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Abstract
We present CAISAR, an open-source platform un-
der active development for the characterization of
AI systems’ robustness and safety. CAISAR pro-
vides a unified entry point for defining verifica-
tion problems by using WhyML, the mature and
expressive language of the Why3 verification plat-
form. Moreover, CAISAR orchestrates and com-
poses state-of-the-art machine learning verification
tools which, individually, are not able to efficiently
handle all problems but, collectively, can cover a
growing number of properties. Our aim is to assist,
on the one hand, the V&V process by reducing the
burden of choosing the methodology tailored to a
given verification problem, and on the other hand
the tools developers by factorizing useful features
– visualization, report generation, property descrip-
tion – in one platform. CAISAR will soon be avail-
able at https://git.frama-c.com/pub/caisar.

1 Introduction
The integration of machine learning programs as components
of critical systems is said to be bound to happen; initiatives
from various private and govermental actors (e.g., US’ NSF
funding for Trustworthy AI1, France’s Grand Défi IA de con-
fiance2) are a consequence of that fact. Trusting such pro-
grams is thus becoming a crucial issue, both on technical and
ethical sides.

A possible approach to trust is formal test and verification,
a broad set of techniques and tools that have been applied to
software safety for several decades. These formal methods
build on sound mathematical foundations to assess the be-
haviour of programs in a principled way, be it for generating
tests or providing proven guarantees. For the last few years,
several independent works have started to investigate the pos-
sible applications of formal verification to machine learning
program verification and its limitations. This led to what
could be characterized as a Cambrian explosion of tools aim-
ing to solve a particular subset of the machine learning veri-

1https://www.nsf.gov/pubs/2022/nsf22502/nsf22502.htm
2https://www.gouvernement.fr/grand-defi-securiser-certifier-et-

fiabiliser-les-systemes-fondes-sur-l-intelligence-artificielle

fication field. In less than five years, more than 20 tools were
produced, upgraded or abandoned. These tools use different
techniques, different input formats, handle different ML arte-
facts and, most importantly, have varying performances de-
pending on the problems. Our goal of orchestrating multiple
tools aims at maximizing the property coverage in the context
of a validation and verification process.

To this end, we present a platform dedicated to Characteriz-
ing Artificial Intelligence Safety and Robustness (CAISAR)
that aims to unify several formal methods and tools, at the
input, through the use of a mature and expressive property
description and proof orchestration language, at the output,
through the factorization of features such as visualization and
report generation, and at the usage, through shared heuristics
and interconnections between tools.

The answer to the question “To what extent can I trust my
machine learning program?” has many components, rang-
ing from data analysis to decision explainability. One such
important components is dealing with verification and valida-
tion, and we wish to make CAISAR an important element in
the safety toolbelt by covering these applications.

In the following, we will first present the design princi-
ples of CAISAR and state its main goals. We will follow
by a description of its most prominent features, as well as
its limitations. We will then explain the position of CAISAR
regarding other tools for formal verification of machine learn-
ing programs, and conclude by presenting some future work
and possible research problems.

2 Core principles of CAISAR
The aim for CAISAR is to provide a verification environ-
ment for Artificial Intelligence (AI) based systems tailored
to different needs. The profusion of tools for AI-programs
certification offers numerous possibilities, from the choice of
technology (formal methods, test generation) to the scope of
properties to check (coverage, suitability to a given distribu-
tion, robustness). However, with increased possibilites comes
the burden of choice. Which method better suits a given use
case? Are the results provided by this particular method trust-
worthy enough? How to bring trust in the process of select-
ing, tailoring and computing results of a given tool? How to
evaluate a given tool against others? Those are the questions
that we aim to answer with CAISAR.

https://git.frama-c.com/pub/caisar


2.1 Compatibility with existing and future
methods

The first principle of CAISAR is to ease this burden of choice
by automating parts of it. CAISAR aims to provide a unique
interface for vastly different tools, with a single entry point to
specify verification goals. Choosing which tool to use is an
informed decision that may not be relevant for the user; the
goal is to provide an actionable answer on the safety of the
system, by using whatever tool is suitable for the problem.
Ideally, the user should not be bothered with deciding which
tool is suitable for their use case: CAISAR will automatically
figure out how to express the given property to suit verifiers.
As AI systems pipelines are becoming more and more com-
plex, it is crucial for CAISAR to handle this complexity. Cur-
rently, CAISAR supports neural networks and support vector
machines, and an industrial benchmark of an ensemble model
(NN-SVM), which we are unable to further discuss, is being
used as a concrete real-word use-case.

