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Super-resolution reconstruction of brain 3D
magnetic resonance images using a coupled tensor

multilinear approximation
C. Prévost1, F. Odille2,3,

Abstract—In this paper, we address the multi-frame super-
resolution MRI problem. We formulate the reconstruction prob-
lem as a coupled tensor multilinear approximation. We prove
that exact recovery of the high-resolution 3D isotropic image
is achievable for a variety of multilinear ranks. We propose a
simple algorithm based on Tikhonov regularization to perform
the reconstruction. Our simulations on real datasets illustrates
the good performance of the proposed approach, with a lower
computation time than state-of-the-art methods.

I. INTRODUCTION

Magnetic resonance imaging (MRI) is a versatile medical
imaging modality, providing excellent contrast between soft
tissues. The acquisition parameters can indeed be tuned in
order to make this contrast sensitive to various tissue proper-
ties, such as proton density, and longitudinal and transverse
relaxation times (respectively T1 and T2). MRI acquisition
consists of repeatedly exciting protons in the human body,
using various electromagnetic pulses, and acquiring a small
amount of Fourier samples from the image.

The observations in the frequency domain are then recast
into the spatial domain by an inverse Fourier transform opera-
tion. Typical MRI data consist in 2D or 3D images in arbitrary
orientations. The latter possess two in-plane spatial dimensions
and a third spatial dimension in the slice direction, hence they
can be seen as tensors.

However, MRI suffers from a relatively slow acquisition
time, typically on the order of minutes. This technical limita-
tion can prevent the acquisition of 3D high-resolution images
to be possible or optimal. To circumvent this drawback, super-
resolution techniques have been shown to be efficient in a
number of situations [1], [2], [3]. They consist in recovering a
3D high-resolution image from one or several low-resolution
observations.

Recently, it been proposed to recover the high-resolution
image from a single low-resolution observation using deep
learning [4], [5]. However, in the presence of small lesions,
it may be preferable to consider several observations for
diagnostic use of the images. The observations can be in-
corporated into a fusion model, thus providing additional
information compared to separate processing [6]. Using the
fusion paradigm avoids to rely on an external patient database
for the prior. Therefore, in the remainder, we will focus on
the problem of super-resolution reconstruction from multiple
observations, also termed multi-frame super-resolution.
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Multi-frame super-resolution MRI consists of acquiring
several complementary observations of the organ of interest,
e.g. three orthogonal scans [7], or three scans with sub-voxel
shifts in the slice direction [8]. Each observation has high in-
plane resolutions (1 mm or less) in the first two dimensions,
and low resolution in the slice direction (typically 3 to 10
mm). The acquisition process can be modelled, including a
blurring/downsampling operator in the slice direction. Patient
motion (bulk head motion, breathing motion, heart beating
etc.) can also be taken into account, but this is generally
performed as a pre-processing step, before super-resolution
reconstruction, using motion-compensated reconstruction (in
case of intra-scan motion, i.e. to resolve motion blurring) [9]
and/or image registration (in case of inter-scan motion, i.e. to
resolve misalignment from scan to scan)[10].

The super-resolution problem is most often solved by regu-
larized inversion. Besides the classic Tikhonov regularization
[11], total variation [12] or Beltrami energy regularizers [9]
have been proposed, as well as constraints on the rank of
the matricized image1 [13], and patch-based regularization
methods [14]. The last two methods are intended to exploit
the low-rank structure of the images. Iterative solvers are used
in all these cases, such as the conjugate gradient (Tikhonov),
primal dual gradient descent (Beltrami) or the alternating
direction method of multipliers (low-rank and patch-based
methods).

However, matrix patch-based methods possess a high com-
putational burden, as they require many operations for extract-
ing patches from the image, sorting them, and performing
dimensionality reduction. They also fail at preserving the
natural tensor shape of the observations. More importantly,
no theoretical guarantees for exact reconstruction of the high-
resolution images were provided.

Tensor-based reconstruction methods were recently envi-
sioned in some engineering fields such as remote sensing of
spectrum cartography [15], [16], [17]. In the field of medical
imaging, coupled tensor models were used for the recon-
struction of dynamic cardiac images [18] of functional MRI
reconstruction [19], for instance. Such approaches preserved
the structural information between the dimensions of the
images. Theoretical guarantees for exact image recovery could
be formulated under mild rank conditions, see for instance
[15], [16].

Several low-rank factorizations can be considered for ap-
proximating tensor data. The multilinear (also known as
Tucker) factorization was considered in [16] with remote sens-
ing applications. The reconstruction problem was formulated

1This method was applied to single-frame super-resolution.
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as a coupled Tucker approximation. A closed-form SVD-based
algorithm was proposed. The approach of [16] considered
3D image reconstruction from two degraded tensors. Each
observation had two degraded dimensions, which made the
recovery conditions in [16] less flexible than the ones proposed
in this paper.

