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Abstract

The assessment of the accuracy of a weigh-in-motion (WIM) system is described in this
paper. It is based on a statistical composite hypothesis test for which the Type I error is
the supplier risk for the WIM system. This statistical test is built in the asymptotical set-
ting, namely for large samples of measurements, with an implicit estimator of the tolerance.
Considering an observation sample of independent and identically distributed relative errors,
this procedure is used in the classical WIM assessment method described in the COST 323
action and compared to the classical estimator of the tolerance. The test also gives formulae to
practitioners implying the observation sample size comparing to the usual estimator for which

the observation sample size is tabulated. An application on a bridge-WIM system is also done.
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1 Introduction

Heavy traffic loads are growing, both in intensity and frequency, while road infrastructures are aging
and the available ressources need to be allocated in an optimal manner. Therefore, it is necessary
to collect reliable and accurate enough traffic data, above all traffic loads on the road network.

To obtain this information, a weigh-in-motion system (WIM) is generally used, where sensors
in, on or in the surroundings of the road make it possible to infer the loads and dimensions of the
vehicles passing at that location. These sensors can be of various natures and technologies, see [8]
for example of descriptions.

When using or selling a weighing system, one important information is the relative error, mean-
ing the difference between the value of the load assessed by the WIM station and the real load
relatively to the real load.

Currently, several accuracy assessment methods exist for WIM systems: in legal metrology,
OIML [17] makes it possible to characterize a weighing systems by considering the maximum abso-
lute relative error (see also BIPM [3]). In other words, all measured absolute relative errors must
be lower than a fixed accuracy in order to obtain the certification.

For non-legal applications, other statistical methodologies were proposed by COST323 [9] (see
also [10, 11] for the statistical framework) and ASTM1318 [1]. They mainly specify a minimum
proportion of measurements within a given tolerance. This tolerance characterizes the accuracy
class. Both standards have been compared in a recent study [16]. From the COST 323 action
[9, 12] and the WAVE project [18] to more recent analysis (see [5] and the reference therein),
several WIM technologies have been investigated and methodologies for assessing the accuracy and
performances of WIM systems have been proposed in order to provide extensive results of large-scale
tests.

In this paper, we propose to define the supplier risk for the assessment of the accuracy of WIM
systems as a Type I error of a test of hypothesis. The model of observation sample composed of
independent and identically distributed relative errors and the statistical composite hypothesis test

of the tolerance of the system are described in Section 2. It is built in the asymptotical setting,



namely for large samples of measurements, in Section 3. In the assessment of the accuracy described
in the COST 323 action, our procedure is compared numerically to the classical estimator of the
tolerance. The procedure can be applied to all WIM systems and we finally illustrate it to assess

the accuracy of a real bridge-WIM (B-WIM) in Section 4. A conclusion section ends the paper.

2 Assessment of the accuracy and classification of the WIM

systems

2.1 Relation between the tolerance and the confidence level

Let X; be the relative error (with respect to the reference value) of the i-th predicted (computed)
weight (for instance gross weight, single axle weight or group axle weight) in the load test sample

defined by
Wpred _ Wfref
Xi=— Wfref -
where W/ is the reference weight of the i-th truck in the load test and WP*? is the estimated
weight by the WIM system. Speed, inter-axle distance and number of axles can also be tested.
In this setting, the observation sample (X1, X, ..., X,,) is supposed to be composed of indepen-

dent and identically distributed (i.i.d.) random variables. Then, the notation of the WIM system

usually reduces to the estimation of the quantiles ¢; and ¢ such that

P(q1 < X1 < q2) =m0 (1)

or the tolerance 6 > 0 defined by
P(|X1] < 6) = m (2)
for a confidence level 7y, given the observation sample (X1, Xo,...,X,). In particular, for the

COST 323, the sample is supposed to be composed of i.i.d. Gaussian random variables of unknown

mean p and unknown variance o2. The confidence level 7y corresponds to the required confidence



level 7y for a sample of size n = oo in the COST 323 [10].
It is worth mentioning that the i.i.d. setting considered here does not take into account the
possible change in the distribution of the relative errors for several WIM systems, due to the

temperature for instance (see [4] and the conclusion section 5).

