The sources start emitting at the moment ¢ = 0. The k-th detector records a realization
X = (Xk(t), 0 <t <T) of an inhomogeneous Poisson process of intensity function

Men(0,1) = nS1p (0 1) + nSo (9P 8) +nXo,  0<t<T,

where n)\g > 0 is the intensity of the Poisson noise and n.S; (9%, t) is the signal recorded
from the i-th source, © = 1,2. We suppose that the recorded signals have the following
structure

Six(WD,8) = (t — 7 (9D)) Sk (1), (1)

where S; x(t) > 0 is a bounded function and 73, (")) is the time of the arrival of the signal
from the ¢-th source to the k-th detector, i.e.,

1/2
Y

(%) = v D = Silly = v (|l — 2 + |y — yil?) =12,

and v > 0 is the rate of the propagation of the signals. Here and in the sequel, we denote
||l and |||, the Euclidean norms in R? and R* respectively.

The function (-) describes the fronts of the signals. As in our preceding works (see,
e.g., [4]) we take
s

5 Tio<s<sy + Mpsssy,s

¥(s) = |




where 0 > 0 and the parameter x > 0 describes the regularity of the statistical problem.
Ifk > %, we have a regular statistical experiment, if xk € (O, %), we have a singularity of cusp
type, and if kK = 0, the intensity is a discontinuous function and we have a change-point
model. The examples of these three cases are given in Fig. 2, where we put nS;x(t) = 2,
nho=1landa) k=1,b) k=1/4,¢c) Kk =0.

a) b) c)
Figure 2: Intensities with three types of fronts of arriving signals

Note that ¥(s) = 0 for s < 0, and therefore for ¢ < 7, (91) A 7,(9®) the intensity
function is Mg, (9,t) = nXg. According to the form of the intensity function, all the

information concerning the positions of the sources is clearly contained in the moments of
arrival 7,(99), i =1,2, k=1,..., K.

We are interested in the situation where the errors of estimation are small. In the prob-
lem of localization it is natural to suppose that the registered intensities take large values.
Therefore we study the properties of the estimators of the positions in the asymptotics of
large intensities, that is why we introduce in the intensity functions the factor n and the
asymptotics corresponds to the limit n — oo. In Section 3 we explain that the condition
K > 4 is necessary for the existence of consistent estimators.

2.2 Maximum likelihood and Bayesian estimators

As the intensity functions Ay, (-) are bounded and separated from zero, the measures P( )
Y € O, induced by the observations X* = (Xi,..., Xx) on the space of the reahzatlons
are equivalent, and the likelihood ratio function is

A (0, 1)
(19 XK _exp{Z/ kn)\o ka Z/ )\kn 1915 —n)\o]dt} ¥ eo

The MLE ¥,, and the BEs for quadratic loss function 9, are defined by the usual



relations

K
L(0,, X*) = sup L(9, X*), g, = Jo9p(0)L(9, X )d197
veo Jop(9)L(9, X5) dv

where p(9), ¥ € ©, is a strictly positive and continuous a priori density of the (random)
parameter 9.

2.2.1 Smooth fronts

First we consider the regular case in a slightly different setup, which can be seen as more
general. The intensities of the observed processes are supposed to be

Ao (9,1) = 081, (9W 1) + 1Sy 1 (9P 1) + nXg = nA, (9, 1), 0<t<T,

where (¥, t) is defined by the last equality and S; (99, 1) = s;4(t — (7)), i = 1,2,
k=1,... K.

For the derivatives we have the expressions
/
Tk — Xy 1

0511 (t — T (VWY
Sl’k( 7k( )) = 1/_15’17,C (t - Tk(ﬁ(l))) =v 8, (t — Tk(ﬁ(l))) cos(aq k),
ot P1k

where py, = ||Dy — S1l|, and cos(a ) = (2 — :E’l)pl_,lg Similarly, we obtain

(3817]C (t - Tk(ﬁ(l)))
00U

= 1/_15'1’,C (t — Tk(ﬂ(l))) sin(ay i)

and, of course, we have 0s; /003 = 0s1,/00, = 0. Let us recall here that we use the
notations ¥ = (9, 9T 90 = (9;,9,)" and ¥ = (¥3,94)". For dsy;/093 and
0s21/0V, we obtain similar expressions:

88271€ (t — Tk(ﬁ(z)))
6193

8827]6 (t — Tk(ﬁ@)))
6194

= vl (t = m(9?)) cos(agy),

= 1/_13’27/,€ (t - Tk(ﬁ@))) sin(ag ).

Let us now introduce the two vectors my = my,(91)) = ((:os(c)q,k),sin((Jsz))T and
Mo g = Mo p(V?)) = (COS(O&27k),SiH(CY27k))T. We have ||m; k||, =1, i = 1,2. We will several
times use the expansion (below uV) = (uy,uy) ", u® = (us,uy)" and ¢, — 0)

(W5 + 1) = (W) = vHm g, uV) ou + O(2),
where m?, = m@k(ﬁ‘g)) = (cos(aj’vk),sin(a‘ik))t

bt



For simplicity of exposition we will sometimes use the notations 7y, = (1)) and
T27k = Tk(ﬁ@))

The Fisher information matrix is

K
T 30, 8) A (0, 8)7
= dt.

Here and in the sequel dot means derivative w.r.t. 9. The elements of this matrix have the
following expressions

s'? k (t — 71x) cos (oq,k)
= dt
i z N xRl

(t .
1o = Z/ 317,C T11) cos(aq ) sin(aq k) "

1 V2)‘k<197 t) ’
1) K S/Lk(t — T1k) S’M(t — To i) cos(av i) cos(a k) "
B V2A(0,1) ’
k=1 T1 k\/TQ k k 9
_ Z/ s k (t —Tik) 52 o (T — To ) cos(aq ) sin(as k) "
14 T1L,EVT2 & 2)‘k (197 t) .

