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Coupled Numerical Scheme for Vascular Fluid-Tube
Interaction using Large Deformation Theory.

Application to Aneurysm Dynamics under Pulsatile Flow

Hamzah Bakhti · Lahcen Azrar ·
Mahmoud Hamadiche

Abstract A methodological approach is elaborated to study the vascular
fluid-tube interaction under pulsatile blood flow within an asymmetrical non-
linear aneurysm and large deformation models. The aneurysm dynamics were
modeled using a simplified Lagrangian nonlinear system describing the arterial
wall motion with large deformation. The flow is governed by the Navier-Stokes
equations in two-dimensional domain. A semi-implicit splitting scheme coupled
with the finite difference method is developed to solve the flow equation in an
irregular domain using a mesh transformation. On the other hand, the wall
equations are solved using the Runge-Kutta method combined with the shoot-
ing technique by reducing the resulted boundary value problem to an initial
value problem. Rigid and elastic aneurysms are considered and the effect of
various geometrical and fluid parameters on the flow are investigated, mainly
the Reynolds number, the aneurysm length and height. The study focused on
the effect of the asymmetric curvatures of the tube walls and their deforma-
tions due to the pulsatile flow. The flow is examined under a steady inlet flow
as well as under a pulsatile one for various aneurysm forms. The obtained
numerical results validate the fluid and structure solvers and demonstrate sig-
nificant differences between the rigid and elastic models of the structure as
well as the effect of the asymmetric propriety of the arterial aneurysm.
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List of Symbols

(o, x, y) Original frame
u(x, y) = (u, v) Fluid velocity

p(x, y) Fluid pressure
(o, ξ, η) Reference frame

d(ξ, η) = (d1, d2)
t

Wall displacements
ρ Fluid density
µ Fluid viscosity
U Reference velocity
R0 Half width of the rigid artery
Re Reynolds number
F Deformation gradient tensor
e Displacement gradient tensor
E Lagrangian finite strain tensor
S Second Piola-Kirchhoff tensor

λs, µs Lamé constants
P First Piola-Kirchhoff tensor
ρs Mass density
f Body force

Pint, Pext Internal and external pressures
n Outward normal
uin Inlet velocity
p0 Outlet pressure

u0, v0 Initial velocity
wu, wl Displacements of the upper and lower elastic

walls
∆t Time step size
∆ξ Space step size
T Maximum time

1 Introduction

Fluid-structure interaction problem (FSI) occurs in many cases when clear
deformations of a structure are caused by fluid flow near or around it [1–4].
Depending on the fluid flow and the properties of the structure’s material,
these deformations can be large or small [5,6]. For the case of large defor-
mations, the flow field and the structure deformations affect each other in a
bidirectional way. Thus, the problem should be treated as a coupled multi-
physics analysis. However, when large deformations and large displacements
are involved, careful analysis is needed to tackle the domain displacement and
the associated nonlinear deformation. In general, the mathematical modeling
of FSI problems using large deformation theory results in complex and non-
linear systems of equations that remain a challenge to many researchers for
years.
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To better understand some cardiovascular diseases, many numerical tech-
niques for FSI models were developed to study blood flow behavior through
different types of arteries. Particularly, with arterial aneurysms, the abnor-
mal dilation of the arterial wall results in blood vessel wall weakness. This
can be life threatening as it leads to a higher risk of an arterial wall rupture
and a more common type is abdominal aortic aneurysms (AAA) [7,8]. By
considering the blood flow to be pulsatile, the FSI models are favorable to un-
derstanding both the behavior of the blood and the dynamics of the arterial
aneurysm [9]. However, the numerical techniques are usually time-consuming
due to the complexity of vascular FSI models because of the coupling between
the mechanobiology of the wall and the pulsatile blood velocity-pressure fields
[10]. Therefore, the study of these models, especially in a large deformation
domain with the appropriate inlet/outlet boundary conditions, and using time-
saving numerical schemes is very useful to understand the dynamics of arterial
aneurysm due to pulsatile blood flow.

The study of FSI models is of considerable importance and has direct impli-
cations for many industrial, engineering and medical problems. These models
draw the attention of researchers for years and many scientific works were
published studying a variety of phenomena with applications in various fields,
such as pumps [11], heart valves [12], aerodynamic flutter [13], shock absorbers
[14], turbines [15] and biomechanics [16–18]. The analytical solutions are al-
most impossible to obtain, except for rare cases where many simplifications
are assumed to the problem [19,20]. Thus, many numerical procedures were
developed for this matter [21–23]. Meanwhile, various FSI models were pro-
posed using the large deformation theory, worth mentioning the work of Tian
et. al. [24] in which they studied a three-dimensional FSI model involving a
large deformation theory with applications in biological systems. Various other
works are elaborated using the same theory, as presented in [25–27].

Many research works studying the blood flow in arteries are based on the
assumption of rigid deformed walls. Bakhti et. al. [28,29] studied the steady
and pulsatile blood velocity profile and the resulting shear stress on a rigid
asymmetric stenosed tapered artery using different rheological blood models.
Finol and Amon [30] studied pulsatile blood flow and hemodynamic stresses in
arteries with the presence of two, axisymmetric and rigid wall aneurysms using
the spectral element method. Later on, Finol et al. used a three-dimensional
model of AAAs with a single, asymmetric and rigid aneurysm using the finite
element method [31]. More recently, more realistic numerical studies on blood
dynamics based on rigid wall models are elaborated in [32–38]. By considering
the blood flow to be pulsatile, the FSI models are favorable for understanding
both the behavior of the blood and the dynamics of the arterial aneurysm
[39]. Worth mentioning the work of Hamadiche [40], where the dynamics of
symmetrical aneurysms in large deformations domain due to pulsatile blood
flow are studied.

However, due to the high computation costs (run time, required mem-
ory) and the mathematical complexity of the vascular FSI models for blood
flow, the existing numerical techniques are difficult to code and need powerful
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computing machines. For this matter, many numerical methods were used to
study FSI models in blood flow problems by applying techniques such as semi-
implicit approaches and splitting schemes to reduce the computation costs.
Also, reduced models seem to be helpful [41–45]. Actually, the geometrical
and fluid parameters, such as the model parameters of the arterial aneurysm
and the flow Reynolds number, have a great effect on the stability and con-
vergence of these numerical schemes and that is due to their nature (explicit,
semi-implicite, etc...). There is still a large need for more improved numerical
techniques for such FSI problems using large deformation theory that are in
general challenging in term of the high complexity and strong nonlinearity of
these types of problems.