2.2 Assessment of the supplier risk by a test of hypothesis

In the COST 323 procedure, the accuracy of the WIM system is characterized by the tolerance § > 0
defined by (2) for a fixed confidence level my. The tolerance is to be estimated given the observation
sample (X1, Xo,...,X,) composed of i.i.d. Gaussian random variables of unknown mean p and

2, This definition is used for gross weight, single axle weight or group axle

unknown variance o
weight with no distinction on the statistical experiment. The values of 7y are provided according
to the environmental and test conditions (repeatability and reproducibility) based on experimental
experiments [7]. The tolerance § characterizes the accuracy class to be assigned. For instance, the
accuracy classes defined in the COST 323 [9] are tabulated (see Table 1). When the COST was

created, these classes cover all the WIM systems for non-legal applications: heavy traffic monitoring

(from A to D), bridge damage assessment (from A to C) and preselection of overloaded vehicles (A

or B).

‘ Type of measurement ‘l 6 (in %) for different accuracy classes |
[AG) [B+(M [ BOOJCO5) [DE5 ] E |

1. Gross weight 5 7 10 15 25 > 25

2. Group of axles 7 10 13 18 28 > 28

3. Single axle 8 11 15 20 30 > 30

4. Axle of a group 10 15 20 25 35 > 35

Speed 2 3 4 6 10 > 10

Inter-axle distance 2 3 4 6 10 > 10

Axle/vehicle count 1 1 1 3 5 >5

Table 1: The COST 323 classes of accuracy with respect to the tolerance &

The accuracy parameter § is unknown and has to be estimated based on an observation sample
of relative errors (X1, Xo,...,X,).

We propose a test of hypothesis to assess the class of accuracy of the WIM system by controlling



the supplier risk (see also [13] for general consideration on hypothesis testing). Indeed, the supplier
risk « is a Type I error of a composite hypothesis test in this paper (see Equation (4)) whereas it is
a confidence interval error in the classical COST 323 procedure. We also propose in the Section 3
an (implicit) estimator of the tolerance ¢ which will take into account the statistical errors of the
bias and the standard deviation (which is simplified to the bias only in the classical COST 323
estimation procedure).

The customer can control the risk by selecting an appropriate value for mo in Equation (2). The
supplier risk is assessing the WIM system to be in a class of accuracy (from A to E in Table 1)
lower than appropriate. This supplier risk, denoted «, can therefore be defined as the error of the

first kind in a statistical composite hypothesis test
Hy:6 >89 against Hj : 6 < dp. (3)

Py, (assess Hy) < a. (4)

Here dp is the tolerance of the proposed class of accuracy. In assessment of WIM systems, the
supplier risk is generally ao = 0.05.

Finally, let us remark that Equation (2) can be formulated as

7r0=<1><5;”>—<1><_50_“> (5)

where ® is the cumulative distribution function of the standard Gaussian random variable.

The tolerance § of the measurement system is consequently defined as the unique implicit root

e -a-(o(438) < (23)

for a fixed level of confidence . It is also denoted d(u,0?) and

of the function

f(d(/u'v 02)5 Hs 02) =0. (7)



In the following, we detail the corresponding statistical hypothesis test in the asymptotic setting

as the sample size n tends to infinity.

3 Construction of the test in the asymptotical setting

3.1 Construction of the test

Let us denote the unknown parameter ¥ = (u, 02) of the Gaussian random variable X;. We consider
the estimator ¥, = (X, S52) composed of the empirical mean and the estimated variance defined

by

>

1 & R — 12
n:EZX,- and ngn_lz(x,——xn). (8)

i=1 i=1

As n tends to infinity, the central limit theorem holds and
c (\/ﬁ (5n - 19)) s N(0,Z(9)! 9)

where

I(9) = —E0<V210g<i@<X10_M>>>: i (1)
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Here ¢ is the probability distribution function of the standard Gaussian distribution.