The other terms can be written in a similar way.

The regularity conditions are:
Conditions Z.

. Foralli=1,2and k=1,... K, the functions s,;(t) =0 for t <0 and s;;(t) >0
for t > 0.

Hy. The functions s; () € C?, i =1,2, k=1,..., K. The set © C R* is open, bounded
and convex.

Hs. The Fisher information matriz is uniformly non degenerate

inf inf e' I(¥)e >0,
€O efl,=1

where e € R2.

Ry. (Identifiability) For any € > 0, we have

K T
inf inf / [S1 5 (0D 1) + So k(9P 1) — Sy (95, £) — S, (957, 4)]* dt > 0.
0

Yo€O ||[9—"9¢||,>¢€
0€O [[9—doll,>= £



Let us note that in the setup of this section, the identifiability condition rewrites as
follows:
K

T
2
inf inf S1p(t—T1g)+Sop(t—Tog) —s1x(t—7{4) —Sox(t—T75 dt >0, (2
it S [ [l ma st —sali=r) —saalt=r]" a2 0. (2
where 77, = Tk(ﬁ((]i)>, i=1,2.

It can be shown that if the conditions %,-%3 are fulfilled, the family of measures
(Pf;l), 1 € ©) is locally asymptotically normal (LAN) (see Lemma 2.1 of [14]), and therefore
we have the Hajek-Le Cam’s lower bound on the risks of an arbitrary estimator 9,, (see,

e.g., [11])
lim lim sup nEy|d, — 79||i > By, <13, ¢~ N(0,1(99)71). (3)

€20 nooo [9—vo| <e

The asymptotically efficient estimator is defined as an estimator for which there is equality
in the inequality (3) for all ¥, € ©.

Theorem 1. Let the conditions % be fulfilled. Then, uniformly on compacts K C ©, the
MLE 9, and the BEs 1,, are consistent and asymptotically normal:

\/ﬁ(@n_ﬁﬂ):}g7 \/ﬁ(rg)n_190):><=7
the polynomial moments converge: for any p > 0, it holds
2 By [0n — dolly = EoglICI, 0P By [10n — dolly — EuylICII,

and both the MLE and the BFEs are asymptotically efficient.

Proof. This theorem is a particular case of Theorems 2.4 and 2.5 of [14] (see as well [13]).
Note that the model of observations with large intensity asymptotics is equivalent to the
model of n — oo independent identically distributed inhomogeneous Poisson processes. To
verify the condition B4 of the Theorem 2.4, for ||J — ¥y||, < € and sufficiently small € > 0
we can write

S [ [VAGD — VRG] dt = § 000 100) (0 - 90) (1 0(e)

(4)
1 1
> 3 (9 — o) " 1(o) (9 — o) = 3 19 — oll3 " L(Wo) e = ra |9 — Do|7-

Here we used the condition 5.

For || — ||, = €, we have

i/OT[\/Ak(ﬁ,t)— \/Ak(ﬂo,t)rdt:i/j | (@, 8) = Mo, 1)) L

e i/T D0, ) — Ae(00, )] dt

7



K T
[e] o] 2
> C Z/ [st(t —Tig) + Sop(t — Tog) — s1x(t — Tl,k> — s1(t — Tl,k>] dt
k=10
> Cy(e).

Here we used the boundedness of the functions \;(¢,¢) and denoted g(e) > 0 the left hand
side of (2). Let us denote D(0) = supy jee [ — J||,- Then we have

;/0 VD) \/)\k(ﬁo,t)}zdt > Cg(e) > Cyle) % > olld— Dol ()

The estimates (4) and (5) can be joined in

K T 9
S [ (VR - VAD)] dt > w0 - ool (5
k=10
where K = k1 A ko. Now B4 follows from (6). O

2.2.2 Cusp type fronts

Let us now turn to the intensity function with cusp-type singularity. Suppose that the
observed Poisson processes X% = (X,(t), 0 < t < T, k = 1,...,K) have intensity
functions

)\k,n(ﬁa t) = nwﬁ,g(t — 7'1,].3)517k(t) + n¢575(t — 7'27k)527k(t) + n)\g = n)\k(ﬁ, t), (7)

where k € (0, %) and

t—Ti K .
Vealt = 7ia) = |2 Tty + Tporsnyy i=12 k=1 K (8)

Note that the intensity function of the Poisson process recorded by one detector has
two cusp-type singularities. An example of such an intensity function is given in Fig. 3.

Recall that

v[r (@) = 7))
= [(wr — 2§ —wipn)® + (e — 91 — u0)?] """ = [ — 2F)2 + (g — 1))
= (/)l,k — U1Pn COS@‘?,I@) — U2¥Pn Sin(acl),k)) (1 + O(Son)) — PLk
= _<u(1)> mik> Pn (1 + O(@n))

1/2

and v[7,(00) — (W5)] = —(u®,m3,) ou (1 + Op)).