In this paper a mathematical model describing the wall motion in the La-
grangian formulation and using the large deformations theory is formulated.
This model leads to a system of nonlinear equations governing the wall mo-
tion coupled with the Navier-Stokes equations for the flow motion. An adaptive
numerical scheme is presented to simulate the FSI model using multiple tech-
niques, namely, the Runge-Kutta coupled with the shooting method to solve
the structure equations. The finite difference method (FDM) with a mesh
transformation technique is elaborated to solve the flow equation in a two-
dimensional domain combined with a semi-implicit splitting scheme. Multiple
numerical experiments and tests have been elaborated in order to validate
the proposed numerical scheme. The effect of various fluid and structure vari-
ables on the physiological parameters such as fluid velocity, pressure and wall
displacement are deeply investigated. Results are obtained from elaborated
methodological approaches to investigate blood flow and using the proposed
vascular FSI model by considering two non-symmetrical aneurysms.

The paper is organized as follows: In section 2, the governing equations for
the fluid (Section 2.2) are introduced, the derivation of the structural model for
the wall motion is then presented (Section 2.1) and both models are completed
by the appropriate initial and the coupling boundary conditions (Section 2.3).
In section 3, a semi-implicit numerical scheme is introduced for the FSI solver
which couples the Runge-Kutta and shooting method for the structure solver
(Section 3.1) with the FDM for the fluid solver using a mesh transformation
technique (Section 3.2). In section 4, a series of numerical tests were proposed
to validate the structure and fluid solvers with a given exact solution for the
structural model (Section 4.1) and classical blood flow problems in rigid ar-
teries with the presence of different types of arterial aneurysms (section 4.2).
The results of an FSI problem is then presented by coupling the wall model
with the fluid equations to study the blood behavior in elastic arteries with
the presence of asymmetrical aneurysms in both artery walls using the pro-
posed nonlinear structure model (section 4.3). Finally, the main observations
and results are given in the conclusion.
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Fig. 1: Schematic representation of the fluid flow domain with defomable walls.

2 Mathematical Formulation

For the purpose of this paper, the flow of an incompressible Newtonian fluid
in a two dimensional domain defined by a channel with both rigid and elastic
parts of the parallel walls, as shown in Figure 1, is considered. The wall is
assumed to be an incompressible continuum and its displacement is observed
in the two dimensional reference frame (o, ξ, η).

Let d1 and d2 be the Lagrangian variables that relate the deformed config-
uration with the reference configuration of the wall and d (ξ, η) = (d1, d2)

t
be

the displacements vector of a particle in the continuum body.
On the other hand, u and v donate the velocities of the fluid in the x

and y directions, respectively. x denotes the vector position of a point in the
original frame (o, x, y), which is considered as an orthonormal basis where a
two-dimensional flow of an incompressible and viscous fluid takes place in the
(x, y)-plane.

A mathematical modeling of the wall kinematics and the governing equa-
tions of motion are elaborated herein, as well as the resulting basic flow equa-
tions.

2.1 Fluid Flow equations

The flow parameters are assumed to depend on only two space variables, x, y.
The fluid flow is governed by the two-dimensional nonlinear Navier-Stokes
equations for an incompressible viscous Newtonian fluid. The continuity and
momentum equations are given in a compact form as follow

- Continuity equation
∇.u = 0 (1)

- Momentum equation

ρ

(
∂u

∂t
+ u.∇u

)
= −∇p+ µ∆u (2)



6 Hamzah Bakhti et al.

where ρ is the fluid density, u is the flow velocity, p is the pressure and µ
is the fluid viscosity. The system of equations modeling the flow field is given
in the following explicit form

∂u

∂x
+

∂v

∂y
= 0

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+ µ

(
∂2u

∂x2
+

∂2u

∂y2

)
ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+ µ

(
∂2v

∂x2
+

∂2v

∂y2

) (3)

The non-dimensional Navier-Stokes equations can be obtained using the
following dimensionless variables

x∗ =
x

L
, u∗ =

u

R0
, t∗ =

t

L/R0
, p∗ =

p

ρU2
(4)

where U is a reference velocity proportional to the maximum inlet velocity
at the inlet of the channel, R0 is the half-width of the rigid part of the artery.
Substituting the scales, the non-dimensionalized equations after dropping the
stars are obtained

∂u

∂x
+

∂v

∂y
= 0

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+

1

Re

(
∂2u

∂x2
+

∂2u

∂y2

)
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+

1

Re

(
∂2v

∂x2
+

∂2v

∂y2

) (5)

where Re = ρUR0

µ is the Reynolds number.

2.2 Structure equation

2.2.1 Lagrangian description of wall kinematics

Following the Lagrangian description of motion and denoting by d(ξ, t) the
displacements vector that depends only on ξ and time t, the resulted deforma-
tion gradient tensor F can be calculated using the relation F = I+∇d, that
is

F =

(
1 + ∂d1

∂ξ 0
∂d2

∂ξ 1

)
(6)

Following the assumption that the wall is an incompressible continuum,
the deformation gradient must satisfy the condition detF = 1, thus ∂d1

∂ξ = 0.
Then
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F =

(
1 0

∂d2

∂ξ 1

)
(7)

The displacement gradient tensor is then e = ∇d = F− I. For a large
deformation domain, the Lagrangian finite strain tensor is defined as a function
of the displacement gradient tensor

E =
1

2

[
e+ et + ete

]
(8)

Thus, using (7), one gets

E =
1

2

(
∂d2

∂ξ

2 ∂d2

∂ξ
∂d2

∂ξ 0

)
(9)

The continuum is assumed to be a hyperelastic material, which is a special
case of a Cauchy elastic material. The following St. Venant-Kirchhoff model
is used

S = [−p+ λs Tr(E)] I+ 2µsE (10)

where S is the second Piola-Kirchhoff stress, p the hydrostatic pressure of
the fluid, λs and µs are the structure Lamé constants. The first Piola-Kirchhoff
tensor denoted by P is given by

P = FS = S+ eS (11)

which yields to

P = [−p+ λs TrE]F+ 2µsFE (12)

Using a matrix form, one gets

P =

(
−p+

λs

2

∂d2
∂ξ

2)( 1 0
∂d2

∂ξ 1

)
+ µs

(
∂d2

∂ξ

2 ∂d2

∂ξ
∂d2

∂ξ + ∂d2

∂ξ

3 ∂d2

∂ξ

2

)
(13)

2.2.2 Governing equations of wall motion

Let us assume that the continuum is subjected to a body force f, and let d
denotes the displacement vector, ρs the mass density in the reference frame.
The governing equation of motion for a deformable continuum can be expressed
as

ρs
∂2d

∂t2
= ∇ ·P+ f (14)

Let us denote by Pint the internal fluid pressure on both sides of the wall,
obtained from the fluid equations, Pext is a fixed external pressure applied
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Fig. 2: Sketch of the body force applied on the wall.