In this paper, we propose a novel tensor-based approach
for multi-frame super-resolution MRI. The proposed approach
is based on a coupled low-rank multilinear approximation of
three 3D observations in image space. We introduce a simple
closed-form algorithm with low computational burden, named
isometRic Image Reconstruction by COupled Tensor Tucker
Approximation (RICOTTA), that is inspired by the higher-
order SVD [21]. We prove that our approach achieves exact
reconstruction of the high-resolution 3D image for a variety of
multilinear ranks. We illustrate the performance of our method
on a set of synthetic and real datasets. We show that our
algorithm yields good reconstruction, with lower computation
time than matrix-based super-resolution methods.

This paper is organized as follows. The remaining of
Section I introduces the main notations and tensor definitions.
Section II contains the low-rank tensor model and the proposed
algorithm. In Section III, we provide generic conditions for
exact recovery of the HRII in the noiseless case. Finally,
Section IV contains the numerical experiments.

A. Basic notation
In this paper we mainly follow [22] in what concerns the

tensor notation (see also [23]). The following fonts are used:
lowercase (a) or uppercase (A) plain font for scalars, boldface
lowercase (a) for vectors, uppercase boldface (A) for matrices,
and calligraphic (A) for N -D arrays (tensors). Vectors are,
by convention, one-column matrices. The elements of vec-
tors/matrices/tensors are accessed as ai, Ai,j and Ai1,...,iN
respectively. R stands for the real line.

For a matrix A, we denote its transpose and Moore-Penrose
pseudoinverse as AT and A† respectively. The notation IM is
used for the M ×M identity matrix and 0L×K for the L×K
matrix of zeroes. We use the symbol � for the Kronecker
product of matrices (in order to distinguish it from the tensor
product ⊗), and � for the Khatri-Rao product.

For a matrix X ∈ Rm×n, we denote by σmax(X) and
σmin(X) the largest and the smallest of the min(m,n) sin-
gular values of X. We also denote by tSVDR (X) ∈ Rn×R a
matrix containing R leading right singular vectors of X.

We use vec{·} for the standard column-major vectorization
of a tensor or a matrix. Operator •p denotes contraction on the
pth index of a tensor; when contracted with a matrix, summa-
tion is always performed on the second index of the matrix,
e.g., [A •1 M]ijk =

∑
`A`jkMi`. For a tensor Y ∈ RI×J×K ,

its first unfolding is denoted by Y(1) ∈ RJK×I .

B. Tensor decompositions
For a tensor G ∈ RR1×R2×R3 and matrices U ∈ RI×R1 ,

V ∈ RJ×R2 and W ∈ RK×R3 , the following shorthand
notation is used for the multilinear product:

[[G; U,V,W]] = G •
1
U •

2
V •

3
W. (1)

which means that the (i, j, k)th entry of the above array is∑
pqr

Gpqr UipVjqWkr.

If Y = [[G; U,V,W]], the following identities hold for its
vectorization and unfoldings, respectively:

vec{Y} = (W�V�U) vec{G},
Y(1) = (W�V)G(1)UT.

If, in addition,

R1 = rank(Y(1)), R2 = rank(Y(2)), R3 = rank(Y(3)),

then the multilinear product is called Tucker decomposition of
Y and (R1, R2, R3) are called the multilinear ranks.

II. SUPER-RESOLUTION BY COUPLED MULTILINEAR
APPROXIMATION

A. The image reconstruction problem
We aim at recovering a high-resolution 3D isotropic image

(HRII) with high resolutions. This image can be viewed as
a 3-dimensional tensor Z ∈ RI×J×K , where K represents
the number of frontal slices and I and J stand for the spatial
resolutions of each slice.

We have three low-resolution 3D images (LRI) available,
that can be viewed as degraded versions of Z in one given di-
mension. The observations are denoted to as Y1 ∈ RI1×J×K ,
Y2 ∈ RI×J2×K and Y3 ∈ RI×J×K3 , respectively. The
dimensions I1, J2 and K3 stand for the degraded dimensions,
i.e., I1 � I , J2 � J and K3 � K, respectively. The
ratio of degraded to high-resolution dimensions depend on the
machine settings and acquisition sequence. Formally, we can
express the degradation model as mode product of the HRII
Z with some degradation matrices as

Y1 = Z •1 D1 + E1,

Y2 = Z •2 D2 + E2,

Y3 = Z •3 D3 + E3.

(2)

The degradation matrices Di (i = 1, 2, 3) are known down-
sampling matrices such as D1 ∈ RI1×I , D2 ∈ RJ2×J and
D3 ∈ RK3×K and depend on the sensor specificities. The
tensors Ei (i = 1, 2, 3) represent white Gaussian noise terms.