Figure 3: Intensity with two cusp type singularities

Introduce the notations

Bix = (u(i) : <mf’k,u(i)> < 0), B\ = (u(i) : (mf’k,u(i)) > O), i=1,2,
Lip(u®) =Ty / [|v + v u,mg ) st o me ) — v“ﬂ{wo}} AW, x(v),
. ,
r — S%k(Tzok) 2 — S%k(Tzok)
Lk 52k )\k(%’ Tzok) 2R+ 2,k 52K )\k(ﬁO»Tﬁk) p2r+17

. S1a(Tr) . So k(T %)

Fl,k == s F2,k = 5
5”1 /)\k(ﬁo,Tsk) 5”1 /)\k(ﬁo,Tzk)

K K 2
Qi = / UU — 1| ]1{021} — v ]I{v>0}] dl),
R

=N A i ngCf i 2k+1
Ziy (u) = exp (Z {rk L (u) — ZHE8 | ) e ] D :

—1 2
£ _ JriuZ(@du
Z(u)—HZ(k)(u)’ $= Jra Z(u)du

(9)

(10)

Here W;x(v), v € R, i = 1,2 are two-sided Wiener processes, i.e., W;(v) = W (v), v >0,

and W, x(v) = W;,.(—v), v < 0, where W (-) are independent Wiener processes.
Conditions € .

¢). The intensities of the observed processes are given by (7)—(8), where the functions

Sik(y) € Ct and are positive.

@5. The configuration of the detectors and the set © are such that all signals from the both

sources arrive at the detectors during the period [0,T].

9



©s5. The condition Z4 is fulfilled.

We have the following lower bound on the risks of an arbitrary estimator 1J,, of the positions
of sources: , B
lim lim  sup nz1 Ey|d, — 19||421 > E,90||§||i.

£70 nooo |9—vo,<e

This bound is a particular case of a more general bound given in Theorem 1.9.1
of [11].

Theorem 2. Let the conditions € be fulfilled. Then, uniformly on compacts K C O, the
BFEs 9, are consistent, converge in distribution.:

RT{H (én - 190) — 57
the polynomial moments converge: for any p > 0, it holds

lim ner Eﬂ||19 —190”4 Eq, €115,

n—oo

and the BEs are asymptotically efficient.

Proof. Let us study the normalized likelihood ratio
L(190 + UPn, XK)
L(d, XK) 7

Zn(u) = Z90) (u) = ueU, = (u:do+up, €0),

where ¢, = n~2+1, The properties of Z,(-) which we need are described in the following
three lemmas.

Lemma 1. For any compact K C O, the finite-dimensional distributions of Z,(-) converge,
uniformly on ¥y € O, to the finite-dimensional distributions of Z(-).

Proof. Put v, = ¥y + upn, Y 19 ) 4 ), and 9P = 19(2) +uPyp,. For a fixed u
denote 7, = supyc;<r A(Yo, t) 1|)\k ﬁu,t) — M (Yo, )‘ and note that v, — 0 as n — oo.
Therefore, by Lemma 1.5 of [16], the likelihood ratio admits the representation

In Z,( Z/ Ai( 19“,)\?; 190’)\1@)(190,0 [dX5(¢) — Xe(Do, 1) dt] (1 + O(yn))

n & [\ (Da, Ak (Do, ?
-2 kz/ ;Z<007t§ )] dt(1 + O()).

Suppose that 77, < 75, and set 27 = 77, + 75,. Then the second integral can be written
as

T (0 t) = (0o, 1))
/ Nt
7 @) = M(00,1)] T [Ae(0us £) = M0, )]
-/ Mot / Moot

10



. ([%75 (t — 7)) =5 (t — 701)] Sp(t) + Ap(Pu, Do, t))2
_ / dt

Ae(Uo, 1)
2
7 (Be(@uydo,t) + [ (t = 0)) = st = 75,)] S2(0))
+ / (00 0) dt
= Jl,k,n(u(l)) + J2,k,n(u(2)) (11)

with obvious notations. Note that for ¢ € [0, 7] the function Ag(¥,vy,t) have bounded
derivatives w.r.t. ¥, and that for ¢ € [7,T] the same is true for the function By (9, Vo, 1).

Suppose that u") € By ;. Then for large n we have Tk(ﬁg)) > 77, and therefore

Tipn(@®) = n/f; <[¢&5 (t = m(@3)) - wﬁj\;:t(%;l;k)]&k@) + Ak(ﬁuﬂ%))z U
- / ([t - Tkwmi ,;ﬁfi)(t —lsu®) "
» / ([t - mwgn);(;f:)s - zf;)(sﬂ S ) “
N /0 (s (s + 07! M),:f(,;z ’ini;ff;,a(s)} Sials +75)) .

S2(re) [ e
=n 5 — s dt
0% e (Yo, 7x) Lo

T_Tf,k P 2
+/ [Is+ 07 (@m0 gl = 57] d’f] +o(1)

2k+1 2 (1) , o \|2k+1 ' 2k “ln K x]2
= npy T T [(Wmi )| v du + [Jv— 1" =] *dv| + o(1)
0 1
2k+1 o 2
= Fik ‘(u(l)’ mik>| / [|U - 1|"C ]I{v>1} — 'UK] dv + 0(1)
0

° 2r+1
=2 [ ms ) [T Q% + o(1), (12)

where we changed the variable s = —v~! (u), mg ) v and used the relation ne2* ' = 1
and the notations (9) and (10).

For the values u® e B2 r we have a similar expression
° 2k+1
J2,k,n(u(2)) = Fg,k ‘<U(2)a mz,k>| Q2 +o(1).
If u® € Bf x and ul? € BS ., then similar calculations lead to the same integrals.

11



Hence

/T (B t) — A0, )]
; Ae(Uo, 1)

° 2k+1 ° 2k+1
dt = (1% (g "+ T, |, mg ) [ Q2 + 0(1).