on the outer tube wall and h is the wall thickness in the direction η of the
reference frame. The body force can then be expressed as

f =
Pint − Pext

h
n (15)

where n is the outward normal to the wall as shown in Figure 2. For the
wall that is defined implicitly by Γ (ξ, η) = η − d2(ξ) = 0 the normal vector is
then given by

n =
∇Γ√

∂Γ
∂ξ

2
+ ∂Γ

∂η

2
=

−
∂d2
∂ξ√

1+
∂d2
∂ξ

2

1√
1+

∂d2
∂ξ

2

 (16)

Thus, the explicit form of the body force, Eq. 15, is given by
f1 = −Pint − Pext

h

∂d2

∂ξ√
1 + ∂d2

∂ξ

2

f2 =
Pint − Pext

h

1√
1 + ∂d2

∂ξ

2

(17)

The momentum equation in ξ-direction can be explicitly expressed as

∂
(
−p+

(
λs

2 + µs

)
∂d2

∂ξ

2
)

∂ξ
+ f1 = 0 (18)

For the sake of condensed notations a new variable is defined as fellow

ϕ = −p+

(
λs

2
+ µs

)
∂d2
∂ξ

2

(19)

Using Eq.19, Eq. 18 reduces to

∂ϕ

∂ξ
− Pint − Pext

h

∂d2

∂ξ√
1 + ∂d2

∂ξ

2
= 0 (20)
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On the other direction η, the momentum equation is explicitly expressed
as

ρs
∂2d2
∂t2

=
∂
(
ϕ∂d2

∂ξ

)
∂ξ

+ µs
∂2d2
∂ξ

+
Pint − Pext

h

1√
1 + ∂d2

∂ξ

2
(21)

After further developments and using Eq. (20), one obtains

ρs
∂2d2
∂t2

= (ϕ+ µs)
∂2d2
∂ξ2

+
Pint − Pext

h

√
1 +

∂d2
∂ξ

2

(22)

The final set of equations describing the elastic wall motion are thus given
by 

ϕ = −p+

(
λs

2
+ µs

)
∂d2
∂ξ

2

∂ϕ

∂ξ
− Pint − Pext

h

∂d2

∂ξ√
1 + ∂d2

∂ξ

2
= 0

ρs
∂2d2
∂t2

= (ϕ+ µs)
∂2d2
∂ξ2

+
Pint − Pext

h

√
1 +

∂d2
∂ξ

2

(23)

In addition to the dimensionless fluid parameters given in (4), the following
dimensionless structural parameters are used

ξ∗ =
ξ

R0
, h∗ =

h

R0
, P ∗

int =
Pint

ρU2
,

P ∗
ext =

Pint

ρU2
, d∗2 =

d2
R0

, ϕ∗ =
ϕ

ρU2
,

ρ∗s =
ρs
ρ
, µ∗

s =
µ

ρU2
, λ∗

s =
λs

ρU2

(24)

The obtained dimensionless structural equations after dropping the stars
are given by the same previous system of equations

ϕ = −p+

(
λs

2
+ µs

)
∂d2
∂ξ

2

∂ϕ

∂ξ
− Pint − Pext

h

∂d2

∂ξ√
1 + ∂d2

∂ξ

2
= 0

ρs
∂2d2
∂t2

= (ϕ+ µs)
∂2d2
∂ξ2

+
Pint − Pext

h

√
1 +

∂d2
∂ξ

2

(25)
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2.3 Initial and Boundary Conditions

The flow equations are completed by the appropriate inlet/outlet initial and
boundary conditions. In this work, a periodic axial velocity profile at the inlet
of the channel is considered and given by

u = uin(y, t), v = 0 at the inlet (26)

where uin is a known time-depended function to be introduced later. At
the other end of the channel, the free outlet boundary condition is imposed as

∂u

∂x
=

∂v

∂x
= 0, p = p0 at the outlet (27)

where p0 is the outlet pressure. On the channel wall the no-slip condition
at the rigid solid wall and the continuity of the velocity at the elastic wall are
assumed. 

u = v = 0 at the rigid wall

u = 0, v =
∂d2
∂t

at the wall
(28)

For the initial conditions, a fixed velocity profile is assumed

u = u0(x, y), v = v0(x, y) at initial time t0 (29)

where u0 and v0 are known functions to be defined later.
For the structural equations, both ends of the elastic curvature are assumed

to be rigid, thus

d2 = 0 at both ends of the elastic curvature (30)

3 Numerical Method

Numerical methodological approaches and a numerical code have been elabo-
rated to solve the resulting fully coupled fluid and structure models. The code
has been tested and several applications of the presented numerical method
have been studied to ensure its effectiveness.

In the following subsections, the elaborated numerical techniques used to
solve the resulting structural and fluid equations, as well as the algorithm of
the FSI coupling, are presented. For the structural system, the coupling of the
Runge-Kutta method with the shooting techniques is elaborated to switch the
boundary value problem to an initial value one.

As for the flow equations, the FDMmethod is used to calculate the velocity-
pressure fields in an irregular domain, where a mesh transformation technique
that maps the complex flow domain into a regular one is used. For the time
scheme, the pressure-correction method splitting the pressure from the velocity
and reducing the CPU time is used. A forward finite differential scheme is then
used to evaluate the time derivative.
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3.1 Wall equations

The exterior pressure Pext is supposed constant and once the interior pres-
sure Pint is known, the structural system of equations can be solved using
the Runge-Kutta method combined with the shooting technique. The time
derivative is descritized using the following centered finite difference scheme

∂dn+1
2

∂t
≃ dn+1

2 − 2dn2 + dn−1
2

∆t2
(31)

The time-discretized wall equations are then expressed as



ϕn+1 = −p+

(
λs

2
+ µs

)
∂dn+1

2

∂ξ

2

∂ϕn+1

∂ξ
− Pn+1

int − Pext

h

∂dn+1
2

∂ξ√
1 +

∂dn+1
2

∂ξ

2
= 0

ρs

(
dn+1
2 − 2dn2 + dn−1

2

∆t2

)
=
(
ϕn+1 + µs

) ∂2dn+1
2

∂ξ2
+

Pn+1
int − Pext

h

√
1 +

∂dn+1
2

∂ξ

2

(32)
which forms a system of equations to be solved as an initial value problem.

Thus, the shooting technique is coupled to the Runge-Kutta method to solve
the problem on the space variable ξ.

3.1.1 Shooting method

For the structure, one gets



∂ϕn+1

∂ξ
=

Pn+1
int − Pext

h

∂dn+1
2

∂ξ√
1 +

∂dn+1
2

∂ξ

2
= 0

∂2dn+1
2

∂ξ2
=

1

(ϕn+1 + µs)

ρs

(
dn+1
2 − 2dn2 + dn−1

2

∆t2

)
− Pn+1

int − Pext

h

√
1 +

∂dn+1
2

∂ξ

2


(33)
For each time-step, one has the following boundary conditions of the struc-

tural displacement d2

d2(0) = 0, d2(L0) = 0 (34)

where L0 is the length of the elastic part of the wall. In order to transform
the given boundary value problem to an initial value one, the missing initial
value ∂d2

∂ξ (0) = a is defined. Thus, the initial values are then
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d2(0) = 0,
∂d2
∂ξ

(0) = a (35)

The missing initial condition is obtained by finding the root of the function
F (a) defined as the value of d2 at the second boundary using the initial value
a

F (a) = d2(L0; a) (36)

The Newton iteration is used to solve the root problem and the obtained
value of a is then the corresponding initial value problem which then is also a
solution of the boundary value problem.