Let us denote the implicitly defined random variable 4, (X, 52) defined as the unique root of

~ d_in _d_in
F(d, X0 52) = 7o — <q> ( ;ﬁ ) _ o (g)) , (10)

F(00(Xn, 2), X, S2) = 0. (11)

the function

namely

The computation of gn generally needs the use of a root-finding algorithm.

The asymptotic properties of the estimator Sn of the tolerance ¢ is considered in the following.



Asymptotically, it is possible to use the delta method for implicitly defined random variables as

in [2]. Direct computations lead to

\/’ﬁ(gn —0) ~ N(Ov 22(/1‘7 02)) (12)

where
2 2\ 02f2(5(ﬂ702)7ll»02)+204f32(5(11702)7u702)
) = T B o), o) (1)

where f, is the derivative with respect to the variable x of the function f defined in Equation (6).
The explicit expressions are given in Appendix A. It is worth mentioning that this result encompass
the statistical error for the bias and the standard deviation simultaneously.

The composite hypothesis test is built with the statistical decision

P((X1,o X)) = L5 s0<ey

The critical region [0, €] is defined by

sup Ps (gn—(soﬁe) = sup Ps \/ﬁ(ﬁnigo) < ﬁe 5
(14,02),6(p,02)>680 >389 2(Xnasn) Z(Xﬂasn)

- p \/ﬁ((/‘)’\n—%) < \/HE
"\ 2(X.82) ~ =(X,,S2)

= «

and classical computations lead to

gn —5() 6—(50
P Onzl €70 )
g (\/ﬁ (X, 52) = ﬁE(Xn,S§)> “

and

= %E(Ymsg) (14)

where u, is the a-quantile of a standard Gaussian random variable defined by P(Z < u,) = «,



Z ~N(0,1).

In order to determine the class of accuracy of the measurement system (WIM) in the asymp-
totical setting, we compare the estimated tolerance 8, (numerically computed with Equation (11))
with the border of the critical region of the test dp + € < ¢ (here € < 0) where € is defined in
Equation (14) with X defined in Equation (13). Namely, if gn < dg + € we assess H; and accuracy
&g for the WIM system.

It is worth mentioning that the Type II error, namely

Py, (assess Hy) = sup Ps (S\n > 6o + e) ,
(1,02),6(n,0%) <80

reduces to zero as the sample size n tends to infinity (the test is consistent) showing the importance
of considering the largest possible dataset of relative errors.
In summary, considering the observation sample (X7, Xo, ..., X,,) and a reference tolerance dy,

the statistical procedure is:
1. Compute the empirical mean and the estimated variance given by Equation (8);
2. Compute the implicit tolerance gn defined by Equation (11) with a root-finding algorithm;

3. Compute the border of the critical region of the test dy + ¢ where € is defined in Equation (14)

with ¥ defined in Equation (13);
4. Compare gn with dg + € and decide accordingly.

This method is now compared to the usual COST 323 estimators for large sample n > 30.

3.2 Simulations

In order to compare the proposed methodology with the classical estimator in the COST 323
procedure, we consider fixed estimation of the bias i, with three distinct values X,, = 0, X,, = 0.02
and X,, = 0.04. Then we compare the maximal admissible empirical standard deviation ™% to

be in an accuracy class (defined by fixing the tolerance of the proposed accuracy class dp). In our



context, it corresponds to the solution of the equation

§(X o, (F7)2) = 6o + “7%2@ (@")2). (15)

With the usual COST 323 estimators, it corresponds to the root ¢* of

6 _Y'n li—g _5 _Yn ti—g
s»—>7rn—<\I/n1<0— ! 2)—\Ifn1( 0 + 2 2)) (16)
s vn s Vn

where t;_s = W1, (1 - $) and 7, is tabulated (see Table 5 in [10] where full repeatability condi-