Let us suppose that Tk(ﬁ(()l) +uMe,) > 7. Introduce the centered Poisson process

dmpn(t) = dXk(t) — Aen (U0, t) dt and consider the stochastic integral

T [Nen (s t) = A (D0, 1)]
/0 e (Do, ) At (1)
= 7 Deluet) ~ Ael0o 1) " Daldst) = Ml 1)
B / Ak (Yo, 1) hall) / Xi(Do, 1) A1)

= ]l,k,n(u(l)) + ]2,k,n(u(2))7

where 27 = 7,(0%") + G

Using the same relations as above, for MO B, x we can write

]1,k,n (u(1)>
[ Dot 00k ) St} 75
0

)\k(ﬁo, s+ Tf,k)

Str(Tik) [/_”1 (u®mg ) n
= 2" s"dmg (s + 77
or )\k(?9077—ik) 0 ol 1’k>

dﬂ'k’n(t) + 0(1)

T*Tf,k "
+ / [|3 + vt <u(1), mi ) gpn| — s“] dmgn(s + Tfk)} +o(1)

—v=t <u(1>7m§’k> Pn

N c/en "
=T {/ DU + vt (u(l), m‘l’kﬂ | P (W me )} — v”} dlek,n(v)} + o(1).
0 :

Here we changed the variable s = vy, used the relation /n @ZH/ > =1 and denoted

T (Von + 70 k) = T (T04)

Wl,k,n(v) =
\/WPnAk(ﬁo’ Tf,k)

This process has the following first two moments: Ey W 4, (v) =0,

1 77 Hoen
EﬂOWI,k,n(U)Q = W/ >\k(1907 t) dt = U(l + 0(1)),
n VLK) ST,
1 Tf’k—&-(vl/\vg)gon
Eﬁowl’k’n(vl)WLk’n(Ug) = m / /\k(ﬁo, t) dt = (Ul VAN 1)2)(1 + 0(1))
n » 11,k Tlo,k

12



By the central limit theorem (see, e.g., Theorem 1.2 of [14])
1 i o/ion 1,1 K
L (uV) = Pl,k/ [’v + vt (u), mikﬂ Wy pt ume )y — v”‘] AW jn ()
0 ,

—— f17k/ |:|U + Vfl <u(1)’ mcl)’k> }H H{u}—u—l(u(l),mi’ O T UK] dWlth@))
0 )
=T Li(u®),

where Wfr L(v), v > 0, is a standard Wiener process. A similar limit for the integral
Iy 1., (u?) can be obtained in the same way.

Suppose that u? € Bs . ie., (u@),mg’k) > 0. Then

Lojn(u®) = fQ,k/

—y—1 <u(2),mg &)

c/en
Dv +v7 (w® mg )| — o ]1{@0}} dWa e (v)

— Ty [ [Jo+ 57 w5 D" = 0" sy | AW (0)

v () mg,,)

= fZ,k IQ,k(U@))’

Therefore we obtain
T X0y, t) — Mi(Do, t
i Zpio) = [ SO0 ),
Ak (Yo, t)

n T (0 t) = Mo, )]
_5/0 e (Yo, t)

F% sz ° 2k+1
D@ 0, )

o F2 Qi 2K
+ Do Ipp(u®) — 2’; ‘<U(2),m§,k>| o

dt + o(1)

— fl,k Il,k(u(l)) —

=InZ (k) (u)
The Wiener processes W; x(-), i =1,2, k =1,..., K, are independent and this convergence
provides the convergence of one-dimensional distributions

Zn(u) = Z(u) = [ [ Zuy(w), ue R

The convergence of finite-dimensional distributions can be proved following the same
lines, but we omit it since it is too cumbersome and does not use new ideas or tools. [l

Lemma 2. There exists a constant C' > 0 such that for any L > 0, it holds

sup By | Zn (1) = Zu ()2 < O (1+ L2 [lu — o'},
u|<L

13



Proof. By Lemma 1.5 of [14], we have

2

K T
Elg()‘Zn(u)l/Q — Zn<u/)1/2’2 < Z [ /\kz,n(ﬁuaw - \/)\k,n(ﬁu’7t):| dt

B

Il

—
=

. (13)
< CnZ/ (Vs ) = Ae(Dr, )] .

Note that the parts of integrals in (11) containing differentiable functions Ay (d,, ¥y, t)
and By(U,, Yo, t) have estimates like

| TG B0t) = Au(ur 90, 0] dt < Cagl = = €™ fu |
0
Therefore, following (12), we obtain the relations

Z/O e (s t) = Me(Wr, )] dlt

C <||u(1) _ u/(1)||1+2"‘_,_”u(2) _ uz(z)H;“’*) O |y — U/”Z

N

2

Cllu =o'+ Cn 2 lu — |

142k

<
SO+ L7 Jlu— |,

Lemma 3. There exist ¢, > 0 such that

2k+1

Py, (ZT(u) > e—c*nun?f“) < ool
Proof. By the same Lemma 1.5 of [14], we have

2k+1 2k+1

Py, (Zr(u) > e ) < 51T By, 7, ()12

K T 2
_ Cx 2k+1 1 /

Using calculations similar to those of (11) and (12), we obtain for ||J, — Jy||, < ¢ and
sufficiently small € > 0 the estimate

K T 2
>/ (wk,nwu,t)—m,nwu,w) dt > e [lul{**,
k=10

14



Consider now the case ||}, — U], > €. Let us denote

K
gle) = inf EZ/[&AN £) + Sop(0P, 1) — S (057, 1) — So (957, 1)]" dt
0

J—Io||,>e
l9—dolls>e £

and remark that ¢, [Jul|, < D = sup_ |9 —||,. Hence n > D=C+D|jy|| 71 As g(e) > 0
we can write vo'e

Z/ (W e 19u,t))2dt
CZ / e (s 1) = Ae (90, 1)) it
k=10

> eng(e) 2 eg(e) D™ Jullf = e [lull ;"

Finally, denoting ¢ = ¢; A ¢z and setting ¢, = ¢/3, we obtain

Cx || 2~ = Z/ <\/)\kn Dy, t) — \/)\,m D, t ) dt < —c, |lull3*.