3.2 Coupling with the flow equations

The Finite Difference Method (FDM) is used to solve the flow equations in a
two-dimensional domain and the main difficulty is to apply the method to a
complex geometry and with a moving boundary. To overcome this difficulty,
the physical domain is mapped onto a rectangular one using the following
coordinate transformation

τ = t, x∗ = x, y∗ =


y

R0 + wu
for y ≥ 0

y

R0 − wl
for y < 0

(37)

where wu and wl are, respectively, the displacement w2 of the upper and
lower elastic walls. The derivative rule is applied to compute all the derivatives
involved in the Navier-Stokes equations, namely, for y ≥ 0



∂

∂t
=

∂

∂τ
− ∂wu(x

∗, τ)

∂τ
[R0 + wu(x

∗, τ)]
−1

y∗
∂

∂y∗

∂

∂x
=

∂

∂x∗ − ∂wu(x
∗, τ)

∂x∗ [R0 + wu(x
∗, τ)]

−1
y∗

∂

∂y∗

∂

∂y
= [R0 + wu(x

∗, τ)]
−1 ∂

∂y∗

(38)

Similar expressions for the lower wall (y < 0) are used. The derivative rule
can also be written in an analogous manner. Figure 3 shows an example of a
mesh for the flow domain and for the rectangular one after using the given
coordinate transformation.

The expressions of the new derivatives in the mapped domain are ap-
proximated using centered difference discretization, which is a second order
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ORIGINAL DOMAIN

MAPPED DOMAIN

Fig. 3: Meshgrids of the original and mapped domains

approximation, for both first and second order derivatives and with respect to
x and y, thus

∂u

∂x
≃ui+1,j − ui−1,j

2∆x
(39)

∂u

∂y
≃ui,j+1 − ui,j−1

2∆y
(40)

∂2u

∂x2
≃ui+1,j − 2ui,j + ui−1,j

∆x2
(41)

∂2u

∂y2
≃ui,j+1 − 2ui,j + ui,j−1

∆y2
(42)

A semi-implicit pressure-correction scheme (splitting method) is used to
solve the two dimensional Navier-Stokes equations for incompressible fluid
flow. A forward finite differential scheme is used to evaluate the time derivative.
The predictor step is first done by solving the momentum equation without
the pressure gradient term for a provisional velocity based on the previous
outer loop one, namely,

u∗ − un

∆t
= −un.∇un+1 +Re−1∆un+1 (43)

where u∗ is the predictor velocity which is not divergence free. The viscosity
term is treated implicitly while the convection term is treated semi-implicitly.
The linear and nonlinear terms are evaluated using the second order central
finite difference scheme. The second step is to correct the predictor velocity u∗,
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such that the finally obtained velocity is divergence free. In order to maintain
the Navier-Stokes equations as the basic flow equations, the pressure has to
satisfy the following equation,

un+1 − u∗

∆t
= −∇pn+1 (44)

The flow velocity is sought to be divergence free, i.e. ∇.u = 0, therefore,
the pressure is obtained by solving the following Poisson equation

∇.u∗ = ∆t∆pn+1 (45)

This Poisson equation is solved with the following boundary conditions
∂p

∂x
= 0 at the inlet of the channel

p = p0 at the outlet of the channel

n.∇p = 0 at the rigide and elastic wall

(46)

The divergence free flow velocity can then be obtained from Eq. (44). Fi-
nally, the procedures followed to obtain the solution for the considered coupled
fluid-structure models are presented in the following algorithm.

Fluid-Structure Interaction Algorithm

Define structural and fluid models parameters
Calculate the steady wall displacement
Generate initial fluid grids
Calculate the steady fluid solution
while t ≤ tmax do

Calculate structure solution
Upgrade fluid grids
Calculate fluid solution
t = t+ dt

end while
Output FSI solution

4 Numerical Results

In this section, a series of numerical tests were proposed to validate the struc-
ture and fluid solvers with a given exact solution for the structural model and
classical blood flow problems in rigid arteries with the presence of different
types of arterial aneurysms. The results of an FSI problem is then presented
by coupling the wall model with the fluid equations to study the blood be-
havior in elastic arteries with the presence of asymmetrical aneurysms in both
artery walls using the proposed nonlinear structure model.



Title Suppressed Due to Excessive Length 15

4.1 Validation of structure solver

In order to validate the numerical scheme used for the structure problem, an
exact solution is introduced for the wall motion by adding new source terms
f1 and f2 in the structure equation, Eq. (25), as follows

ϕ = −p+

(
λs

2
+ µs

)
∂d2
∂ξ

2

∂ϕ

∂ξ
=

Pint − Pext

h

∂d2

∂ξ√
1 + ∂d2

∂ξ

2
+ f1

∂2d2
∂ξ2

=
1

ϕ+ µs

ρs
∂2d2
∂t2

− Pint − Pext

h

√
1 +

∂d2
∂ξ

2

+ f2

(47)

The following structural components are considered

d2(t, ξ) = sin(πξ)
t2

2
(48)

ϕ(t, ξ) = −p+

(
λs

2
+ µs

)
∂d2
∂ξ

2

(49)

Substituting the exact solutions in (47) and with simple calculations, the
following source terms are obtained

f1 =
Pint − Pext

h

t2π cos(πξ)√
t4π2 cos(πξ)2 + 4

− (
t4π3

4
sin(2πξ)(λs/2 + µs)) (50)

f2 =
−1

µs − p+ t4π2

4 cos(πξ)2(λs

2 + µs)

(
ρs sin(πξ) +

Pint − Pext

h

√
t4π2

4
cos(πξ)2 + 1

)

− t2π2

2
sin(πξ)

(51)

The convergence of the proposed numerical scheme is tested for the struc-
tural problem by computing the resulting error between the exact and numeri-
cally obtained solutions. The structure length is L = 1, the space discritization
steps vary between ∆ξ = {0.1, 0.05, 0.025, 0.0125} and the maximum time is
T = 1 while the time discitization step is a fixed value ∆t = 0.02. The inte-
rior pressure is given by Pint = 1 + 0.1 cos(ξ). Table 1 presents the physical
parameters used in the validation tests of the structure solver.

Figure 4 represents the comparison between the given exact solutions of
d2 and ϕ and the obtained numerical ones. It is clearly seen that the numer-
ical solution converges to the exact one and is almost the same for the given
physical parameters and the given values of the time step.
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Table 1: Model parameters used in section 4.1.