2.2 Common modelling and answers
Existing verifiers rely on different decision procedures, e.g.,
Mixed Integer Linear Programming (MILP), abstract inter-
pretation, or Satisfaction Modulo Theory (SMT) calculus.
Modelling a verification problem using these frameworks re-
quire different skills and is time-consuming; for instance,
some modelling choices made for MILP may not be applied
under SMT. Moreover, even if one succeeds in phrasing a
verification problem under multiple decision procedures, the
different results may not be immediately comparable.

CAISAR aims to provide a common ground for inputs and
outputs, which will lead to an easier comparison, lower time
consumption and an informed decision. Furthermore, col-
lecting and presenting the user with multiple answers from
different techniques can provide additional confidence on the
studied system. In order for users to trust CAISAR as well,
it needs to rely on well-known and approved principles and
technologies. It is developed in OCaml, a strongly typed pro-
gramming language, used to develop tools for program verifi-
cation and validation. Such tools include CompCert[Leroy et
al., 2016], a C compiler that is guaranteed to output C-ANSI
compliant source code, Frama-C [Baudin et al., 2021], a plat-
form for the static analysis of C code, and Why3 [Filliâtre
and Paskevich, 2013], a platform for deductive verification of
programs.

2.3 Tools composition
Some works are starting to combine multiple tech-
niques [Singh et al., 2019] for their analysis, using an ex-
act MILP solver to refine bounds obtained by abstract in-
terpretation. Our goal with CAISAR is to bring tool com-
position to another level. For instance, metamorphic trans-
formations could generate different input space partitions for
formal verifiers. A reachability analysis tool could be called
numerous times with tighter bounds until reaching a precise
enough answer. Coverage testing objectives could be ex-
tracted from reachability analysis tools and fed to test gener-
ators. CAISAR will be more than the sum of its part, allow-
ing communication between vastly different tools to provide
faster and more accurate answers.

2.4 Automatic proposal of verification strategies
A long-term goal for CAISAR is to provide a reasoning en-
gine where past verification problems processed by CAISAR
can inform next ones, gradually building a knowledge base
that is suitable for the specific needs of the user. CAISAR
will also implement its own built-in heuristics to supplement
specialized programs that do not implement them.

3 Architecture and features
CAISAR’s architecture can be divided into the following
functional blocks:

1. A Common specification Language (CL)

2. A Proof Obligation Generator (POG), associated with a
Dispatcher (DISP)

3. An Intermediate Representation (IR)

4. A visualization module (VIZ)

See fig. 1 for a visual depiction of dependencies between
blocks.

Figure 1: CAISAR overall architecture

3.1 Specification language and verification
predicates

A typical task for program verification involves to solve a ver-
ification problem. A verification problem consists on check-
ing that a program with a given set of inputs is meeting certain
expectations on its outputs. More formally, let X be an input



space, P(X ) be a property on the input space, f be a program,
Y be the image of X by f and Q(Y) be a property on the out-
put space. By property, we mean a statement that describes a
desirable behaviour for the program. Let V = (X , f,P,Q)
be a verification problem. The goal is to verify the following
property:

∀x ∈ X ,P(x) ⇒ Q(f(x))

To write V , one needs to be able to express concisely and
without ambiguity each component: the program to verify
f , the properties P and Q, and the dataset X . To this
end, CAISAR provides full support for the WhyML speci-
fication and programming language [Filliâtre and Paskevich,
2013]. WhyML is a language with static strong typing, pat-
tern matching, types invariants and inductive predicates. This
gives WhyML programs a sound semantic as logical propo-
sitions. WhyML is at the core of the Why3 verification plat-
form, and has been used as an intermediate language for ver-
ification of Ada programs [Guitton et al., 2011]. This global
expressiveness and safety allows to write V once and for all,
independently of the verifier. For instance, Figure 2 shows the
definition of robustness against a perturbation of amplitude ε
using the l∞ distance within CAISAR’s standard library, and
fig. 3 the WhyML file the user need to write in order to verify
the robustness of a given TestSVM against a perturbation of
amplitude 0.5. Note that all the necessary element to define
V , namely f , X , P and Q, are defined in those files: f is the
function TestSVM, Y is the image of svm apply (a function
that describes the application of a SVM on a particular input
a), and Q is the predicate itself. Note that WhyML is not lim-
ited to the robustness against a given perturbation property,
often met in the literature. For instance, asserting that a neu-
ral network respect the properties of being differentialy pri-
vate [Abadi et al., 2016] or respecting causal fairness [Urban
et al., 2019] is something that could be phrased as WhyML
programs, since those properties have a mathematical charac-
terization. Finally, WhyML does not constrain the form of P
nor Q. In particular, it is possible to define multiple verifica-
tion goals in the same V , opening the way to subdivide it into
subproblems, and providing answers at each step.