]

The properties of the process Z,(-) established in Lemmas 1-3 allow us to cite Theo-
rem 1.10.2 of [11] and, therefore, to obtain the properties of BEs stated in Theorem 2. [

2.2.3 Change point type fronts

Suppose that the intensity functions of the observed inhomogeneous Poisson processes have
jumps at the moments of arrival of the signals, i.e., the intensities are

/\k,n(ﬁ, t) = n]l{t>7_k(79(1))}51’]€<t) + n]I{t>Tk(19(2))}Sg7k(t) + n)\o = n)\k(ﬁ, t), (14)
where () t<T,k=1,...,K. As before, ¥ = (9, 9®)T € O, where 91 = (9,,9,) =

i, y)) T (position of the source S;) and 9 = (¥5,9,)7 = (24, ,)" (position of the
LY 2: Y2
source Sy), and

7 (®?) = v (2 — )% + (e — %) = 7

15



Introduce the notations

o . .
lir=Inl——— ), Bip=(u: @ md)<0),i=12 k=1,..., K,
k H(Si7k<7'ic:k) +)\0> k (U <U z7k> ) 7

2
Zgo () = exp (Z in o (=7 W) = e v (7 | T,
=1
2

- Z [ﬁi,k xi_,k(_y_l (U(i)7 mfk;)) - <U(i)a m?k> v! Slk(Tzok):| ]Ing> )

i=1
K
Jraw Z(u) du
2(w) = [ 2 (w). g Jpe 2t du
kl:[l () Ja Z(u) du
Here 4
xz—'i,_k(_y_l <u(Z)7 m;?,k>) = y;:k(S)s:_,,—l <u(i),mf’k)7 S 2 Oa

where y:r +(s), s >0, is a Poisson process with unit intensity. Similarly
xi_,k(_y_l <u(Z)’ m?,k>) = yi_,k:(_8>S=1/*1 (u(i),mikw S < 07

with another Poisson process y; ;.(s), s > 0 with unit intensity. All Poisson processes yfk(s),
s=>0,1=1,2, k=1,..., K are independent.

Conditions 9.

D,. The intensities of the observed processes are (14), where the functions S;1(y) € C*
and are positive. The set © C R* is open, bounded and convex.

Dy. The configuration of the detectors and the set © are such that the signals from the
both sources arrive at the detectors during the period [0, T).

P3. The condition Z, is fulfilled.

The following lower bound

lim lim sup n®Ey||d, — ﬁ”i > E%HUHZ
=0 nooo ||9—d0||<e

holds. This bound is another particular case of Theorem 1.9.1 of [11].

Theorem 3. Let the conditions 2 be fulfilled. Then, uniformly on compacts K C ©, the
BFEs 9, are consistent, converge in distribution:

n (én - 190) =1,
the polynomial moments converge: for any p > 0, it holds
= P
n? By [[0n — dolly — Eao[|nll3,

and the BEs are asymptotically efficient.
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Proof. The normalized likelihood ratio function in this problem is given by

In Z,(u) = In 20 (u)

— Z/ 19;0;&? )u ) dX(t) — n;/() [Me(9o +n s t) — Ae(9o, £)] dt.

We have to check once more the conditions of Theorem 1.10.1 of [11] and to prove three
lemmas.

Lemma 4. For any compact K C O, the finite-dimensional distributions of Z,(-) converge,

uniformly on ¥y € O, to the finite-dimensional distributions of Z(-).

Proof. Let us set ¥, = U9 + n~'u and suppose that u(!) € B, and u® e Byx. For m
sufficiently large we have Tk<19( )) > 77, and Tk<19( )) > Ty > Tk(ﬂ( )), and so

T () (%)
A (0, 1) / ( Ao / Ao
In 222 4x n—"% dx n—"% _dx
/0 (Yo, t) +lf) = 7, S1(t) + Ao «(t)+ 7 Sax(t) + Ao «(®)

and

T 71,k (Vu) 72,k (D)
/ [N (Pus t) = Ai(Do, t)] dt = —/ Sy (t)dt — / Sy k(1) dt.
0 T T

1,%(J0) 2,k(Y0)

For a fixed u, using Taylor expansion we can write (recall that 77, = Tk(ﬁ(()i)), i=1,2)
) 1 ey
[ suwdi= (o) - m) sueo vy [ s
Tk Lk
—(nv) ™ (@ mi ) Sui(ry) (1+0(n™)
and

W)
/ Sy (t) dt = —(nv) ™! (u®, m3 ) Sa(5 ) (1+ O(n™)).

o
2,k

For stochastic integrals, similar calculations provide

) o \
In—"0  dx In—" (X (e (D)) — Xu(7° )] (1 + O(n™Y)).
/rfyk S1u(t) + Ao (1) = S1e(T74) + Ao [ k( k(W )) ( lk)]( ( ))

Further

X (WD) = Xp(r54) = X (5 — n~ v M ™ ms 1)) — X(r04)
+ X (Tk(ﬁg))) — X (Tlok — n’lu’1<u(1), m‘fk))
= ﬁrk( v 1<u(1)amik>) +0(n™'?).
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Here 27, (=" (u™,m3 ) ) = Xi (0 —n v M, ms ) — Xy (77,.) is a Poisson random

process and the last estimate was obtained as follows:
o -1, — o 2
Ey, [Xk (Tk(ﬁul))) — X (TLk —n v 1<u(1), m17k>)}

Tfﬂk—n*%/’l(u(l),m‘l”k) Tik—n’11/’1<u(1),m‘1’7k> 2
7 (04)) 7 (04)