The image reconstruction problem can thus be expressed as
the following optimization problem

min
Ẑ

λ1‖Y1 − Ẑ •
1
D1‖2F + λ2‖Y2 − Ẑ •

2
D2‖2F

+λ3‖Y3 − Ẑ •
3
D3‖2F + µR(Ẑ), (3)

where the scalars λi (i = 1, 2, 3) are balance parameters that
control the weights of the LRI in the cost function. The oper-
ator R(·) is a regularization operator and performs Tikhonov
regularization [24] on the reconstructed HRII Ẑ . Its weight
is controlled by the user-specified scalar µ. Including the
regularization term in the cost function promotes smoothness
of the image in the spatial dimensions, while preserving the
details and reducing the impacts of artifacts that may occur
by performing low-rank approximation.

B. Coupled Tucker reformulation
In this paper, we propose to use a coupled tensor multilinear

(Tucker) approximation to solve the reconstruction problem
(3). We assume that the HRII Z admits a Tucker decomposi-
tion with low multilinear ranks (R1, R2, R3) as

Z = [[G; U,V,W]], (4)



3

where U ∈ RI×R1 , V ∈ RJ×R2 and W ∈ RK×R3 are the
factor matrices and G ∈ RR1×R2×R3 is the core tensor.

Under this assumption, the degradation model (2) becomes
Y1 = [[G; D1U,V,W]] + E1,

Y2 = [[G; U,D2V,W]] + E2,

Y3 = [[G; U,V,D3W]] + E3.

(5)

Furthermore, by plugging (5) in (3), solving the super-
resolution problem can be viewed as minimizing a cost
function fT (Ĝ, Û, V̂,Ŵ) with respect to the low-rank factors
U, V, W, G. This cost function is such that

fT (Ĝ, Û, V̂,Ŵ) = λ1‖Y1 − [[Ĝ; D1Û, V̂,Ŵ]]‖2F
+ λ2‖Y2 − [[Ĝ; Û,D2V̂,Ŵ]]‖2F
+ λ3‖Y3 − [[Ĝ; Û, V̂,D3Ŵ]]‖2F
+ µ‖[[Ĝ; Û, V̂,Ŵ]]‖2. (6)

C. Proposed algorithm

Rather than finding a local minimum of (6), we propose
hereafter a closed-form algorithm as a sub-optimal solution
for (5). This new approach is summarized in Algorithm 1, that
we will further refer to as isometRic Image Reconstruction by
COupled Tensor Tucker Approximation (RICOTTA).

Algorithm 1: RICOTTA
input : Y1 ∈ RI1×J×K , Y2 ∈ RI×J2×K , Y3 ∈ RI×J×K3 ,

D1, D2, D3; R1, R2, R3

output: Ŷ ∈ RI×J×K

1. U← tSVDR1

([
Y

(1)
2 Y

(1)
3

])
,

V← tSVDR2

([
Y

(2)
1 Y

(2)
3

])
,

W← tSVDR3

([
Y

(3)
1 Y

(3)
2

])
2. Ĝ ← argmin

G
fT (G, Û, V̂,Ŵ);

3. Ẑ = [[Ĝ; Û, V̂,Ŵ]].

Step 1 of RICOTTA estimates the matrix factors U, V, W
by computing the truncated SVD (tSVD) of the concatenated
unfoldings to ranks R1, R2, R3, respectively. Step 2 of
RICOTTA consists in solving the least-squares problem

argmin
Ĝ
‖X vec{Ĝ} − z‖2F + µ‖ vec{Ĝ}‖2F , (7)

with
√
λ1Ŵ� V̂�D1Û√
λ2Ŵ�D2V̂� Û√
λ3D3Ŵ� V̂� Û


︸ ︷︷ ︸

X

vec{Ĝ} =

√λ1 vec{Y1}√
λ2 vec{Y2}√
λ3 vec{Y3}


︸ ︷︷ ︸

z

. (8)

It can be solved through normal equations of the form(
XTX+ µI

)
vec{Ĝ} = XT vec{z}. (9)

The matrix on the left-hand side of (9) is

XTX = IR2R3
�λ1

(
ÛTDT

1D1Û
)

(10)

+ IR3 �λ2

(
V̂TDT

2D2V̂
)
� IR1 + λ3

(
ŴTDT

3D3Ŵ
)
� IR1R2 ,

and the vector on the right-hand side is

XTz = λ1 vec{[[Y1; Û
TDT

1 , V̂
T,ŴT]]}

+ λ2 vec{[[Y2; Û
T, V̂TDT

2 ,Ŵ
T]]}

+ λ3 vec{[[Y3; Û
T, V̂T,ŴTDT

3 ]]}. (11)

Hence (9) can be viewed as a generalized Sylvester equa-
tion and efficient solvers can be used. See Appendix A for
more details. Therefore, the total computational complexity of
RICOTTA is
• O((R1 +R2 +R3)IJK) flops for the truncated SVDs;
• O(min(R3

3+(R1R2)
3;R3

1+(R2R3)
3)) flops for solving

the Sylvester equation in Step 2.

