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of O.R. modeling in the context of the MorpheuS project [30,[START_REF] Herremans | MorpheuS: generating structured music with constrained patterns and tension[END_REF]. For a more complete overview of music generation systems, the reader is referred to [START_REF] Herremans | A Functional Taxonomy of Music Generation Systems[END_REF] [START_REF] Herremans | A Functional Taxonomy of Music Generation Systems[END_REF].

The Digital Music Economy

The digital marketplace is rapidly changing the global music industry. In 2014, the industry's digital revenue increased by 6.9 percent, reaching a total of $6.85 billion [START_REF]Digital Music Report 2015 -Charting the path to sustainable growth[END_REF]. Vast amounts of music-related apps have surfaced for smartphones. These easy-to-use and seemingly simple apps are powered by clever algorithms, often inspired by techniques common to O.R.; cases in point include Shazam and Spotify. In this article, we aim to highlight an up-and-coming area that has only recently gained popularity: automatic music generation.

Automatic music generation serves many purposes. The objective is not to replace composers -the algorithms still rely heavily on human-conceived designs and are nowhere near producing high art music -but serve the purpose of creating changeable music in scalable ways for more mundane recurring scenarios. Imagine a world where small independent video makers can access large amounts of copyright-free and bespoke music for use as background music to their videos, or where a user can generate a novel soundtrack to accompany their vacation photo slideshow for online sharing. What if a computer game could have different and new music that follows the suspense each time the player enters the game? It is scenarios like these that have provided researchers with the motivation for developing methods for automatic music generation.

The idea of automatically composing music existed long before the rst computers were built. In the words of Ada Lovelace, widely regarded to be the world's rst programmer, as she wrote about the general-purpose computing machine: "[The Engine's] operating mechanism might act upon other things besides numbers [...] Supposing, for instance, that the fundamental relations of pitched sounds in the signs of harmony and of musical composition were susceptible of such expressions and adaptations, the engine might compose elaborate and scienti c pieces of music of any degree of complexity or extent." -Lovelace, 1843 [START_REF] Lovelace | Notes by AAL" [Augusta Ada Lovelace[END_REF] Today, several techniques exist for generating music that sounds reasonable at the local scale. The big challenge that the eld faces is that of creating music that possesses long-term structure and large-scale coherence. We believe that looking at music generation as an optimization problem offers a viable framework for solving this problem.

Optimization-Based Approaches to Music Generation

Composing music can be construed as a constraint satisfaction or combinatorial optimization problem. Composers such as Stravinsky have likened the composition process to one of following self-imposed constraints: "My freedom consists in my moving about within the narrow frame that I have assigned myself for each one of my undertakings. ... The more constraints one imposes, the more one frees one's self of The task is then to nd the right combination of notes that best satis es these constraints. But how does one judge if a piece of music is good, or if one solution is better than another? The late music theorist Edward Cone has written that "a good composition manifests its structural principles" and that most music criticism "sets about discovering the standards implied by a given work and testing how well it lives up to them" [START_REF] Cone | Analysis Today[END_REF]. This theory thus offers a way to assess the quality of a composition, but evaluation -how we construct an objective function that effectively measures the quality of music -remains a central challenge in music generation. 

Quantifying Music Quality

[4]).

There are three main ways to evaluate a musical piece. The rst is via human evaluation. Arguably the best way to nd out if a piece sounds good is to test it in front of a live audience. Unfortunately, this technique does not scale well and would be impossible to embed in a quantitative algorithm as it would cause huge delay. This problem is often referred to as the human tness bottleneck [START_REF] Biles | Autonomous GenJam: eliminating the tness bottleneck by eliminating tness[END_REF].

Next, we could turn to music theory to obtain a set of rules that de nes what is permissible in a given style. Music generation algorithms that rely on rules focus primarily on counterpoint, a style of music popular in the Renaissance period that has multiple harmonically interdependent voices [START_REF] Herremans | Composing fth species counterpoint music with a variable neighborhood search algorithm[END_REF][START_REF] Phon-Amnuaisuk | The four-part harmonisation problem: a comparison between genetic algorithms and a rule-based system[END_REF]. Counterpoint is one of the most formally de ned musical styles; for most other genres of music, no such well-behaved set of rules exist. A third, more robust technique is to use machine learning to construct the objective function. Since the 1950s, Markov models have been used to capture statistical properties of musical pieces and genres [START_REF] Pinkerton | Information theory and melody[END_REF][START_REF] Brooks | An experiment in musical composition[END_REF]. While these models can capture many aspects and features of music, their traditional sampling methods (e.g., random walk, Gibbs sampling) do not provide a method for generating structure and thus the resulting pieces often lack long-term coherence. More recently there has been interest in using deep neural networks for composition [START_REF] Herremans | Modelling Musical Context with Word2Vec[END_REF][START_REF] Herremans | A Functional Taxonomy of Music Generation Systems[END_REF], yet the problem of constraining longterm structure remains.