Parameters Values Parameters Values
L 1 T 1
ρs 0.1 λs 1000
µs 2000 h 0.1
p 10 Pext 0.1
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Fig. 4: Numerical and exact solution of the structure model for different values
of t

Table 2 presents the resulting errors and rates of convergence of the nu-
merical scheme for the structure model. The rate of convergence is calculated

using rate = log2
∥uh−u∥2

∥uh/2−u∥2
, where uh is the numerical solution using the step

h and u is the exact solution. The obtained results show that the numerical
scheme is of the rate 1.5 in space for both d2 and ϕ.

4.2 Validation of fluid solver

For the fluid solver validation, multiple computational experiments and tests
in order to validate the proposed numerical scheme are presented. This is used
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Table 2: Error analysis and the convergence rates of the structure solver for
various ∆ξ. Errors are calculated using the Euclidean norm and for t = 0.5

d2 ϕ

∆ξ ∥d̃2 − d2∥2 rate ∥ϕ̃− ϕ∥2 rate
2−1 3.0376531e− 05 - 2.7657640e− 01 -
2−2 1.0065493e− 05 1.5935392 8.8986147e− 02 1.6360254
2−3 3.4993314e− 06 1.5242667 3.0507016e− 02 1.5444396
2−4 1.2319591e− 06 1.5061248 1.0668136e− 02 1.5158329
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Fig. 5: 2D view of the geometry structure with a curvature at one side of the
tube
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Fig. 6: 2D view of the geometry structure with symmetrical (a) and asymmet-
rical (b) curvatures at both sides of the tube

to examine the effect of various fluid variables on the physiological parameters
such as fluid velocity and pressure. The obtained results are discussed and
presented for two separate cases. In the first case considered below (Case 1),
the fluid behavior in a rigid structure is studied with the existence of one
curvature in a wall side of the tube (Figure 5) or multiple symmetrical or
non-symmetrical curvatures at both sides of the tube (Figure 6), with the
assumption of a steady fluid velocity at the inlet of the flow domain. Several
numerical runs have been made and the obtained results are presented in three
sub-cases (1a, 1b and 1c). The effects of fluid and structural parameters on
the fluid flow are investigated.
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In the second part (Case 2), the obtained results are presented and dis-
cussed for the case of rigid structure walls with asymmetrical curvatures at
both sides of the tube (Figure 6b) and with the consideration of a pulsatile
velocity at the inlet of the channel. The study focuses on the effect of the inlet
pulse on the velocity field and fluid pressure in the flow domain.

4.2.1 Case 1 : Rigid wall with steady inlet

A simple fluid flow problem is considered in a tube with the presence of a
curvature in the tube wall. The wall geometry functional for the case of a
steady structure can be mathematically expressed, with modified inputs from
[29], as follows

R(x) =

{
R0

[
1 + 4ϵ

L2
0

(
L0(x− d)− (x− d)2

)]
, d ≤ x ≤ d+ L0

R0, otherwise
(52)

where R0 is the radius of the normal tube, L0 is the curvature length, d
indicates the location of the curvature and ϵ is the maximum height of the
curvature outward the tube. This function is used for both upper and lower
sides of the wall with various values of the used parameters. For the sake of
clarity, this case is divided into three sub-cases in order to clarify the effects
of different geometrical and fluid parameters on the flow field.

- Case 1a : Single wall curvature
In order to analyze the effect of the wall curvature on the fluid flow, a

series of numerical runs were done with a rigid wall and a steady inlet flow.
The wall geometry with the presence of one side deformed wall is shown in
Figure 5. Therefore, on the rigid wall, the no-slip condition is assumed and
the inlet function is defined without the unsteady part as follows

uin =
y

R

(
1− y

R

)
(53)

The geometric and mesh parameters, used in Case 1a, are given in Table 3.
Numerical results were obtained using a regular grid, containing 51× 51 fluid
and pressure nodes. The time step used in the numerical tests is ∆t = 0.05,
which is well defined to assure the accuracy needed due to the splitting error.
It is well-known that classical splitting schemes usually require smaller time
step. The splitting method is used by separating the pressure and velocity
differential operators and the main benefits of this scheme are the simple
implementation and low computational costs.

On the other hand, the structural and fluid parameters are given in Table
4, where the exact curvature location, length and the maximum height that
its can reach are given. Those values will be changed from case to case for a
better understanding of the used model as well as the structural effect on the
flow.

Figure 7 represents the fluid streamlines and the pressure contours in the
steady regime for the given values in Table 4. It is observed from this figure



Title Suppressed Due to Excessive Length 19

Table 3: Geometric and mesh parameters used in the Cases 1 and 2.

Parameters Values Parameters Values
Initial time t0 0 Final time T 50
Time step ∆t 0.05 Normal Radius R0 0.5
Length of the channel L 10 Number of nodes (Nx×Ny) 2601
x-Space step ∆x 0.2 y-Space step ∆y 0.02

Table 4: Structural and fluid parameters considered in case 1.

Parameters Values
Reynold’s number Re 200
Curvature location d 1
Curvature length L0 4
Curvature max. height ϵ 1
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Fig. 7: Streamlines profile (a) and pressure contours (b) obtained in the steady
regime for the case 1a

that the flow is uniform in the inlet zone and in the middle of the tube, while
near the curved part of the wall it is clearly demonstrated that the flow forms
a large roll that takes place in the entire deformed zone. On the other hand,
the pressure contours, plotted in Figure 7b, show that a higher pressure occurs
near the end of the deformed wall and slightly decreases around the deformed
part of the wall toward the inlet.

Figures 8-11 illustrate the flow behavior and pressure evolution over time
and streamlines variations for different values of Reynolds number (Re), cur-
vature length (L0) and the maximum height (ϵ). More precisely, Figure 8 repre-
sents the obtained streamlines at different time values, namely t ∈ {5, 10, 14.7, 25},
and for fixed values of the structural and fluid parameters given in Table 4. It
is observed that the fluid streamlines begin as a uniform flow and rolls start
to develop over time in the curved part of the tube and keep expanding and
taking more space till it fill the full curved zone of the tube due to the increase
of the fluid velocity until its maximum and the fluid flow reaches a steady
regime.
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Fig. 8: Flow evolution corresponding to the Case 1a at different time values;
(a) t = 5, (b) t = 10, (c) t = 14.7, (d) t = 25.
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Fig. 9: Case 1a : Flow variation with respect to Reynolds number Re
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Fig. 10: Case 1a : Flow variation with respect to aneurysm length L0
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Fig. 11: Case 1a : Flow variation with respect to aneurysm maximum height ϵ
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Fig. 12: Pressure contours corresponding to the Case 1a at different time val-
ues; (a) t = 5, (b) t = 10, (c) t = 14.7, (d) t = 25.