III. EXACT RECOVERY ANALYSIS

In this section, we provide some guarantees for exact
recovery of the HRII tensor in the noiseless case. We show
that, even though the Tucker decomposition is not unique,
it is still possible to achieve exact recovery in the Tucker
model. The following theorems and their proofs are inspired
by the results of [16, Section V] for tensor reconstruction
in remote sensing. However, the model in [16] considered
observations which had two degraded dimensions. Hence the
recovery conditions that we introduce in this paper allow for
a more flexible choice of the ranks.

A. Deterministic recovery
Let us start with some deterministic results.

Theorem III.1. Let a Tucker decomposition of Z be as in
(4). We also assume that Ei (i = 1, 2, 3) in (2).

1) If

rank
([

Y
(1)
2 Y

(1)
3

])
= R1, rank

([
Y

(2)
1 Y

(2)
3

])
= R2,

rank
([

Y
(3)
1 Y

(3)
2

])
= R3, (12)

and either i) rank(D1U) = R1 or ii) rank(D2V) = R2

or iii) rank(D3W) = R3,
then there exists only one Ẑ with multilinear ranks at
most (R1, R2, R3) such that Ẑ •1 D1 = Y1, Ẑ •2 D2 =
Y2 and Ẑ •3 D3 = Y3.

2) If neither conditions i), ii) and iii) hold, then there exists
infinitely many Ẑ of the form (4) satisfying Ẑ •1 D1 =
Y1, Ẑ •2 D2 = Y2 and Ẑ •3 D3 = Y3, and ‖Z − Ẑ‖2F
can be arbitrary large.

Proof. First, by [25, Theorem 13.16], let us note that the
singular values of the matrix XTX = IR3

�A +B� IR1R2

in (10) are all sums of the pairs of eigenvalues of the matrices

A = IR2
�λ1

(
ÛTDT

1D1Û
)
+ λ2

(
V̂TDT

2D2V̂
)
� IR1

,

(13)

B = λ3

(
ŴTDT

3D3Ŵ
)
. (14)

We also assume without loss of generality that U, V, W
have orthonormal columns.
• Proof of 2) Assume that rank(D1U) < R1,

rank(D2V) < R2 and rank(D3W) < R3. If we set
Û = U, V̂ = V, Ŵ = W, then rank(A) < R1R2

(by [25]), rank(B) < R3 and rank(XTX) < R1R2R3.
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Therefore (9) is underdetermined and there is an infinite
number of solutions Ĝ ∈ RR1×R2×R3 . Note that if we
define Ẑ = [[Ĝ; Û, V̂,Ŵ]], then it is an admissible
solution, i.e., Ŷ •1 D1 = Y1, Ŷ •2 D2 = Y2 and
Ŷ •3 D3 = Y3. Due to the orthogonality of the bases,
‖Z − Ẑ‖2F = ‖G − Ĝ‖2F which can be arbitrary large
due to the non-uniqueness of the solution to (9).

• Proof of 1) Let us choose Û ∈ RI×R1 , V̂ ∈ RJ×R2 ,
Ŵ ∈ RK×R3 to be orthogonal bases of the row spaces
of
[
Y

(1)
2 Y

(1)
3

]
,
[
Y

(2)
1 Y

(2)
3

]
and

[
Y

(3)
1 Y

(3)
2

]
, respec-

tively. By (12), the ranks of the unfoldings do not drop
after degradation, hence

Û = UQU , V̂ = VQV , Ŵ = WQW ,

where QU , QV , QW are rotation matrices. Due to the
conditions on the ranks of D1U, D2V, D3W, we get
that rank(XTX) = R1R2R3 because of (13)–(14). Hence
there exists a unique solution Ĝ to (9). Finally, we note
that the reconstructed tensor can be written as

vec{Ẑ} =
(
Ŵ� V̂� Û

) (
XTX+ µI

)−1
XTz,

and does not depend on the rotation matrices
QU , QV , QW due to the definition of X. Hence
the reconstructed tensor Ẑ is unique.