C
<=,
n

Hence, if u¥ € By and u® € By, it holds

T -1
Ae(Do + 1~ u, t) < o ) -
In "AX. (D) =ln| — )t (=p! u(l)’mo
/0 Ak (Yo, 1) k(?) Sl,k(Tik) + Ao Lk( < 1k>)

Ao ) _ _
+In| —2— ) ot (= Hu®,mS ) + O(n?).
(s sl 0 msa) + 067

If u € BS , and u'® € B, we have

h\ $1,k(_’/_1<u(1)7 mik))
0

T -1
/ n /\k(ﬁo +n u, t)
0

0T AX4(t) = ln<1 +

Sor(5p)\ - o .
P o ) + O ),

Sl,k(Tf,k)) _

-I—ln(l +

Lemma 5. There exists a constant C' > 0 such that
By | Zo(u)/? = Z,(u)?|" < Clu— /|,

Proof. We have (see (13))
K

T
sup oy Zu(u)!* = Zy(!) PP < Yo [ a0 ) = M0 0] .
k=1 Y0

JoeK

Suppose that (95" > Tk(ﬁf},)) and 7,(0%)) > Tk(ﬁ‘f,)) > 7(9M). Then

T 2
" /0 [Slv’“(t) H{m(ﬁ(%))gtm(ﬁ&”)}+S2v’“<t) ]I{Tk(ﬁ(zz))été‘rk(ﬂf))}] dt

(98 (0)
= n/ S?Z, () dt+n/ S3 () dt
@) ’
< Cn(r(WP) — m.(0 1,))) + On(m,(0P) — Tk(ﬁff,)))

u
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N

C’(‘(U'(l) —u,mS )|+ [ —u®, m;k>|>

O™ = u®y + [[u® = u®],) < Clu’ — ull,.

Lemma 6. There exists a constant k > 0 such that
Eﬁozn(u)l/2 < e rllulls,

Proof. We have

K T 2
1 /
In EﬂOZn(U)l/Q — —5 E / |: )\k,n(ﬁua t) — Ak,n(7907t):| dt
k=170

T
<-C Mo (0, 8) — Mo (90, )] dt.
> [N (Pus 1) = A (90, 1)
k=1"0

=

Suppose that 7,(9%) > T Tog > Tk(&(})) and [|Y, — 190H4 < e. Then

T
/ [)\k’,n (ﬁqm t) - >\k7n<190, t)} 2 dt
0

T 2
Z C”/O [Slvk(t) H{Tf7k<t<7k(ﬂ5t1))} + Sk(t) ]I{Tg,k<t<fk(q9;2))}} dt

T (05) 7 (0%)
> cnU Ste(®) dt+/ S3,(t) dt}

TQO,k
> enfr(00) - 755+ T(00) — 73]
> c[—(u, mi ) — (u®, mgk)}

_<U(1)»m1,k> - <U(2)7m§,k>

lull, = = V2 e, my) fJull,-

Here —(e, my) > 0 and the vectors are

e U lell, = 1 mk:(ﬂ:k—x’f Yk — Y Tk — Ty yk—y§°> [Jmll, =1
lully” ! 7 V2o T V2 T V20 V20 ) !
Note that .
inf —(e,mg)) =¢c > 0.
|e|41,;( fe.ms))

(o]

Indeed, if for some e we have ¢ = 0, then all scalar products (u(i),mw) =0,7=1,2,
k=1,..., K, but such configuration of detectors is impossible.
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Let ||, — Y|, > €. Then as in the proof of Lemma 3 we obtain the estimate

K T
> / Moo (W t) = MW, 1))t = ng(e) = D7 ull, = & Jul],.
k=10

Therefore
K T 2
Z/ {\/Ak,n(ﬁu,t) - \/)\km(ﬁo,t)] dt > 2s ||ul],,
k=170
with a corresponding x > 0. [

Once more, according to Theorem 1.10.2 of [11], the properties of the normalized like-
lihood ratio Z,(+) established in Lemmas 4-6 provide us the properties of the BEs stated
in Theorem 3. O]

3 On identifiability

Recall that we consider the situation where K € N* detectors Dy,...,Dg € R? receive
signals from two sources S;,S, € R?. In this section we make no distinction between
detectors/sources and their positions, and we suppose that the two signals received by a
detector are identical, i.e., we have Sy x(-) = Sox(-) = Sk() in the right hand side of (1),
and so the signals recorded by the k-th detector are

Sip(0D,8) = ¥(t — i) Sk(t), i=1,2.

Considering the identifiability condition Z#,, we can see that if for some 9 € © and
some ¢ > 0 satisfying || — ||, = ¢ > 0 we have

2

3 / [0(t — 1) Selt) + (¢t — 7o) Selt) — D(t — 78) Selt) — D(t — 75) Se(t)]*dt = 0,
k=170

then, taking into account that S(¢) > 0 and that ¢(¢) = 0 for t < 0 and ¥(t) # 0 for t > 0,
we should have (for each k) either

o) (e}
Tik = Tig and Ty = Tok
or
o o)
Tik = Tok and Toy = T k-

Of course, in such situation the consistent estimation is impossible, because for two different
values of the unknown parameter we have the same statistical model.

We see that the question of identifiability is reduced to the following one: when having
the distances from each detector to the two sources (without knowing which distance corre-
sponds to which source) is it possible to find 92 So, the system will be identifiable if and

20



only if there exist no two different pairs of sources providing the same K pairs of distances
to the detectors.

We introduce the following definition.

Definition 1. We say that n € N* points A, ..., A, € R? “lay on a cross” if there exist
a pair of orthogonal lines {1 and {5 such that A; € L1 Uly forall i=1,...,n.