2

tion (rl) and environmental repeatability condition (I) are selected in our numerical experiments).

n [ 60(%) A (5) B+ (7) B (10) C (15) D (25)
30 1.56 — 1.78 | 2.18 — 2.50 | 3.11 — 3.56 | 4.67 — 5.35 | 7.78 — 8.91
60 1.64 — 1.83 | 2.29 - 2.56 | 3.28 — 3.65 | 4.92 — 5.48 | 8.20 — 9.13

n [ 60(%) A (5) B+ (7) B (10) C (15) D (25)
30 1.00 - 1.21 | 1.67 — 2.00 | 2.66 — 3.18 | 4.31 — 5.08 | 7.54 — 8.74
60 1.06 — 1.22 | 1.77 - 2.04 | 2.83 - 3.24 | 4.57 - 5.18 | 7.96 — 8.95

n / 60(%) A (5) B+ (7) B (10) C (15) D (25)
30 0.33-0.40 | 1.10 — 1.20 | 2.00 — 2.41 | 3.66 — 4.40 | 6.98 — 8.28
60 0.33-0.40 | 1.11 —1.22 | 2.12 —2.44 | 3.89 — 4.48 | 7.40 — 9.44

Table 2: Comparison of 67** (in %) between the described methodology in the asymptotic setting
(on the left with mp = 0.992) and the COST 323 procedure (on the right for I-r1 conditons) in the
unbiased case for gross weight and a = 0.05 for X,, = 0 (on the top), X,, = 0.02 (in the middle)
and X,, = 0.04 (on the bottom).

For a confidence level mg = 0.992 and a classical supplier risk o = 0.05, the simulations in the
asymptotical setting are summarized in the Table 2. Our estimations are more stringent than the
usual COST 323 estimators for all samples, this for all classes of accuracy. It shows that the supplier
risk « is slighlty underevaluated by the usual COST 323 estimators. Naturally, all values of the
maximal admissible empirical standard deviation &;7"** to be in a fixed accuracy class (defined by
dp) are smaller for the biased setting than the unbiased setting.

It is worth mentioning that no testing solution has yet be found in the general case when

the observation sample is small. But if the bias where reduced to zero, the same methodology



(composite hypothesis test) could be executed on the variance for any sample size.

4 Application to a real Bridge Weigh-in-Motion system

4.1 Instrumentation

The methodology has been applied to assess the accuracy of a real bridge-WIM (BWIM) system
currently operational on a road bridge over a highway in western France. The B-WIM system uses
the bridge as the weighing system. It considers the measured deformation of the bridge due to the
passage of the trucks. In our application, the bridge has four spans and the B-WIM strain sensors
are installed on the two main spans, the length of which is 14.5 m. The bridge deck is of a type which
is uncommon for B-WIM applications: ten parallel precast post-tensioned concrete beams support
a concrete slab (see Figure (1)). Usually B-WIM solutions are used on short spanned concrete
frames or slabs, or on orthotropic steel decks. Thus it was necessary to quantify the accuracy of
the system in this unusual configuration. The B-WIM system tested is the “WIM+D” solution by
OSMOS using optical strands (see Figure (1)), simultaneously considering WIM application and

structural health monitoring [6].

~

Figure 1: One main span of the bridge instrumented by optical strands

The result for which the accuracy was quantified is the gross weight of the vehicles. To perform
the analysis, a load test was carried out on the bridge with three different trucks (19.2, 31.8, 43.9
tons), the static weight of which had been measured on a classical scale. Each one of the trucks

performed many runs on the bridge, in both directions, in various transverse locations (in or out of

10



lanes) and at different speeds.

The total number of recorded runs with B-WIM results was 55. Out of them, 22 where not
taken into account as they correspond to extreme configurations for the B-WIM, such as very low
speed, and they are not representative for the usual conditions of operation. The 33 remaining
results where divided in two sets. One set of 6 runs was used to calibrate the B-WIM through an
automatic learning of the actual measured effects of the trucks on the bridge. The remaining 27

runs where used to apply the methodology and to quantify the accuracy of the B-WIM.