CAISAR then automatically translates V into a format sup-
ported by the selected verifiers, through a succession of en-
coding transformations and simplifications. For instance,
some verifiers are best used when trying to falsify the prop-
erty: instead of checking

∀x ∈ X ,P(x) ⇒ Q(f(x))

checking the negation

∃x ∈ X ,P(x) ; Q(f(x))

This transformation is embedded in CAISAR, when calling
Marabou: a verification problem V can be transformed into
an equivalent one V ′

that can be dispatched to Marabou.

3.2 Proof Obligations Generations for various
tools

CAISAR currently supports a variety of tools and techniques:
metamorphic testing, reachability analysis based on abstract
interpretation and constraint-based propagations. CAISAR

can analyze neural networks and support vector machines.
This versatility allows for CAISAR to verify system compo-
nents using different machine learning architectures.

Marabou
Marabou [Katz et al., 2019] is a deep neural network verifi-
cation complete verifier. Its core routine relies on a modified
simplex algorithm that lazily relaxes constraints on piecewise
linear activation functions. Marabou also makes use of sev-
eral heuristics that help speeding up the verification proce-
dure, like relying on tight convex overapproximations [Wu
et al., 2022] or sound overapproximations [Ostrovsky et al.,
2022]. It can answer reachability and conjunction of linear
constraint queries. Marabou ranked fifth at the VNN-COMP
2021. It is currently in active development.

SAVer
The Support Vector Machine reachability analysis tool
SAVer [Ranzato and Zanella, 2019] is specialized in the ver-
ification of support vector machines (SVM), a popular ma-
chine learning algorithm used alongside neural networks for
classification or regression tasks. SAVer can answer reacha-
bility queries, and supports a variety of SVM configurations.
This tool was selected for support as, to the best of our knowl-
edge, it is the first one to deal with verification of SVM.

Alt-Ergo and SMTLIB compliant solvers
Existing general purpose SMT solvers for program verifica-
tion like Alt-Ergo [Conchon et al., 2018] or Z3 [de Moura

type i n p u t t y p e = i n t −> t
type o u t p u t t y p e = i n t
type model = {

app :
i n p u t t y p e −> o u t p u t t y p e ;
num inpu t : i n t ;
n u m c l a s s e s : i n t

}

p r e d i c a t e d i s t l i n f
( a : i n p u t t y p e )
( b : i n p u t t y p e )
( eps : t )
( n : i n t ) =
f o r a l l i . 0 <= i < n −>

. − eps .< a i . − b i .< eps

p r e d i c a t e r o b u s t t o
( model : model )
( a : i n p u t t y p e )
( eps : t ) =
f o r a l l b . d i s t l i n f a b eps
model . num inpu t −>
model . app a = model . app b

Figure 2: An example of a predicate in CAISAR’s standard library:
being “robust to” against a perturbation of amplitude ε. Here, the
predicate defines Q(Y).



use TestSVM . SVMasArray
use i e e e f l o a t . F l o a t 6 4
use c a i s a r .SVM

g o a l G: f o r a l l a : i n p u t t y p e .
r o b u s t t o svm apply a ( 0 . 5 : t )

Figure 3: Example verification problem specified to CAISAR. The
program to verify is TestSVM, the input space is defined by the el-
ements in a, the output space is the result of the application of the
function svm apply.

and Bjørner, 2008] all support a standard input language,
SMTLIB [Barrett et al., 2016]. CAISAR leverages Why3 ex-
isting support for SMT solvers and can translate neural net-
work control flows directly into SMTLIB compliant strings
using its intermediate representation, which allows the sup-
port of a variety of off-the-shelf solvers. Note that the
VNNLIB standard, used in the VNN-COMP, uses a subset
of SMTLIB2, which paves the way for the support of future
tools in CAISAR.