B. Generic recovery
Theorem III.2. Assume that D1 ∈ RI1×I , D2 ∈ RJ2×J , and
D3 ∈ RK3×K are fixed full row-rank matrices. Let

Z = [[G; U,V,W]], (15)

where G ∈ RR1×R2×R3 , R1 ≤ I , R2 ≤ J , R3 ≤ K, and U ∈
RI×R1 , V ∈ RJ×R2 , W ∈ RK×R3 are random tensor and
matrices, distributed according to an absolutely continuous
probability distribution. We also assume that Ei (i = 1, 2, 3)
in (2).
1. If either R3 ≤ K3 or R1 ≤ I1 or R2 ≤ J2, and

R1 ≤ min(R3,K3)R2,

R2 ≤ min(R3,K3)R1

R3 ≤ min(R1, I1)min(R2, J2),

(16)

then with probability 1 there exists a unique tensor Ẑ such
that Ẑ •1 D1 = Y1, Ẑ •2 D2 = Y2 and Ẑ •3 D3 = Y3.
2. If (R1, R2, R3) > (I1, J2,K3), then the reconstruction
is non-unique, i.e. there exist an continuum of Ẑ such that
Ẑ •1 D1 = Y1, Ẑ •2 D2 = Y2 and Ẑ •3 D3 = Y3; in fact,
‖Ẑ −Z‖ can be arbitrary large.

Proof. • Proof of 2) follows from Theorem III.1, part 2).
• Proof of 1) Without loss of generality, we can replace

D1, D2, D3 with the following matrices of same size:

D1 =

[
II1
0

]T
, D2 =

[
IJ2

0

]T
, D3 =

[
IK3

0

]T
.

Let us explain why it is so for D1 ∈ RI1×I . There exists
a non-singular matrix T such that D1T = [II1 0]. If
we take Ũ = T−1U then D1U = D1Ũ. Note that a
nonsingular transformation preserves absolute continuity

of the distribution; hence U has an absolutely continuous
distribution if and only if Ũ has one.
Therefore under the assumptions on distributions of
U, V, W, the following hold with probability 1:

R1 ≤ I1 ⇒ rank(U1:I1,:) = R1,

R2 ≤ J2 ⇒ rank(V1:I2,:) = R2,

R3 ≤ K3 ⇒ rank(W1:I3,:) = R3.

Next, we will show how the other set of conditions imply
(12). We will only prove it for the first condition, and the
others are analogous. Note that we can write

Y
(1)
2 = (W�V1:J2,:)G

(2)UT,

Y
(1)
3 = (W1:K3,: �V)G(2)UT,

which are at most rank R1. Due to the semicontinu-
ity of the rank function,

[
Y

(1)
2 Y

(1)
3

]
will be gener-

ically of rank R1 if we can provide just a simple
example of U, V, W, G achieving the condition
rank

([
Y

(1)
2 Y

(1)
3

])
= R1. This is analogous to finding

and example of such U, V, W, G achieving the
conditions rank

(
Y

(1)
2

)
= R1 and rank

(
Y

(1)
3

)
= R1.

Indeed, if R1 ≤ min(R2, J2)R3 and since R3 ≤ K3,
such an example is given by

U =

[
IR1

0

]
, V =

[
IR3

0

]
, V =

[
IR3

0

]
, G(1) =

[
IR1

0

]
,

hence the proof is complete.

In Figure 1, we illustrate the statement of Theorem III.2.
The region (a) where the HRII is recoverable is pictured in
green while the red region (b) corresponds to ranks for which
the HRII is not recoverable exactly. The hatched area corre-
sponds to cases in which the conditions (16) are not satisfied.
Figure 1 indicates that one can pick two given multilinear
ranks possibly as large as the dimensions of the image, as
long as the third one remains small. As a comparison, the
theorems in [16] required both R1 and R2 to be small in
order to increase R3, which is more restrictive.

Fig. 1. Identifiability region depending on R1, R2 and R3.
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IV. EXPERIMENTS

All simulations were run on a MacBook Pro with 2.3 GHz
Intel Core i5 and 16GB RAM. The code was implemented
in MATLAB. For basic tensor operations we used TensorLab
3.0 [26]. A software reproducing our experiments is available
online at https://github.com/cprevost4/RICOTTA Software.

A. Setup and validation
We compared the reconstruction performance of RICOTTA

to two state-of-the-art reconstruction procedures [9]. The
super-resolution (SR) algorithm combines the three LRIs into
one single HRII. Compared to the previously published work,
here a preprocessing step was applied in order to cast the
acquired data and observation model into the separable form
given in Eq. 2. This consisted of a resampling, as in the native
image space, degradation occurs in the third dimension (called
slice direction). In the general case, native MRI scans may not
be strictly orthogonal (often they are manually adjusted by
the radiographer to the anatomy), so a rigid transformation
(3D rotation and translation) is applied to the 3D image.
This is achieved by an image interpolation from the native
voxel coordinates (available in the standard medical image
format, DICOM) to the target set of orthogonal coordinates.
In case the scans are already orthogonal, this reduces to a
simple permutation of the dimensions. Two SR algorithms
were considered. The first one used Tikhonov regularization
and will be referred to as SR-T. The second one used feature-
preserving Beltrami regularization [27] and will be further
denoted to as SR-B. The hyperparameters for these methods
were tuned according to the original work [9].