Now we can state the theorem providing a necessary and sufficient condition for iden-
tifiability.

Theorem 4. A sufficient condition for a system with K detectors to be identifiable is that
the detectors do not lay on a cross.

In absence of restrictions on the positions of the sources (i.e., if we could suppose
that © = R*) this condition would be also necessary.

Before proving this theorem, let us note that at least 4 detectors are necessary for the
system to be identifiable. Indeed, any three detectors Dy, Ds, D3 lay on a cross (take, for

example, the line i:_)l D, and the perpendicular to this line passing by Ds).

Note also that 4 detectors do not lay on a cross if (and only if) they are in general
linear position (any 3 of them are not aligned) and cannot be split in two pairs such that
the lines passing by these pairs are orthogonal.

Finally, note that if 5 (or more) detectors are in general linear position, then they
necessarily do not lay on a cross (and hence the system is identifiable). Indeed, if they laid
on a cross, at least one of the lines forming the cross would contain at least three of them,
and so, they would not be in general linear position.

Proof. Note that if the system is identifiable with © = R*, it will be also identifiable
with any © C R* So we can suppose © = R* and reformulate the theorem using the
contrapositions as follows: the detectors Dy, ...,Dg lay on a cross if and only if there exist
two different pairs of sources providing the same K pairs of distances to them.

In order to show the necessity, we suppose that the detectors Dq,...,Dg lay on a cross
formed by a pair of orthogonal line ¢; and /5, and we need to find two different pairs of
sources {S1,Ss} and {S], S,} providing the same K pairs of distances to the detectors.

Let us denote O the point of intersection of ¢; and /5, take an arbitrary point S; not
belonging to neither ¢;, nor ¢y, and denote S, S, and S, the points symmetric to S; with
respect to £1, f and O respectively (see Fig. 4).

Then, clearly, the pairs of sources {S;, Sy} and {S},S,} provide the same pair of dis-
tances to any point of a cross, and hence the same K pairs of distances to the detec-
tors Dy, ..., Dk.

Now we turn to the proof of the sufficiency. We suppose that two different pairs
of sources {Sy,S.} and {S|,S,} provide the same K pairs of distances to the detec-
tors Dy,...,Dg, and we need to show that the detectors lay on a cross.
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Figure 4: Non identifiability for detectors laying on a cross

We need to distinguish several cases.

If in one of the two pairs the sources are located at the same point (say S; = Sg), then
at least one of the points S| and S}, (say S}) must be different from S; and Sy (see the left
picture in Fig. 5). Then, if our two pairs of sources provide the same pair of distances to
a point D, we should have, in particular, p(D,S;) = p(D, S}), and hence D € bs,s;,. Here
and in the sequel, we denote p the Euclidean distance, and for any two distinct points A
and B, we denote byp the perpendicular bisector of the segment AB. Therefore, all the
detectors must belong to the line bs;s; (and, in particular, they lay on a cross).

Figure 5: Cases with coinciding sources

So, from now on, we can suppose that S; # Sy and S} # Si.

Now we consider the case when the two pairs of sources have a point in common
(say S; = S). Note that in this case, we must have Sy # S, since otherwise the pairs of
sources will not be different (see the left picture in Fig. 5). Then, our two pairs of sources
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provide the same pair of distances to a point D if and only if p(D,Ss) = p(D, S},), which
is equivalent to D € bs,s;. Therefore, all the detectors must belong to the line bs,s; (and,
in particular, they lay on a cross).

So, from now on, we can suppose that the points S;, Sy, S/, S}, are all different. In this
case, our two pairs of sources provide the same pair of distances to a point D if and only
if D belongs at the same time either to the pair of lines bs;s; and bs,s;, or to the pair of
lines bs, s, and bs,s; (otherwise speaking, if and only if D € (bs,s; Nbs,s;) U (bs,s, Nbs,s: ))
We need again to distinguish several (sub)cases depending on whether the lines in each of
these pairs coincide or not.

First we suppose that bs;s; # bs,s; and bs;s; # bs,s: (see the left picture in Fig. 6).
Then each of these pairs of lines meet in at most one point. So, all the detectors must
belong to a set consisting of at most two points (and, therefore, there is at most two
detectors and they trivially lay on a cross).

Sy St Sy S
R | =
/ \ | 1
1 . \ \
I \ I I
1 \ I I
I \ b ! |
\ b / .lelSé ’I | S2S/_ : :
! 8251 TTeesll A wi--"T Lol N I K N A
e ~-a - | |
________ peem Tl bsisy = s |
o il ’/ ‘\ i : :
! \ I I
! \ l |
I’ \ | |
\ | |
N u ] =
SQ Sé 52 Sé SZ
bs,s; = bs,s; bs,s; = bs,s;

Figure 6: Cases without coinciding sources

Now we suppose that the lines coincide in one of the pairs, and not in the other
(say bs,s; = bs,s;, and bs;s; # bs,s;). Note that in this case, the points S; and S, as
well as the points Sy and S, are symmetric with respect to the line bs;s;, and hence the
lines bs,s, and bs,s; either do not meet, or meet in a point belonging to bs,s (see the
middle picture in Fig. 6). So, finally all the detectors must belong to the line bs s (and,
in particular, they lay on a cross).

