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The digital marketplace is rapidly changing the global music industry. Image © Pavel Ignatov | 123rf.com

Operations research (O.R.) is a diverse �eld centered on the modeling and solving of complex
problems. The robustness of O.R. techniques is evidenced in their successful applications to
problems as diverse as �nding optimal phone keyboard layouts [26] and modi�ed driven equilibrium
fourier transform sequence optimization to improve 3-D brain imaging scans [7]. Apart from
addressing problems of industrial utility and health, operations research has also been applied to
problems farther a�eld in art and design such as architectural layouts [8] and the �nding of musical
solutions that satisfy compositional constraints [28, 10]. It is the last category of problems that
forms the focus of this article – the role of operations research in state-of-the-art automatic
composition systems, the challenges and opportunities. In particular, we highlight the contributions
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of O.R. modeling in the context of the MorpheuS project [30, 15]. For a more complete overview of
music generation systems, the reader is referred to Herremans et al. (2018) [17].

The Digital Music Economy
The digital marketplace is rapidly changing the global music industry. In 2014, the industry’s digital
revenue increased by 6.9 percent, reaching a total of $6.85 billion [9]. Vast amounts of music-related
apps have surfaced for smartphones. These easy-to-use and seemingly simple apps are powered by
clever algorithms, often inspired by techniques common to O.R.; cases in point include Shazam and
Spotify. In this article, we aim to highlight an up-and-coming area that has only recently gained
popularity: automatic music generation.

Automatic music generation serves many purposes. The objective is not to replace composers – the
algorithms still rely heavily on human-conceived designs and are nowhere near producing high art
music – but serve the purpose of creating changeable music in scalable ways for more mundane
recurring scenarios. Imagine a world where small independent video makers can access large
amounts of copyright-free and bespoke music for use as background music to their videos, or where
a user can generate a novel soundtrack to accompany their vacation photo slideshow for online
sharing. What if a computer game could have different and new music that follows the suspense
each time the player enters the game? It is scenarios like these that have provided researchers with
the motivation for developing methods for automatic music generation.

The idea of automatically composing music existed long before the �rst computers were built. In the
words of Ada Lovelace, widely regarded to be the world’s �rst programmer, as she wrote about the
general-purpose computing machine:

“[The Engine’s] operating mechanism might act upon other things besides numbers [...] Supposing, for
instance, that the fundamental relations of pitched sounds in the signs of harmony and of musical
composition were susceptible of such expressions and adaptations, the engine might compose
elaborate and scienti�c pieces of music of any degree of complexity or extent.”  
– Lovelace, 1843 [18]

Today, several techniques exist for generating music that sounds reasonable at the local scale. The
big challenge that the �eld faces is that of creating music that possesses long-term structure and
large-scale coherence. We believe that looking at music generation as an optimization problem
offers a viable framework for solving this problem.

Optimization-Based Approaches to Music Generation
Composing music can be construed as a constraint satisfaction or combinatorial optimization
problem. Composers such as Stravinsky have likened the composition process to one of following
self-imposed constraints:

“My freedom consists in my moving about within the narrow frame that I have assigned myself for
each one of my undertakings. ... The more constraints one imposes, the more one frees one’s self of
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the chains that shackle the spirit.”  
– Stravinsky (as quoted in Strauss [27])

The task is then to �nd the right combination of notes that best satis�es these constraints. But how
does one judge if a piece of music is good, or if one solution is better than another? The late music
theorist Edward Cone has written that “a good composition manifests its structural principles” and
that most music criticism “sets about discovering the standards implied by a given work and testing
how well it lives up to them” [6]. This theory thus offers a way to assess the quality of a composition,
but evaluation – how we construct an objective function that effectively measures the quality of
music – remains a central challenge in music generation.

Quantifying Music Quality

Figure 1: Multiple embedded helices in the spiral array representing pitch classes, major and minor
chords (triads), and major and minor keys (Figure reproduced from Chew 2014, p.59 [4]).