To evaluate the quality of the reconstructed images Ẑ , we
considered two quantitative metrics [28]. The first one was the
peak signal to noise ratio (PSNR), defined as

PSNR =
10

K

K∑
k=1

log10

(
IJE {(Z):,:,k}

‖(Z):,:,k − (Ẑ):,:,k‖2F

)
, (17)

where E{·} denoted the expectation operator. The PSNR
should be as large as possible.

The second metric was the Cross-Correlation (CC), taking
values between 0 and 1:

CC =
1

IJK

(
K∑

k=1

ρ
(
Z :,:,k, Ẑ :,:,k

))
, (18)

where ρ(·, ·) is the Pearson correlation coefficient between the
estimated and original slices.

Additionally, we considered the sharpness index (SI) [29]
that is widely used for automatic image restoration and image
quality assessment. We computed the average SI across the
two first spatial dimensions (SI1,2) and the average SI across
the frontal slice dimension (SI3). The reconstruction methods
should maximize the SI. We also showed the computational
time for each algorithm, given by the tic and toc functions
of MATLAB. These metrics will be displayed in the following
tables. The best results will be shown in bold case.

B. Data description
We assessed the performance of our approach on a set of

synthetic and real datasets. The first real dataset was a physical
phantom. The second one was a whole brain dataset for which
a healthy volunteer underwent a cerebral MRI.

1) Phantom data: A test object (physical phantom), used
for quality control and resolution assessment, was scanned
with a 3T Prisma MRI scanner (Siemens Healthineers, Erlan-
gen, Germany). First, a high-resolution image was obtained
and was used as the ground truth for comparison of the
different SR reconstruction methods. The acquisition used a
turbo spin echo sequence, with a native resolution of 1×1×1.1
mm3 (1.1 mm was the finest resolution allowed by the scanner
here), which was interpolated to 1 × 1 × 1 mm3 and zero-
padded in the third dimension to produce a reference tensor
Z ∈ R224×224×224, considered as the ground truth image
(HRII). The scan time for HRII was 6 min 30 s.

To assess the performance of RICOTTA in a controlled en-
vironment, a synthetic dataset was generated from the ground
truth data (HRII). The low-resolution observations were arti-
ficially computed from a degradation matrix D ∈ R56×224 so
that the downsampling ratio was d = 4. White Gaussian noise
was added to the observations to generate 25dB SNR.

Then we acquired actual low resolution scans of the phan-
tom in three orthogonal orientations (LRI data). Firstly, the
brain LRI data were acquired with voxels of size 1 × 1 × 4
mm3 in each of the three orientations. The three observations
were such that Y1 ∈ R56×224×224, Y2 ∈ R224×56×224 and
Y3 ∈ R224×224×56, respectively. Thus the downsampling ratio
between the HRII and the LRI was d = 4. The degradation
matrices D1, D2, D3 were selection-and-averaging matrices.
The imaging system was tuned such that D1 = D2 = D3 ∈
R56×224. The acquisition of each LRI took approximately 2
min.

Secondly, the brain LRI data were acquired with voxels of
size 1×1×8 mm3. The downsampling ratio between the HRII
and the LRI was d = 8, yielding D1 = D2 = D3 ∈ R28×224.
The acquisition of each of the three LRI in that case took
approximately 1 min.

2) Real brain data: The volunteer experiment was con-
ducted on a 3T Signa HDxt MRI scanner (General Electric,
Milwaukee, USA). The volunteer study was approved by an
ethics committee and written informed consent was obtained
(ClinicalTrials.gov identifier: NCT02887053).

Similar to the phantom experiment, we acquired a high-
resolution reference dataset of the whole brain (HRII). The
acquisition used a fast gradient echo sequence with a native
resolution of 1×1×1 mm3 which was zero-padded in the third
dimension to produce a reference tensor Z ∈ R224×224×224,
considered as the ground truth image (HRII). The scan time for
HRII was 8 min. Brain LRI data were obtained with voxels of
size 1×1×4 mm3 (downsampling ratio of 4). The acquisition
of each LRI took approximately 2 min.

Finally an additional LRI dataset was acquired, to push the
scanner resolution limit, with voxel of size 0.5 × 0.5 × 2
mm3 (total scan time was 11.5 min). Here the 3 volumes
were placed such that their intersection covered the cerebellum
region, and the SR reconstruction aimed at 0.5×0.5×0.5 mm3,
which is significantly below the typical resolution of clinical
brain scans on a 3T scanner.

C. Parameter selection

In this subsection, we investigated the impact on the
regularization parameter µ and the balance parameters λi
(i = 1, 2, 3) on the reconstruction performance. For each
dataset, we computed the reconstruction metrics as a function

https://github.com/cprevost4/RICOTTA_Software
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of several values of the parameters. For the physical phantom
dataset with d = 4, we chose R = (220, 220, 50). For the
dataset with d = 8, we chose R = (220, 220, 30). We chose
the ranks as large as possible in the plane axes, which forced
R3 to be rather small. More experiments on the choice of the
ranks are to be investigated in future works.