4.2 Assessment of the accuracy class

We consider these 27 runs of trucks, their real gross weights, and their measured gross weights (see

Figure 2) and compute the relative errors sample (X1, ..., Xa7). Relative errors range is -0.116 to

0.048. The empirical bias is X,, = 0.002 and the estimated standard deviation is S,, = 0.042.

o] + (v

Measured Gross Weights (tons)
10 20 30 40 50 60

I I I I I I
10 20 30 40 50 60

Real Gross Weights (tons)

Figure 2: Real gross weights and gross weights measurements (in tons) for 27 runs of trucks.

Under COST 323 I-R1 conditions (environmental repeatability - limited reproducibility) the

11



usual COST 323 estimators gives m, = 0.925. Consecutively, the root in Equation (16) is 0, =
0.0935 < 0.1 and the system is B(10).

With the alternative estimator and test procedure, considering we are in the asymptotical setting
for n = 27, we get for mg = 0.97 and a = 0.05 that, for o = 0.1, gn =0.090 > 0.080 = 0y + € (and
that the system is not B(10)) but that for dyp = 0.115, that Sn = 0.090 < 0.094 which is close.

The proposed measurement analysis in the COST 323 procedure make it possible to assess the
risk for the seller and the risk for the customer. The customer may choose any other level of
confidence (the level of confidence is given in the COST 323 procedure based on real experiments)
which will lead to another tolerance and accuracy class. The corresponding values may be fixed
according to the strategy of the company.

For instance, with my = 0.85, direct computation of the tolerance is gn = 0.060. The test of the
B-WIM system to be in B(7) is positive for a error of type I fixed to @ = 0.15. The test becomes
negative for mp > 0.90 (and a similar error o = 0.15). The test just becomes negative for ao < 0.01

(and a similar level of confidence 7y = 0.85).

5 Conclusion

We propose in this paper a formulation of the supplier risk of a WIM system in the COST 323
procedure by means of a Type I error of a test of composite hypothesis. This test is built with an
alternative (implicit) estimator of the tolerance parameter. It allows to assess the class of accuracy
of a WIM system considering the level of confidence, the supplier risk and the size of the observation
sample of independent and identically distributed relative errors. In this test, both statistical errors
on the bias and the standard deviation are taken into account.

Composite hypothesis tests are built for the asymptotic case using the delta method for implicitly
defined random variables.

No explicit solution has been found in the general case the observation sample is small (when
the bias is not reduced to zero). This setting could be considered in a further dedicated work.

This work could also be extended to the Gaussian regression case (independent but not identically

12



distributed) in order to consider the effect of an exogenous variable on the sensors of the WIM

system (for instance the temperature) and, consecutively, on the distribution of the relative errors.

A Derivatives of f

The closed-form derivatives of the function f(d, u,0?) given in (6) are

i~ (o (452) -+ (452)

Foe(d, 1, 02) = 2)3/2( ( 5>_(_d_u)¢<j(72#>>

fuld.p.o®) = = (%0 (dj;) e <_j/;*2u>>

where ¢ is the probability distribution function of the standard Gaussian distribution.

and

Heuristically, in order to obtain the Equation (12), we can formally write the following Taylor

expansion

0 = f(gnayn7si)_f(5vﬂ7o—2)

= (gﬂ - 6)fd(d7 s 02) + (Y”L - :U’)f,u(dv s 02) + (S72L - 02)f02 (dv s 02) + remainder.
It can be rewritten as

~ _ d, p, 02 ' 2(d, i, 02 )
Vb, —6) = —v/n(X, —u) - % —Vn(S% - 5?)- % + remainder.

Due to Equation (9), the right hand term is a sum of asymptotically independent random variables

that gives the result.
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