Python Reachability Assessment Tool
The Python Reachability Assessment Tool (PyRAT) is a static
analyzer targeting specifically neural networks. It builds upon
the framework of abstract interpretation [Cousot and Cousot,
1977] using abstract domains adapted for the approximation
of the reachable space in a neural network. Three main do-
mains are used: intervals with symbolic relations as described
in [Li et al., 2019; Wang et al., 2018], zonotopes [Singh et al.,
2018] and Deep poly domain [Singh et al., 2019].

For low dimensional inputs, PyRAT use input partitioning
as described in [Wang et al., 2018], with heuristics tailored
to relational domains: the zonotope domain and the deep-
poly domain with backsubstitution. Those heuristics allow
the computation of a non-trivial (e.g., not just widest interval
first) score ranking the inputs by their estimated influence on
the outputs. PyRAT has comparable results to state-of-the-art
analyzers on the widely used ACAS-Xu [Manfredi and Jestin,
2016] benchmark, and outperforms the similar domains of
ERAN on S-shape activations functions such as the sigmoid
or hyperbolic tangent functions with specific approximations.

AIMOS: a Metamorphic testing utility
AI Metamorphism Observing Software (AIMOS) is a soft-
ware developped at the same time as CAISAR, aiming to
provide metamorphic properties testing or perturbations on
a dataset for a given AI model. Metamorphic testing is a
testing technique relying on properties symmetries and in-
variance on the operating domain. See [Chen et al., 2018]
for a comprehensive survey on this approach. AIMOS of-
fers tools to derive properties from a set of transformations
on the inputs: given P , Q, X and a transformation function
tθ : x ∈ X 7→ X , it generates a set of new properies Q′

that
are coherent with the transformation. As an example, a sym-
metry on the inputs of a classification model could result on a
symmetry on the outputs; AIMOS would then automatically
modify the property to check against the symmetrical labels.

AIMOS can generate test cases scenarios from the most
common input transformations (geometrical rotations, noise
addition); others can be added if necessary. AIMOS was eval-
uated on a metamorphic property on the ACAS-Xu bench-
mark. The aim of the property was to evaluate the ability of
neural networks trained on ACAS to generalize with symmet-
ric inputs. Given a symmetry on inputs, AIMOS generates
the expected symmetrical output, and tests models against
the base and symmetrical outputs. See table 1 for results.
AIMOS was able to show that neural networks trained on
ACAS have a low, but noticeable sensitivity to symmetry on
one input.

Model previous answer Percentage of identical answer
COC 89.7%
WL 95.9%
WR 99.6%
L 95.3%
R 99.8%

Table 1: Average number of same answer for all 45 models of the
ACAS-Xu benchmark, computed by AIMOS. First column denotes
values presented in the benchmark.

3.3 Supported formats
CAISAR supports all input formats used by its integrated
verifiers. Most verifiers require either a framework-specific
binary (Pytorch’s pth, Tensorflow tf), a custom description
language (NNet), or an Open Neural Network eXchange
(ONNX) 3 file. CAISAR is able to parse any of these input
formats and extract useful metadata for the building of the
verification strategy. It can also output a verification problem
into the SMTLIB [Barrett et al., 2016] format, supported by
all general purpose solvers, as well as in the ONNX format.
The VNN-Lib initiative 4 provides a standard format for veri-
fication problems that relies on SMTLIB; thus CAISAR also
supports VNN-Lib. CAISAR aims for maximum interoper-
ability, and can be used as a hub to write and convert verifica-
tion queries adapted to different verifiers. Additionally, ver-
ifiers sometimes require datasets to verify properties against,
especially reachability analysis tools. As such, CAISAR cur-
rently supports datasets as flattened features under a csv file,
and RGB images.

3.4 Answer composition
CAISAR currently offer two ways to compose verifiers. First,
CAISAR can launch several solvers on the same task and
compose their answer: it can then provide a summary stat-
ing which solver succeeded and which one failed. Second,
CAISAR has the ability to verify pipelines that are composed
of several machine learning programs: for instance, a pipeline
composed of several neural networks, or a neural network
which outputs are processed by a SVM. CAISAR can be used
to state an overall verification goal, and to model that the out-
puts of a block of the pipeline are the inputs of another block.

3https://onnx.ai/
4http://www.vnnlib.org/



More advanced methods of composition, such as automatic
subgoals generation or refinement by multiple analysis con-
stitute a promising research venue.