We proceeded as follows. First, we fixed λi = 1, (i =
1, 2, 3) and ran RICOTTA for µ ∈ {1 · 10−4, 2 · 10−4, 2 ·
10−4, . . . , 1, 2, 5}. Then, we selected the value of µ that
yielded the best reconstruction metrics. We ran RICOTTA for
λ1 = λ2 and λ3 taking values in {0.1, 0.2, 0.3, . . . , 1}. The
results were displayed on Figures 2 to 5. Similarly, we took
the values of λi yielding the best reconstruction metrics.
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Fig. 2. Reconstruction metrics as a function of µ for physical phantom dataset
(d = 4).
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Fig. 3. Reconstruction metrics as a function of λ1 and λ3 physical phantom
dataset (d = 4).
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Fig. 4. Reconstruction metrics as a function of µ for quality test phantom
(d = 8).
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D. Performance for image reconstruction

We assessed the performance of RICOTTA for image re-
construction using a quality test phantom acquisition.

1) Synthetic data (no noise).: We ran RICOTTA with mul-
tilinear ranks R = (220, 220, 50) and weights λ1 = λ2 = 0.2
and λ3 = 0.8. We set the value of the regularization parameter
µ = 0.005. The reconstruction metrics were available in
Table I. Slices of the original and reconstructed images along
the three acquisition axes were displayed in Figure 6.

Alg. PSNR CC SI1,2 SI3 Time (s)
RICOTTA 29.7842 0.99644 87.4662 508.6188 239.5144

SR-T 18.0585 0.99911 72.9317 381.5021 252.0798
SR-B 40.4194 0.99964 81.9257 451.1445 402.446

TABLE I
RECONSTRUCTION FOR SYNTHETIC DATASET (NO NOISE).
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Fig. 6. Original and reconstructed slices of the HRII for synthetic dataset (no
noise).

Although SR-B gave the best PSNR and CC, RICOTTA
yielded the highest sharpness indices and lowest computation
time.

2) Synthetic data (noisy).: We ran RICOTTA with multilin-
ear ranks R = (220, 220, 50) and weights λ1 = λ2 = 0.2 and
λ3 = 0.8. We set the value of the regularization parameter
µ = 0.005. The reconstruction metrics were available in
Table II. Slices of the original and reconstructed images along
the three acquisition axes were displayed in Figure 7.

Alg. PSNR CC SI1,2 SI3 Time (s)
RICOTTA 29.4486 0.99588 85.9152 445.3585 200.1546

SR-T 17.9778 0.99691 34.2228 199.0813 266.9506
SR-B 29.896 0.99543 33.2338 210.6509 707.259

TABLE II
RECONSTRUCTION FOR SYNTHETIC DATASET (NOISY).

RICOTTA yielded the highest sharpness indices and lowest
computation time, and its PSNR and CC were comparable to
those of SR-B and SR-T, respectively.

3) Physical phantom with d = 4.: We ran RICOTTA with
multilinear ranks R = (220, 220, 50) and weights λ1 = λ2 =
0.2 and λ3 = 0.8. We set the value of the regularization pa-
rameter µ = 0.005. The reconstruction metrics were available
in Table III. Slices of the original and reconstructed images
along the three acquisition axes were displayed in Figure 8.

Alg. PSNR CC SI1,2 SI3 Time (s)
RICOTTA 18.5317 0.96311 104.4038 528.2747 215.2314

SR-T 19.3865 0.96383 87.4277 330.5614 49.0915
SR-B 17.1011 0.96135 103.31 424.8156 219.7359

TABLE III
RECONSTRUCTION FOR QUALITY TEST PHANTOM (d = 4).

The proposed approach provided slightly lower reconstruc-
tion metrics than SR-T, but had the best sharpness indices.
The computation time of RICOTTA was comparable to that
of SR-B, but had better reconstruction performance. The
reconstructed image displays accurately the details along the
three axes.
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Fig. 7. Original and reconstructed slices of the HRII for synthetic dataset
(noisy).
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Fig. 8. Original and reconstructed slices of the HRII for quality test phantom
(d = 4).

4) Physical phantom with d = 8.: We ran RICOTTA with
multilinear ranks R = (220, 220, 30) and weights λ1 = λ2 =
1 and λ3 = 0.8. We set the value of the regularization parame-
trer µ = 0.02. The reconstruction metrics were available in
Table IV and slices of the original and reconstructed images
were displayed in Figure 9.

Alg. PSNR CC SI1,2 SI3 Time (s)
RICOTTA 20.9511 0.96332 80.2722 429.7209 11.9669

SR-T 18.0914 0.96257 84.2081 329.2856 15.3575
SR-B 19.8084 0.96137 95.8012 397.4636 219.3982

TABLE IV
RECONSTRUCTION FOR QUALITY TEST PHANTOM (d = 8).