In Figure 12, the pressure evolution is presented over time, the pressure con-
tours obtained in the same time interval as streamlines; t ∈ {5, 10, 14.7, 25},
and for the same fixed values of the structural and fluid parameters given in
Table 4. It is observed from these results that a higher pressure occurs near the
middle of the curvature and continues to move over time around the curvature
heading to the end of the deformed wall. When the flow reaches the steady
regime, the pressure takes a higher value near the end of the deformed wall and
slightly decreases around the wall curvature and that is due to the decrease of
the tube diameter till it reaches the normal one of the non-deformed part of
the wall.

To understand more the flow behavior in the given flow domain, the effect
of various geometrical and fluid parameters on the flow is studied, namely,
the Reynolds number (Re), the curvature length (L0) and the curvature max-
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Fig. 13: Streamlines profile (a) and pressure contours (b) obtained in the steady
regime for the case 1b

imum height (ϵ). The effect of the Reynolds variation on the flow is shown in
Figure 9 at t = 10. The same values given in Table 4 are kept for the other
parameters and different Reynolds numbers Re ∈ {100, 200, 300} are chosen.
It is observed that the roll’s appearance becomes clearer and it takes place in
a large zone when the Reynolds number is increased.

The same analysis was made to clarify the effect of the curvature length
L0. The obtained flow streamlines were presented at t = 10 and for values of
L0 varying in {3, 4, 5}. The other parameters values are fixed and given in
Table 4. It can be clearly observed that for an increase in L0, the rolls become
larger and take more time to reach the steady regime due to the increase in
the deformed zone. Finally, the influence of the curvature maximum height on
the flow at t = 10 is analyzed. The resulting streamlines for various values of
ϵ, ϵ ∈ {0.5, 1, 1.5}, are presented in Figure 11. It is demonstrated that small
values of ϵ result in a uniform flow while an increase in the value of ϵ results
on a large number of rolls. This is due to the large zone for the rolls to take
place and to expand.

Case 1b : Symmetrical two wall curvatures

In this case, the behavior of the flow with the presence of two symmetrical
curvatures on the two sides of the channel walls is investigated. The considered
wall geometry with the presence of two symmetrical curvatures is shown in Fig
6a. Several numerical tests have been made with a fixed wall and steady inlet
flow using the same curve function defined in Eq. (52) for both upper and
lower sides of the wall and with the same structural values for both sides. The
no-slip condition is assumed on the rigid wall and the inlet function, without
the unsteady part, is defined as follows

uin =

[
1−

( y

R

)2]
(54)

The geometric and mesh parameters, used in Case 1b, are the same ones
given in Table 3. The curvature is supposed to be symmetrical for both sides
of the wall and the structural and fluid parameters are given in Table 4. The
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Fig. 14: Flow evolution over time for the Case 1b : (a) t = 5, (b) t = 9, (c)
t = 13, (d) t = 25.

results were obtained using the same mesh parameters and time step as in
Case 1a.

Figure 13 shows the streamlined profiles and pressure contours in the steady
regime for the given values of the geometrical, structural and fluid parameters
values in Tables 3-4. It can be observed from Figure 13a, as in the first case,
that the flow is uniform in the inlet and middle of the tube, while near the
curved part of each side of the wall the flow forms symmetrical rolls on both
sides of the channel covering the whole deformed zones. Similarly, Figure 13b
shows a higher pressure occurring near the ends of the symmetrical curvatures
that slightly decreases around the deformed part of the wall toward the inlet
of the tube.

Figures 14-15 represent the streamline profiles and pressure contours evolu-
tion over time for fixed values of structural and fluid parameters given in Table
4. Figure 14 presents the streamlines for the time values t ∈ {5, 9, 13, 25}.
It is observed that the fluid begins to form rolls on both curved sides of the
walls in a symmetrical way and starts to develop over time in that zone of
the tube and keeps taking more space till filling the full deformed zone of the
tube. That is due to the increase of the fluid velocity until the flow reaches
the steady regime.

The pressure evolution over time in the case of two symmetrical curvatures
on both sides of the channel is presented in Figure 15. The pressure contours
are obtained for t ∈ {5, 10, 14.7, 25} and for the same fixed values of the
structural and fluid parameters given in Table 4. A higher pressure occurs
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Fig. 15: Pressure contours over time for the Case 1b : (a) t = 5, (b) t = 9, (c)
t = 13, (d) t = 25.

near the middle of both curvatures and continues to move around them in a
symmetrical way heading to both ends of the deformed walls till it reaches a
steady regime. The pressure then takes a higher value near the ends of the
deformed walls and slightly decreases around the wall curvatures. That is due
to the decrease in the tube diameter till reaching the normal one of the non-
deformed parts of the walls.

While comparing these results to the one side curvature case, 1a, it is
noticed that the fluid finds more space to take place in this case because of
the new symmetrical deformed side. Thus, the fluid rolls occur less larger in
case 1b than 1a while using the same fluid parameters given in Table 4. Also,
the highest pressure value in this sub-case is lower than in the previous one.

Case 1c : Asymmetrical wall curvatures

In this final sub-case, the assumption of a steady inlet velocity is kept and
the flow behavior in a channel with two non-symmetrical curvatures of the wall
to observe the effect of the asymmetry on the fluid flow is investigated. The
considered flow domain with asymmetrical curvatures is sketched in Figure
6b. As previously done, numerical tests with the consideration of a fixed wall
and steady inlet flow are elaborated using the same curve function defined
in Eq. (52), for both upper and lower sides of the wall. Different structural
parameters values are used to consider better the non-symmetry of the walls
geometries. Again, on the rigid wall, the no-slip condition is taken and the
inlet function uin is used as in the previous sub-case, 1b, given in Eq. (54).
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Table 5: Structural parameters for the lower side of the wall for the Case 1c
and the Case 2.

Parameters Values
Aneurysm location ddown 2.5
Aneurysm length L0,down 3
aneurysm max. height ϵdown 0.9
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Fig. 16: Streamlines profiles (a) and pressure contours (b) obtained in the
steady regime for asymmetrical curvatures

The geometric and mesh parameters, used in this sub-case, are the same
ones given in Table 3. As the curvatures are supposed to be non-symmetric, the
structural parameters used for the upper side of the wall and fluid parameters
are taken from Table 4 while the lower side structural parameters are defined in
Table 5. The numerical results were obtained using the same mesh parameters
and time step as in the other sub-cases.

Figure 16 shows the steady solution obtained for the streamlined profiles
and pressure contours in the steady regime for the geometrical, structural and
fluid parameters values given in Tables 3-5. It is observed from Figure 16a that
the flow is uniform in the inlet and quasi-uniform in the middle of the tube.
Near the curved part of each side of the wall, the flow forms non-symmetrical
rolls in the two sides of the channel covering the whole deformed zone on the
upper side, while on the lower side the rolls take place in the right part of the
deformed zone. The same observation goes to the pressure contours plotted in
Figure 16b that shows a higher pressure near the end of both non-symmetrical
curvatures that slightly decreases around the deformed part of the wall toward
the inlet of the tube. The pressure is lower at the end of the lower curvature
than in the upper one.