It remains to consider the case when bs,;s; = bs,s, and bss; = bs,s; (see the right

picture in Fig. 6). In this case, as the segments S; S} and S,S), have a common perpendicular
bisector, they must, in particular, be parallel (including the case where they lay on a same
line). The same reasoning applies to the segments S;S}, and S,S). Now, the case when the
points Sy, S/, Sy, S, lay on a same line is impossible, since these points being all different, we
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clearly can not have common perpendicular bisectors at the same time for S;S/ and S,S,
and for S;S, and S,S;. Thus, S;S/S,S, is a parallelogram. Moreover, as its opposite
sides have common perpendicular bisectors, S$;S]S,S), is necessarily a rectangle. But in
this case, the perpendicular bisectors bs,s; and bs,s, are orthogonal. Hence, as all the
detectors belong to bs,s; U bs,s;, they lay again on a cross. O

4 Discussions

The considered models in the cases of cusp and change-point singularities can be easily
generalized to the models with signals s; (t — Ty (19)) The proofs will be more cumbersome
but the rates and the limit distributions of the studied estimators will be the same.

Remark that the same mathematical models are used in the applications related to the
detection of weak optical signals from two sources.

Of course, it will be interesting to see the conditions of identifiability in the situation
where the beginning of the emissions of these sources are unknown and have to be estimated
together with the positions. In the case of one source such problem was discussed in the
work [4].

All useful information about the position of sources, according to the statements of
this work, is contained in the times of arrival of the signals 7y ;(¥), 2 x(9), k =1,..., K.
It is possible to study another statement of the problem supposing that these moments
are estimated separately by observations X, = (Xx(t), 0 < t < T') for each k, say by
Tikm = Tikn(Xk), and then the positions of the sources are estimated on the base of the
obtained estimators 7, ., ¢ = 1,2, K = 1,..., K. Such approach was considered in the
works [4, 6] (see as well [16]).

Note that in the works on Poisson source localization, the intensities of Poisson processes
are sometimes taken in the form

where F'(-) is a known strictly decreasing function of the distance pj between the source
and the k-th detector. The developed in the present work approach (smooth case) can be
applied for such models too, because here all the useful information is contained in the
distances pg (V).

Acknowledgments. This research was financially supported by the Ministry of Edu-
cation and Science of Russian Federation (project No. FSWF-2023-0012) for sections 2.1
and 2.2, and by the Russian Science Foundation (project No. 20-61-47043) for sections 2.3
and 2.4.

Conflict of interest. On behalf of all authors, the corresponding author states that there
is no conflict of interest.

24



References

1]

Arakelyan, N. and Kutoyants, Yu.A. (2019) On the identification of the source of emis-
sion on the plane, Proceedings of the Yerevan State University, Physical and Mathe-
matical Sciences, 53, 2, 75-81.

Baidoo-Williams, H.E., Mudumbai, R., Bai, E. and Dasgupta, S. (2015) Some theoret-
ical limits on nuclear source localization and tracking, Proceedings of the Information
Theory and Applications Workshop (ITA), 270-274.

Chen, J.C., Hudson, R.E. and Yao, K. (2002) Maximum-likelihood source localization
and unknown sensor location estimation for wideband signals in the near field, IEEFE
Transactions on Signal Processing, 50, 8, 1843-1854.

Chernoyarov, O.V., Dachian S., Farinetto, C. and Kutoyants, Yu.A. (2022) Estimation
of the position and time of emission of a source, Statist. Inference Stoch. Processes,
25, 1, 61-82.

Chernoyarov, O.V., Dachian S. and Kutoyants, Yu.A. (2020) Poisson source localiza-
tion on the plane. Cusp case, Ann. Inst. Statist. Math., 72, 5, 1137-1157.

Chernoyarov, O.V. and Kutoyants, Yu.A. (2020) Poisson source localization on the
plane. Smooth case, Metrika, 83, 4, 411-435.

Dachian, S. (2003) Estimation of cusp location by Poisson observations, Statist. In-
ference Stoch. Processes, 6, 1, 1-14.

Dardari, D., Luise, M. and Falletti, E. (2012) Satellite and Terrestrial Radio Position-
ing Techniques: a Signal Processing Perspective, Elsevier, Oxford.

Farinetto, C., Kutoyants, Yu.A. and Top, A. (2020) Radioactive source localization.
Change-point case, Ann. Inst. Statist. Math., 72, 3, 675-698.

Zekavat, S.A.R. and Buehrer, R.M. (2019) Handbook of Position Location: Theory,
Practice and Advances, 2nd ed., Jhon Wiley and Sons, Hoboken.

Ibragimov, I.A. and Khasminskii, R.Z. (1981) Statistical Estimation. Asymptotic The-
ory, Springer, New York.

Knoll, G.F. (2010) Radiation Detection and Measurement, Wiley, New York.

Kutoyants, Yu.A. (1982) Multidimensional parameter estimation of intensity function
of inhomogeneous Poisson process, Problems of Control and Information Theory, 11,
325-334.

Kutoyants, Yu.A. (1998) Statistical Inference for Spatial Poisson Processes, Springer,
New York.

25



[15] Kutoyants, Yu.A. (2020) On localization of source by hidden Gaussian processes with
small noise, Ann. Inst. Statist. Math., 73, 4.

[16] Kutoyants, Yu.A. (2022) Introduction to the Statistics of Poisson Processes and Ap-
plications, Springer, New York.

[17] Pu, C.C. (2009) Development of a New Collaborative Ranging Algorithm for RSSI
Indor Location Tracking in WSN, PhD Thesis, Dongseo University, South Korea.

[18] Streit, R.L. (2010) Poisson Point Processes: Imaging, Tracking, and Sensing,
Springer, Boston.

[19] Wan, Y., Zhang, T. and Zhu, Y. (2012) Detection and localization of hidden radioac-
tive sources with spacial statistical method, Ann. Oper. Res., 192, 87-104.

[20] Wang, H. (2015) Linear least squares localization in sensor networks, EURASIP Jour-
nal on Wireless Communications and Networking, 51.

26