There are three main ways to evaluate a musical piece. The �rst is via human evaluation. Arguably
the best way to �nd out if a piece sounds good is to test it in front of a live audience. Unfortunately,
this technique does not scale well and would be impossible to embed in a quantitative algorithm as
it would cause huge delay. This problem is often referred to as the human �tness bottleneck [2].

Next, we could turn to music theory to obtain a set of rules that de�nes what is permissible in a
given style. Music generation algorithms that rely on rules focus primarily on counterpoint, a style of
music popular in the Renaissance period that has multiple harmonically interdependent voices [10,
23]. Counterpoint is one of the most formally de�ned musical styles; for most other genres of music,
no such well-behaved set of rules exist.
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A third, more robust technique is to use machine learning to construct the objective function. Since
the 1950s, Markov models have been used to capture statistical properties of musical pieces and
genres [24, 3]. While these models can capture many aspects and features of music, their traditional
sampling methods (e.g., random walk, Gibbs sampling) do not provide a method for generating
structure and thus the resulting pieces often lack long-term coherence. More recently there has been
interest in using deep neural networks for composition [16,17], yet the problem of constraining long-
term structure remains.

Herremans et al. [12] developed a method to integrate Markov models in the objective function of a
metaheuristic. The approach allows for the resulting music to be evaluated based on a machine-
learned model, yet supports the use of hard constraints to �x a larger structure. In our MorpheuS
system [13, 14], this approach is further expanded to tackle complex polyphonic music and
automatically detected recurring patterns. We also developed a way to combine machine learning
and music theory to construct a new type of objective function based on musical tension.

Figure 2: Spiral array pitch class, chord, and key representations: chords are weighted combination of
their component pitches, and keys of their de�ning tonic (rooted on the �rst scale degree),
subdominant (rooted on the fourth scale degree), and dominant (rooted on the �fth scale degree).
(Figures reproduced from Chew 2014, p.54-55 [4]).

Representing Music
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Figure 3. Elaine Chew performing with the MuSA_RT app [31] at the New Resonances Concert of the
2012 International Computer Music Modeling and Retrieval Conference.

In order to work with music in a quantitative way, we need a mathematical representation. Typically,
music consists of a number of notes, each with properties such as pitch (often expressed as a MIDI
pitch), duration, start time and beat number. In the MorpheuS project, the music generation problem
is re-cast as one of �nding new pitches that satisfy certain structural constraints given a rhythm
template extracted from an existing piece. Our goal is thus to morph a pre-existing piece into a new
composition.

Almost all the music that we hear is tonal, i.e., adhering to a system of hierarchical pitch relations.
The tonal properties of a piece of music and how they evolve over time shape the listener’s
perception of musical stability and tension. The tension pro�le of a piece is one of the main de�ning
characteristics that imbues upon the piece long-term structural, which we use as a structural
constraint in the MorpheuS project. This tension pro�le is calculated based on the spiral array model
for tonality [4].

The spiral array consists of multiple embedded helices (see Figure 1), representing tonal entities at
three hierarchical levels: pitch classes, chords and keys. The pitch class helix is effectively the line of
�fths (most simply explained as pitches having a simple 2:3 frequency ratio) wrapped around a
cylinder so that pitch classes align vertically every four quarter turns. Chords and keys are each
generated as convex combinations of their de�ning elements as shown in Figure 2.

A real-time implementation of the spiral array and its tonal analysis algorithms has been used in live
performances [5] to visualize tonal relationships in a music piece (see Figure 3).
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Tension Ribbons

Figure 4: Joplin’s German Sixth chord mapped to the spiral array; the chord in the key of Eb major
consists of the notes Cb, Eb, F# and A.

Leonard Meyer [22] ascribes the emotional content of music to the composer’s choreography of
expectation. Expectation suspended elicits tension, and expectation ful�lled leads to resolution of
that tension. The MorpheuS system aims to recreate the palpable tension that music generates; to
this end, we have developed a model that captures tonal tension based on the spiral array [13].