Herremans et al. [START_REF] Herremans | Generating structured music for bagana using quality metrics based on Markov models[END_REF] developed a method to integrate Markov models in the objective function of a metaheuristic. The approach allows for the resulting music to be evaluated based on a machinelearned model, yet supports the use of hard constraints to x a larger structure. In our MorpheuS system [START_REF] Herremans | Tension ribbons: Quantifying and visualising tonal tension[END_REF][START_REF] Herremans | MorpheuS: automatic music generation with recurrent pattern constraints and tension pro les[END_REF], this approach is further expanded to tackle complex polyphonic music and automatically detected recurring patterns. We also developed a way to combine machine learning and music theory to construct a new type of objective function based on musical tension. In order to work with music in a quantitative way, we need a mathematical representation. Typically, music consists of a number of notes, each with properties such as pitch (often expressed as a MIDI pitch), duration, start time and beat number. In the MorpheuS project, the music generation problem is re-cast as one of nding new pitches that satisfy certain structural constraints given a rhythm template extracted from an existing piece. Our goal is thus to morph a pre-existing piece into a new composition.

Almost all the music that we hear is tonal, i.e., adhering to a system of hierarchical pitch relations.

The tonal properties of a piece of music and how they evolve over time shape the listener's perception of musical stability and tension. The tension pro le of a piece is one of the main de ning characteristics that imbues upon the piece long-term structural, which we use as a structural constraint in the MorpheuS project. This tension pro le is calculated based on the spiral array model for tonality [START_REF] Chew | Mathematical and Computational Modeling of Tonality: Theory and Applications[END_REF].

The spiral array consists of multiple embedded helices (see Figure 1), representing tonal entities at three hierarchical levels: pitch classes, chords and keys. The pitch class helix is effectively the line of fths (most simply explained as pitches having a simple 2:3 frequency ratio) wrapped around a cylinder so that pitch classes align vertically every four quarter turns. Chords and keys are each generated as convex combinations of their de ning elements as shown in Figure 2.

A real-time implementation of the spiral array and its tonal analysis algorithms has been used in live performances [START_REF] Chew | MuSA. RT: music on the spiral array. real-time[END_REF] to visualize tonal relationships in a music piece (see Figure 3). Leonard Meyer [START_REF] Meyer | Emotion and Meaning in Music[END_REF] ascribes the emotional content of music to the composer's choreography of expectation. Expectation suspended elicits tension, and expectation ful lled leads to resolution of that tension. The MorpheuS system aims to recreate the palpable tension that music generates; to this end, we have developed a model that captures tonal tension based on the spiral array [START_REF] Herremans | Tension ribbons: Quantifying and visualising tonal tension[END_REF].

The spiral array tension model rst segments a piece into equal length subdivisions and maps the notes to clouds of points in the array. Three aspects of tonal tension are captured using these clouds: the cloud diameter measures the dispersion (an indicator of dissonance) of note clusters in tonal space; the cloud momentum measures the movement of pitch sets (change in tonal context) in the spiral array; and, tensile strain measures the distance between the local and global tonal context. Each attribute can be visualized as tension ribbons on the score (see Figure 5).

Figure 4, shows a well-known tense chord in the spiral array: the German Sixth. It is noticeably spread out in the tonal space. The German Sixth chord occurs on the last beat of the second bar of Scott Joplin's "Binks' Waltz" (Figure 5). When this chord occurs, there is a noticeable increase in the tension ribbons representing cloud diameter and cloud momentum in the spiral array model. The tensile strain starts to increase slightly earlier, adding to the buildup of tonal suspense leading up to the German Sixth chord. 

