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Abstract
This work presents a new procedure for obtaining predictive distributions in the context of Gaus-
sian process (GP) modeling, with a relaxation of the interpolation constraints outside some ranges
of interest: the mean of the predictive distributions no longer necessarily interpolates the observed
values when they are outside ranges of interest, but are simply constrained to remain outside. This
method called relaxed Gaussian process (reGP) interpolation provides better predictive distribu-
tions in ranges of interest, especially in cases where a stationarity assumption for the GP model
is not appropriate. It can be viewed as a goal-oriented method and becomes particularly interest-
ing in Bayesian optimization, for example, for the minimization of an objective function, where
good predictive distributions for low function values are important. When the expected improve-
ment criterion and reGP are used for sequentially choosing evaluation points, the convergence of
the resulting optimization algorithm is theoretically guaranteed (provided that the function to be
optimized lies in the reproducing kernel Hilbert spaces attached to the known covariance of the un-
derlying Gaussian process). Experiments indicate that using reGP instead of stationary GP models
in Bayesian optimization is beneficial.

Keywords: Gaussian processes; Bayesian optimization; Expected improvement; Goal-oriented
modeling; Reproducing kernel Hilbert spaces

1. Introduction

1.1 Context and Motivation

Gaussian process (GP) interpolation and regression (see, e.g., Stein, 1999; Rasmussen and Williams,
2006) is a very classical method for predicting an unknown function from data. It has found applica-
tions in active learning techniques, and notably in Bayesian optimization, a popular derivative-free
global optimization technique for functions whose evaluations are time-consuming.

A GP model is defined by a mean and a covariance functions, which are generally selected from
data within parametric families. The most popular models assume stationarity and rely on standard
covariance functions such as the Matérn covariance. The assumption of stationarity yields models
with relatively low-dimensional parameters. However, such a hypothesis can sometimes result in
poor models when the function to be predicted has different scales of variation or different local
regularities across the domain.
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Figure 1: Left: the Steep function. Right: same illustration with a restrained range on the y-axis.
The variations on the left overshadow the global minimum on the right.

This is the case for instance in the motivating example given by Gramacy and Lee (2008), or
in the even simpler toy minimization problem shown in Figure 1. The objective function in this
example, which we shall call the Steep function, is smooth with an obvious global minimum around
the point x = 8. However, the variations around the minimum are overshadowed by some steep
variations on the left. Figure 2 shows a stationary GP fit with n = 8 points, where the parameters of
the covariance function have been selected using maximum likelihood. Observe that the confidence
bands are too large and that the conditional mean varies too much in the neighborhood of the global
minimum, consistently with the stationary GP model that reflects the prior that our function oscil-
lates around a mean value with a constant scale of variations. In this case, even if GP interpolation is
consistent (Vazquez and Bect, 2010a), stationarity seems an unsatisfactory assumption for the Steep
function. One expects Bayesian optimization techniques to be somehow inefficient on this problem
with such a stationary model, whose posterior distributions are too pessimistic in the region of the
minimum.

Nevertheless, the Steep function has the characteristics of an easy optimization problem: it has
only two local minima, with the global minimum lying in a valley of significant volume. Con-
sequently, a Bayesian optimization technique could be competitive if it relied on a model giving
good predictions in regions where the function takes low values. In this work, we propose to ex-
plore goal-oriented GP modeling, where we want predictive models in regions of interest, even if it
means being less predictive elsewhere.

1.2 Related Works

Going beyond the stationary hypothesis has been an active direction of research. With maybe a
little bit of oversimplification, one can distinguish two categories of approaches that all use station-
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Figure 2: Left: GP fit on the Steep function. Right: same illustration with a restrained range on
the y-axis. The squares represent the data. The red line represents the posterior mean µn

given by the model and the gray envelopes represent the associated uncertainties.

ary Gaussian processes as a core building block: local models and transformation/composition of
models.