With respect to time, the streamline profiles and pressure contours evolu-
tion for fixed values of structural and fluid parameters given in Tables 4-5 are
presented in Figures 17-18. Figure 17 represents the streamlines for the time
values t ∈ {5, 9, 13, 25} showing that the fluid starts to form rolls in the
upper curvature of the tube and takes some time for the lower curvature, this
is due to the distance between the two curvatures and the asymmetrical pro-
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Fig. 17: Flow evolution over time for Case 1c : (a) t = 5, (b) t = 9, (c) t = 13,
(d) t = 25.
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Fig. 18: Pressure contours over time for Case 1c : (a) t = 5, (b) t = 9, (c)
t = 13, (d) t = 25.
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prieties until the steady regime is reached where the rolls fill the full deformed
zone of the upper side of tube and doesn’t fill all the space in the lower side
that is due to the asymmetrical positions of the curvatures and to the fact that
the fluid found more space at the starting position of the lower curvature.

Figure 18 presents the pressure evolution over time in the case of two non-
symmetrical curvatures on the two sides of the channel. The same proprieties
as in Figure 17 are used. New observations are made that differ from the ones
obtained in other sub-cases. Higher pressure occurs near the middle of the
curvatures in a non-symmetrical way and continue to move around the curva-
tures in a non-symmetrical way heading to both ends of the deformed walls till
reaching the steady regime where the pressure takes a higher value near the
ends of the deformed walls and slightly decreases around the wall curvatures.
That is due to the decrease of the tube diameter, while it is remarked that the
pressure value at the end of the upper curvature is higher than in the end of
the lower curvature due to the non-symmetrical proprieties of the curvatures.

Comparison with the previous sub-cases, 1a and 1b, it can be noticed
that, as in Case 1b, the two sides curvatures offer more space to the fluid.
The non-symmetrical effect on the fluid flow is clearly shown in the resulting
figures where the rolls are not symmetrical and have less appearance in the
lower curvature than in the upper one. The pressure contours also display a
non-symmetrical behavior on the non-symmetrical walls.

4.2.2 Case 2 : Rigid wall with pulsatile inlet

In this case, the flow behavior is studied in a fixed geometry with the as-
sumption of a pulsatile inlet velocity profile. The asymmetric wall geometry
presented in Figure 6b is considered herein. As in the previous cases, several
numerical tests with the consideration of a fixed wall and pulsatile inlet flow
are performed on the rigid wall, as a boundary condition, the no-slip condition
is assumed. Also, the steady solution, found in Case 1, is used as an initial
condition in order to better understand the pulsation effect on the flow. The
pulsatile inlet function is defined as follows

uin(y, t) = u0(t)

[
1−

( y

R

)2]
(55)

where the function u0(t) involved in the inlet flow is a periodic function
that presents the velocity amplitude variation in the x-axis direction over time,
as shown in Figure 19a. For a proper understanding of the fluid flow in the
proposed domain, the set of selected time values where the streamlines and
pressure contours are plotted and presented in Figure 19b.

The geometric and mesh parameters used in Case 2 are also given in Table
3. The structural parameters used for the upper side of the wall and fluid
parameters are taken from Table 4 while the lower side structural parameters
are defined in Table 5. The numerical results were obtained using the same
mesh parameters and time step as in Case 1.
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Fig. 19: Amplitude of the inlet velocity as a function of time (a) with zoom in
of one single pulse with the set of time samples (b)

Figures 20-21 show the streamlines profiles and pressure contours evolu-
tion with respect to the set of time values defined in Figure 19b with fixed
geometrical, structural and fluid parameters values given in Tables 3-5. The
main obtained results are: the flow becomes periodic due to the periodic inlet
velocity, an increase in the inlet velocity results in the expansion of fluid rolls
in both curvatures in a non-symmetrical way, and when it decreases, the rolls
become less visible and maybe removed in the lower curvature zone. Also, the
flow keeps it uniform behavior in the inlet and quasi-uniform in the middle
of the tube as in the previous case. The same observations are made for the
pressure contours, as obtained in previous case. Higher pressure occurs near
the end of the non-symmetrical curvatures and slightly decreases around the
deformed part of the wall toward the inlet of the tube.

In comparison with the steady inlet case, it is clearly noticeable that the
pulsation effect on the fluid flow behavior. An interesting result of the pulsatile
flow is that there is a time difference between the instant where the inlet
amplitude reaches its maximum value and the instant where the maximum
appearance of the fluid rolls occurs.

It is important to mention that the previous results are well validated with
the existing ones from the literature and other numerical techniques.

4.3 FSI model for pulsatile blood flow with elastic asymmetric aneurysm

In this subsection, some interesting results are obtained and analyzed from
the simulation of the fluid-tube interaction model using the coupled numerical
scheme presented in this paper. In this case, the structure walls are assumed
not fully rigid and consist of an elastic part. The fluid and structure behaviors
were studied for pulsatile inlet velocity and for non-symmetrical walls of the
channel.

As the main application, the pulsatile blood flow in asymmetric elastic
arterial aneurysm is considered. A two dimensional geometry defined by a
tube with both rigid and elastic parts of the wall, as previously shown in
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Fig. 20: Flow evolution over time for the Case 2 : (a) t = 18, (b) t = 20, (c)
t = 22, (d) t = 24, (e) t = 28, (f) t = 28.

Figure 1 is used. Based on the FSI algorithm, several numerical tests have
been made to simulate the fluid-tube interaction with pulsatile inlet velocity
and asymmetrical elastic parts of the tube walls. The no-slip condition is
considered at the rigid part of the wall and the continuity of the velocity at
the elastic part, as defined in (28). The pulsatile inlet function is defined as
follows

uin(y, t) = u0(t)

[
1−

( y

R

)2]
(56)

where the function u0(t) is the inlet velocity amplitude. For a proper un-
derstanding of the fluid flow in the proposed domain, the set of selected time
values is presented in Figure 22 where the streamlines and pressure contours
were taken.
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Fig. 21: Pressure contours over time for the Case 2 : (a) t = 18, (b) t = 20, (c)
t = 22, (d) t = 24, (e) t = 28, (f) t = 28.
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Fig. 22: The set of time samples for the Case 3
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Table 6: Geometric parameters used in case 1.

Parameters Values Parameters Values
Initial time t0 0 Final time T 50
Time step ∆t 0.1250 Normal Radius R0 0.5
Length of the channel L 10 Number of nodes (Nx×Ny) 5151
x-Space step ∆x 0.1 y-Space step ∆y 0.02

Table 7: Fluid & structural parameters for both aneurysm sides.