Patterns in Music

Repetition forms another important aspect of music structure. Recurrent themes and motives are reinforced with each repetition and stay in the listener's mind through the listening experience. A study by Margulis [START_REF] Margulis | Aesthetic responses to repetition in unfamiliar music[END_REF] revealed that listeners rated unfamiliar music that had repetitions as more enjoyable, interesting and artistic than the original non-repeated version. With repetition, patterns begin to form; Plato alludes to the importance of patterns in music:

"I would teach children music, physics and philosophy; but most importantly music, for the patterns in music and all the arts are the keys to learning." -Plato as cited by Plato & Bloom [START_REF] Plato | The republic of Plato[END_REF] Thus, in MorpheuS, we aim to generate music with patterns having the same length and that recur at the same places as the original template piece. In order to generate music with recurring patterns, we need to rst nd them. Compression algorithms such as SIATECCompress [20] and COSIATEC [START_REF] Meredith | Music analysis and point-set compression[END_REF] can be used to nd maximal translatable patterns, i.e., the largest subset of consecutive notes that recur either verbatim or transposed by a constant interval.

Using the elements discussed above, we can de ne music generation as an optimization problem. MorpheuS takes as an input a template piano piece. From the exemplar piece, the rhythmic structure is extracted and retained as a template. The algorithm aims to nd new pitches for each note in the original piece, and thus morph the piece into a new one. Recurring patterns in the template piece are detected using COSIATEC. These patterns form hard constraints during the optimization so as to enforce perceptible musical motifs and to ensure long-term coherence. The objective of the algorithm is to generate music with a speci c tension pro le; the user can choose to have the algorithm match the tension pro le of the template piece, or follow a user-given tension pro le.

To solve the multi-objective tension pro le matching problem, we have implemented an e cient variable neighborhood search (VNS) metaheuristic based on the algorithm developed by Herremans [START_REF] Herremans | Compose≡Compute -Computer Generation and Classi cation of Music Through Operations Research Methods[END_REF] for generating counterpoint music. This original VNS has been extended -with a move that changes multiple notes in a time slice -in order to handle more complex polyphonic music.

Conclusions

Systems like MorpheuS can now compose music with limited global structure, which may well be a starting point for scalable systems for automatic music generation. The output is promising, but still falls short of human creations. Take, for example, the issue of playability. The MopheuS-Haydn piece contains many awkward leaps and hand crossings; although these are not impossible, they do not often appear in human compositions. In the literature, apart from some algorithms for rudimentary ngering [START_REF] Balliauw | A variable neighborhood search algorithm to generate piano ngerings for polyphonic sheet music[END_REF]29], quantifying playability (which is far more than ngering) remains an important challenge.

Secondly, little is known about how the interactions of local and global patterns generate coherence. Could there be a way to generate viable patterns without relying on a template? Third, the shaping of music is closely tied to body movement, and feelings such as stress and lilt are part and parcel of musical communication. There are currently no known methods for, say, generating a lilting feeling or incorporating a danceability factor, which is not automatic even when the time signature is three-quarters (as in a waltz).

Finally, aspects such as having the time to breathe and to respire are essential components of human and thus musical communication. How does a composer modulate, beyond tonal tension, other factors for moments of release? As we consider and tackle these challenges, we nd ourselves faced with the deeper question of what it means to be human.
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Figure 1 :

 1 Figure 1: Multiple embedded helices in the spiral array representing pitch classes, major and minor chords (triads), and major and minor keys (Figure reproduced from Chew 2014, p.59[START_REF] Chew | Mathematical and Computational Modeling of Tonality: Theory and Applications[END_REF]).
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Figure 2 :

 2 Figure 2: Spiral array pitch class, chord, and key representations: chords are weighted combination of their component pitches, and keys of their de ning tonic (rooted on the rst scale degree), subdominant (rooted on the fourth scale degree), and dominant (rooted on the fth scale degree). (Figures reproduced from Chew 2014, p.54-55 [4]).

Figure 3 .

 3 Figure 3. Elaine Chew performing with the MuSA_RT app [31] at the New Resonances Concert of the 2012 International Computer Music Modeling and Retrieval Conference.

Figure 4 :

 4 Figure 4: Joplin's German Sixth chord mapped to the spiral array; the chord in the key of Eb major consists of the notes Cb, Eb, F# and A.
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 145 Figure 5: Tension ribbons of the German Sixth chord in Scott Joplin's Binks' Waltz (1905).
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