RICOTTA yielded better PSNR, CC and SI in the frontal
dimension compared to the SR-reconstruction method, but
slightly lower SI in the plane dimensions. It had the lowest
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Fig. 9. Original and reconstructed slices of the HRII for quality test phantom
(d = 8).

computation time for our implementation. The visual quality
of the reconstruction was similar to that of SR-T and SR-B.

5) Reconstruction for brain scans (Brain1): We ran RI-
COTTA with multilinear ranks R = (220, 220, 50) and
weights λ1 = λ2 = 0.2 and λ3 = 0.8. We set the value of
the regularization parametrer µ = 0.001. The results were
available in Table V and in Figure 10.

Alg. PSNR CC SI1,2 SI3 Time (s)
RICOTTA 24.7645 0.91535 174.3469 580.9331 236.5069

SR-T 22.5571 0.88549 278.0689 422.8249 266.2802
SR-B 22.7096 0.88426 264.0003 447.6295 361.3989

TABLE V
RECONSTRUCTION FOR BRAIN DATASET (d = 4).

The proposed algorithm provided better PSNR and CC than
the state-of-the-art. In particular, the SI in the frontal dimen-
sion was way higher than that provided by the SR algorithms.
RICOTTA had the lowest computation time. However, the
sharpness index in the two first dimensions was the lowest.

For this dataset, the reconstruction time was comparable
to the acquisition time of the reference HRII. However,
performing reconstruction rather than full acquisition has the
advantage of reducing possible artifacts due to patient motion.
Furthermore, the computation time of RICOTTA could be
further reduced by considering a block-wise approach.

6) Reconstruction for brain scans (Brain2): We ran RI-
COTTA with multilinear ranks R = (90, 90, 20) and weights
λ1 = λ2 = 0.1 and λ3 = 1. We set the value of the
regularization parametrer µ = 0.005. Due to the sensor’s
physical limitations, no reference was available for this dataset.
The sharpness indices and computation time were available in
Table VI. Slices of the reconstructed images were displayed
in Figure 11.

RICOTTA provided the best SI in the third dimension and
lowest computation time. Its SI in the plane directions was
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Fig. 10. Original and reconstructed slices of the HRII for real brain data
(d = 4).

Alg. SI1,2 SI3 Time (s)
RICOTTA 9.1968 30.1341 1.0286

SR-T 17.1788 11.3023 1.3088
SR-B 9.1231 11.6167 7.0642

TABLE VI
RECONSTRUCTION FOR BRAIN DATASET (d = 5).

comparable to that of SR-B.

V. CONCLUSION

In this paper, we proposed a novel tensor method for
reconstructing MRI high-resolution 3D volumes. The proposed
algorithm achieves exact reconstruction for a variety of multi-
linear ranks. Our simulations on synthetic and real data shows
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(cervelet).
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that RICOTTA performs good reconstruction with a compet-
itive time. We hope that this work opens new perspectives
on using tensor factorization in medical imaging applications.
The proposed method should be applicable to a wide range of
MRI acquisition techniques, e.g., T1-weighted, T2-weighted,
or diffusion-weighted imaging in the brain, heart or other
organs. It could help improve the trade-off between scan time,
resolution, SNR and contrast in MRI. Still several questions
remain open, such as the choice of the model parameters,
including the multilinear ranks. Different regularization op-
erators can be envisioned, such as Beltrami regularization, as
considered in [9]. It is also possible to envision an algorithm
capable to account for (possibly non-orthogonal) rotation
operators between the observations and the HRII. This matter
is of great interest and will be investigated in future works.

APPENDIX

Equation (9) can be seen as a generalized Sylvester equation
of the form

AĜB+CĜD = E, (19)

where G is an unfolding of Ĝ.
We propose two options for converting (9) into (19). In the

first case, Ĝ = G(1)T ∈ RR1×R2R3 ,

A = λ1
(
UTDT

1D1U
)
, B = IR2R3 , C = IR1 ,

D = λ2
(
VTDT

2D2V
)
+ λ3

(
WTDT

3D3W
)
,

and E ∈ RR2R3×R1 is a matricization of XTz.
In the second case, Ĝ = G(3) ∈ RR1R2×R3 ,

A = λ1
(
UTDT

1D1U
)
+ λ2

(
VTDT

2D2V
)
,

B = IR3
, C = IR1R2

, D = λ3
(
WTDT

3D3W
)
,

and E ∈ RR1R2×R3 is a matricization of XTz.
The two options are equivalent and the fastest one is chosen

according to the multilinear rank. The complexity for solving
the generalized Sylvester equation (19) is thus O(m3 + n3)
flops for Ĝ ∈ Rm×n if fast solvers, such as Hessenberg-Schur
or Bartels-Stewart methods [30], [31], [32], are used.
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