The spiral array tension model �rst segments a piece into equal length subdivisions and maps the
notes to clouds of points in the array. Three aspects of tonal tension are captured using these
clouds: the cloud diameter measures the dispersion (an indicator of dissonance) of note clusters in
tonal space; the cloud momentum measures the movement of pitch sets (change in tonal context) in
the spiral array; and, tensile strain measures the distance between the local and global tonal context.
Each attribute can be visualized as tension ribbons on the score (see Figure 5).

Figure 4, shows a well-known tense chord in the spiral array: the German Sixth. It is noticeably
spread out in the tonal space. The German Sixth chord occurs on the last beat of the second bar of
Scott Joplin’s “Binks’ Waltz” (Figure 5). When this chord occurs, there is a noticeable increase in the
tension ribbons representing cloud diameter and cloud momentum in the spiral array model. The
tensile strain starts to increase slightly earlier, adding to the buildup of tonal suspense leading up to
the German Sixth chord.
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(a) Cloud diameter

(b) Cloud momentum

(c) Tensile strain

Figure 5: Tension ribbons of the German Sixth chord in Scott Joplin’s Binks’ Waltz (1905).

Patterns in Music
Repetition forms another important aspect of music structure. Recurrent themes and motives are
reinforced with each repetition and stay in the listener’s mind through the listening experience. A
study by Margulis [19] revealed that listeners rated unfamiliar music that had repetitions as more
enjoyable, interesting and artistic than the original non-repeated version. With repetition, patterns
begin to form; Plato alludes to the importance of patterns in music:

“I would teach children music, physics and philosophy; but most importantly music, for the patterns in
music and all the arts are the keys to learning.”  
– Plato as cited by Plato & Bloom [25]

Thus, in MorpheuS, we aim to generate music with patterns having the same length and that recur at
the same places as the original template piece. In order to generate music with recurring patterns,
we need to �rst �nd them. Compression algorithms such as SIATECCompress [20] and COSIATEC
[21] can be used to �nd maximal translatable patterns, i.e., the largest subset of consecutive notes
that recur either verbatim or transposed by a constant interval.

Using the elements discussed above, we can de�ne music generation as an optimization problem.
MorpheuS takes as an input a template piano piece. From the exemplar piece, the rhythmic structure
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is extracted and retained as a template. The algorithm aims to �nd new pitches for each note in the
original piece, and thus morph the piece into a new one. Recurring patterns in the template piece are
detected using COSIATEC. These patterns form hard constraints during the optimization so as to
enforce perceptible musical motifs and to ensure long-term coherence. The objective of the
algorithm is to generate music with a speci�c tension pro�le; the user can choose to have the
algorithm match the tension pro�le of the template piece, or follow a user-given tension pro�le.

To solve the multi-objective tension pro�le matching problem, we have implemented an e�cient
variable neighborhood search (VNS) metaheuristic based on the algorithm developed by Herremans
[11] for generating counterpoint music. This original VNS has been extended – with a move that
changes multiple notes in a time slice – in order to handle more complex polyphonic music.

Conclusions
Systems like MorpheuS can now compose music with limited global structure, which may well be a
starting point for scalable systems for automatic music generation. The output is promising, but still
falls short of human creations. Take, for example, the issue of playability. The MopheuS-Haydn piece
contains many awkward leaps and hand crossings; although these are not impossible, they do not
often appear in human compositions. In the literature, apart from some algorithms for rudimentary
�ngering [1, 29], quantifying playability (which is far more than �ngering) remains an important
challenge.

Secondly, little is known about how the interactions of local and global patterns generate coherence.
Could there be a way to generate viable patterns without relying on a template?

Third, the shaping of music is closely tied to body movement, and feelings such as stress and lilt are
part and parcel of musical communication. There are currently no known methods for, say,
generating a lilting feeling or incorporating a danceability factor, which is not automatic even when
the time signature is three-quarters (as in a waltz).

Finally, aspects such as having the time to breathe and to respire are essential components of
human and thus musical communication. How does a composer modulate, beyond tonal tension,
other factors for moments of release? As we consider and tackle these challenges, we �nd
ourselves faced with the deeper question of what it means to be human.
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