Parameters Values Parameters Values
Reynolds number Re 200 h 0.05
µs 1000 λs 1000
p0 15 Pext 5
Upper Aneurysm location dup 1 Lower Aneurysm location ddown 2.5
Upper Aneurysm length L0,up 4 Lower Aneurysm length L0,down 3

The geometrical and mesh parameters used in the considered FSI problem
are given in Table 6, while the structural parameters used for the upper and
lower sides of the wall and fluid parameters are given in Table 7. The results
were obtained using a regular grid, with 101×51 fluid and pressure nodes. The
time step used in these numerical tests is∆t = 0.1250. During the computation
process, no stability problems is seen, or in the obtained solutions.

Figures 23-24 show the streamlines profiles and pressure contours evolution
with respect to the set of time values defined in Figure 22 with fixed values
of the geometrical, structural and fluid parameters values presented in Tables
6-7. It is clearly demonstrated that the behavior of the fluid flow is not the
same as discussed in the previous cases. The flow becomes periodic due to the
pulsatile inlet velocity and the clear effect on the rolls in both curvature zones
is presented. On the other hand, a clear change is observed in the elastic walls
displacement over time due to the fluid-tube interaction in a periodic way.
Also, when the velocity increases at the inlet, the rolls become less clear and
start to expand over time. As for the pressure contours, it is clearly shown that
a higher pressure occurs near the end of both non-symmetrical curvatures and
increases as the inlet velocity increases and starts to take its initial values over
time. The pressure evolution near the tube wall plays a rule in the displacement
variation of the upper and lower elastic parts.

Figure 25 shows the upper and lower maximum and minimum displace-
ments of the elastic parts in the selected time values. It is clearly observed
that there is an effect of the inlet pulsation on the wall deformation and there
is a time difference between the instant where the inlet velocity reaches its
maximum. The maximum wall displacement takes place on both the upper
and lower sides of the tube walls. The wall displacements and flow behavior
are in good agreement with previous research works in [46,40,47].

With comparison to the rigid case, a different behavior of the streamlines-
pressure profiles due to the increase and decrease in both deformations of
the elastic walls. It is observed that the rolls get infected and become less
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Fig. 23: Flow evolution over time for the FSI problem : (a) t = 18, (b) t = 20,
(c) t = 22, (d) t = 24, (e) t = 26, (f) t = 31.

visible when there is an increase in the aneurysm displacement and that gives
more space for the fluid to take place. For the pressure variation, it is clearly
observed that the effect of the pressure on the wall displacement as it takes
maximum form when the pressure reaches its maximum value near the wall
and the minimum displacement appears when the pressure takes its lowest
value near the elastic walls.

5 Conclusion

This paper presents a mathematical modeling and numerical simulation for
fluid-tube interaction problems using large deformation theory. The applica-
tion is mainly in cardiovascular systems and particularly abdominal deformed
arteries and arterial aneurysms. An FSI model has been elaborated to describe
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Fig. 24: Pressure contours over time for the FSI problem : (a) t = 18, (b)
t = 20, (c) t = 22, (d) t = 24, (e) t = 26, (f) t = 31.
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Fig. 25: Maximum and minimum wall displacements during a single pulse of
the upper (a) and lower (b) aneurysm sides with respect to the initial curvature
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incompressible fluid flow behavior in deformable geometries. This model is
based on a simplified non-linear system of equations that are derived to de-
scribe the wall dynamics in a large deformation domain coupled with the
non-linear Navier-Stokes equations. The pulsatile fluid flow through an elastic
tube with non-symmetrical wall geometries is investigated.

Efficient mathematical algorithms and numerical simulations are elabo-
rated based on the splitting finite difference method and shooting procedure.
A well-adopted semi-implicit and predictor-correction methods are elaborated.
A mesh transformation is used to account for irregular domains. The coupled
nonlinear fluid-structure interaction problem is numerically solved and the wall
displacement and fluid velocity-pressure field are computed. Numerical exper-
iments in three different cases have been investigated to fully understand flow
behavior in rigid curved tubes and tubes with non-symmetrical elastic parts.
The effects of several structural and fluid parameters on flow are studied and
discussed.

The obtained results for different structural and fluid settings of the pro-
posed model are presented. The main observations are summarized as follow

– The structural and fluid solver are validated and adapted to the presented
model for the elastic aneurysm motion and blood flow behavior.

– For the case of rigid deformed walls and steady inlet velocity, the flow
behavior changes when changing the wall curvatures parameters or with the
Reynolds number. The streamline profiles, in the case of non-symmetrical
walls, behave in a non-symmetrical way, as the rolls are not symmetrical
and have less appearance in the lower curvature than in the upper one. The
same observations are made for the pressure contours compared to other
cases of one or two symmetrical curvatures.

– For the case of two rigid non-symmetrical curvatures with a periodic pul-
satile inlet velocity, it is clearly noticeable that the fluid flow behavior
appears to be periodic. Also , there is a gap or a time difference between
the instant where the inlet amplitude reaches its maximum value and the
instant where the maximum appearance of the fluid rolls occurs in both
curvatures zones.

– For the FSI model, the case of two non-symmetric elastic curvature with a
pulsatile inlet velocity, the pulsation affects the elastic walls displacements
and appears to be periodic with a time gap between when the inlet ampli-
tude reaches its maximum value and when the maximum wall displacement
of the elastic walls takes place.

– Also, for the case of deformed walls, it is observed that the rolls in the
deformed zone become less visible due to the increase in the wall displace-
ment and start to build up in a non-symmetrical way over time with clear
appearence in the upper aneurysm than in the lower one till it reaches the
initial form.

– A large variation of the wall displacement with respect to the pressure
values near the elastic walls is clearly demonstrated.

– The results are in good agreement with previous research work.
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The presented fluid-tube interaction model may be very useful in predicting
and diagnosing many cardiovascular diseases such as arterial aneurysms and
abnormally deformed arteries. The model can be further investigated for higher
dimensions and different fluid rheology, as blood is often considered as a non-
Newtonian fluid.
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1. H.-J. Bungartz and M. Schäfer, eds., Fluid-Structure Interaction, vol. 53 of Lecture
Notes in Computational Science and Engineering. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2006.

2. P.-N. Sun, D. Le Touzé, G. Oger, and A.-M. Zhang, “An accurate fsi-sph modeling of
challenging fluid-structure interaction problems in two and three dimensions,” Ocean
Engineering, vol. 221, p. 108552, 2021.

3. A. Khayyer, Y. Shimizu, H. Gotoh, and K. Nagashima, “A coupled incompressible
sph-hamiltonian sph solver for hydroelastic fsi corresponding to composite structures,”
Applied Mathematical Modelling, vol. 94, pp. 242–271, 2021.
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