4 Background & related works
In less than five years, a profusion of tools and techniques
leveraging formal verification to provide trust on neural net-
work sprouted [Katz et al., 2017; Katz et al., 2019; Wang et
al., 2018; Wang et al., ; Singh et al., 2018; Singh et al., 2019;
Shi et al., 2020; Bak, 2021; Henriksen and Lomuscio, 2020;
Dutta et al., 2017; Palma et al., ; Urban et al., 2019;
Ehlers, 2017]. See [Urban and Miné, 2021; Liu et al., 2019]
for more comprehensive surveys on the verification and vali-
dation of machine learning programs.

As for general purpose verification platforms, examples
include the Why3 deductive verification platform and the
Frama-C [Baudin et al., 2021] C static analysis platform.
We leverage multiple existing features of Why3, such as the
WhyML language support, transformation and rewriting en-
gine. Why3 and Frama-C both lack the interfaces and tooling
to handle neural network. Experiments we conducted involv-
ing the EVA Frama-C plugin applied on simple reachability
analysis properties showed a lack of scalability that a naive
python reachability analysis tool, specialized in neural net-
works, was able to overcome quickly. Conversion of neu-
ral networks in C programs that were scalable for EVA pre-
sented difficult challenges. The differing structure between
C programs and neural networks implies differing verifica-
tion problems. Thus, it seems more fruitful to investigate a
specialized platform for machine learning programs.

The ProDeep platform [Li et al., 2020] aims to regroup
several verifiers under a single user interface. It provides a
single entry point, supports input formats and offers numer-
ous visualization tools. It does not aim to provide other prop-
erties than those that are natively supported by its embedded
verifiers. It also supports a fixed set of datasets. They make
use of DeepG [Balunovic et al., 2019] to generate constraints
for verifiers, effectively combining tools. Their scope seems
limited to neural networks, whereas CAISAR currently sup-
ports neural networks and support vector machines, and aims
to support a wider set of machine learning models.

The most similar work to CAISAR is the DNNV plat-
form [Shriver et al., 2021]. As CAISAR, DNNV provides
support to various state-of-the-art verifiers. It similarly aims
to be a hub for neural network verification by supporting a
wide range of input and output formats, and by providing a
modelling language for properties specification and discharge
to capable provers. Their Domain Specific Language, DNNP,
is built on Python; while CAISAR’s specification language,
WhyML, is already used in several formal verification plat-
forms and provide additional theoretical guarantees, which is
a key component to provide trust. As stated before, WhyML
allows specifying multiple verification goals in the same ver-
ification problem, which helps modelling more complex use
cases.

The main difference between CAISAR and DNNV is that
the latter does not combine verifiers answers, that is to say
there is (at the time of writing) no feature that aims to inter-

operate verifiers: from the DNNV documentation5: ”DNNV
standardizes the network and property input formats to en-
able multiple verification tools to run on a single network and
property. This facilitates both verifier comparison, and arti-
fact re-use.” As verifiers are becoming more and more sophis-
ticated and specialized, combination of methods will become
even more fruitful, and we expect this to be a key difference
with DNNV.

5 Conclusion & future works
As the field of machine learning verification is blooming,
choosing the right tool for the right verification problem be-
comes more and more tedious. We presented CAISAR, a
platform aimed to alleviate this difficulty by presenting a sin-
gle, extensible entry point to machine learning verification
problem modelling and solving. Plenty of work still needs to
be done, however.

Altough CAISAR already integrates some state-of-the-art
tools, other verifiers that ranked high in the VNN-COMP
are on the way of integration. Such verifiers include α, β-
CROWN [Wang et al., ; Xu et al., 2021], who scored first on
said competition.

Another research venue would be the integration of neu-
ral network reparation techniques such as [Goldberger et al.,
2020]. Corrective techniques would contribute to provide a
feedback loop composed of problem specification, verifica-
tion, fault identification and correction proposal.

Various problem splitting heuristics based, for instance, on
[Girard-Satabin et al., 2021; Bunel et al., 2020] could be inte-
grated into CAISAR to leverage parallelism for verifiers that
do not support them

Data is the cornerstone of modern machine learning sys-
tems, and it is necessary to give tools to handle its complex-
ity. Support for more various data kinds, such as time series,
is a first step towards this direction. Integration of tools for
analyzing data in relation with a program, for instance out-
of-distribution detection, is another future work.

Finally, to further help the user to select the optimal set
of tools for its verification problem, a long-term goal of
CAISAR is to provide a verification helper to design optimal
queries for verification problems based on previous runs.
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A Review of Formal Methods applied to Machine Learn-
ing. arXiv:2104.02466 [cs], April 2021.

[Urban et al., 2019] Caterina Urban, Maria Christakis,
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