1.2.1 LOCAL MODELS

A first class of local models is obtained by considering partitions of the input domain with different
GP models on each subset. Partitions can be built by splitting the domain along the coordinate axes.
This is the case of the treed Gaussian process models proposed by Gramacy and Lee (2008), which
combines a fully Bayesian framework and the use of RJ-MCMC techniques for the inference, or the
trust-region method by Eriksson et al. (2019). Park and Apley (2018) also propose partition-based
local models built by splitting the domain along principal component directions. In such techniques,
there are parameters (often many of them) related to, e.g., the way the partitions evolve with the data,
the size of the partitions, or how local Gaussian processes interact with each other.

A second class of local models is obtained by spatially weighting one or several GP mod-
els. Many schemes have been proposed, including methods based on partition of unity (Nott and
Dunsmuir, 2002), weightings of covariance functions (Pronzato and Rendas, 2017; Rivoirard and
Romary, 2011), and convolution techniques (see, e.g., Higdon, 1998; Gibbs, 1998; Higdon, 2002;
Ver Hoef et al., 2004; Stein, 2005). Let us also mention data-driven aggregation techniques: com-
posite Gaussian process models (Ba and Joseph, 2012), and mixture of experts techniques (see, e.g.,
Tresp, 2001; Rasmussen and Ghahramani, 2002; Meeds and Osindero, 2006; Yuan and Neubauer,
2009; Yang and Ma, 2011; Yuksel et al., 2012). In the latter framework, the weights are called
gating functions and the estimation of the parameters and the inference are usually performed using
EM, MCMC, or variational techniques. Weighting methods generally have parameters specifying
weighting functions, with an increased need to watch for overfitting phenomena.
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1.2.2 TRANSFORMATION AND COMPOSITION OF MODELS

A first technique for composition of models consists in using a parametric transformation of a GP
(Rychlik et al., 1997; Snelson et al., 2004).

Another route is to transform the input domain, using for instance a parametric density (Xiong
et al., 2007), or other parametric transformations involving possible dimension reduction (Marmin
et al., 2018). Bodin et al. (2020) proposed a framework that uses additional input variables, serving
as nuisance parameters, to smooth out some badly behaved data. The practitioner has to specify a
prior over the variance of the nuisance parameter and inference is based on MCMC.

Lázaro-Gredilla (2012) takes the step of choosing a GP prior on the output transform and resorts
to variational inference techniques for inference. This type of idea can be viewed as an ancestor of
deep Gaussian processes (see, e.g., Damianou and Lawrence, 2013; Dunlop et al., 2018; Hebbal
et al., 2021; Jakkala, 2021; Bachoc and Lagnoux, 2021), which stack layers of linear combinations
of GPs. The practitioner has to specify a network structure among other parameters and resort to
variational inference.

Recently, Picheny et al. (2019) proposed another approach where prediction is made only from
pairwise comparisons between data points, relying on the variational framework of ordinal GP re-
gression proposed by Chu and Ghahramani (2005) for the inference.

1.3 Contributions and Outline

The brief review of the literature above reveals three types of shortcomings in methods that depart
from the stationarity hypothesis: 1) they rely on advanced techniques for deriving predictive distri-
butions; or 2) they require the practitioner to choose in advance some key parameters; or 3) they
increase the number of parameters with an increased risk of overfitting.

This article suggests a method for building models targeting regions of interest specified through
function values. The main objective is to obtain global models that exhibit good predictive distribu-
tions on a range of interest. In the case of a minimization problem, the range of interest would be
the values below a threshold. Outside the range of interest, we accept that the model can be less pre-
dictive by relaxing the interpolation constraints. Such a model is presented in Figure 3: compared to
the situation in Figure 2, the model is more predictive in the region where the Steep function takes
low values, with expected benefits for the efficiency of Bayesian optimization.

This article provides three main contributions. First, we propose a class of goal-oriented GP-
based models called relaxed Gaussian processes (reGP). Second, we give theoretical and empirical
results justifying the method and its use for Bayesian optimization. Finally, to assess the predictivity
of reGP, we adopt the formalism of scoring rules (Gneiting and Raftery, 2007) and propose the use
of a goal-oriented scoring rule that we call truncated continuous ranked probability score (tCRPS),
which is designed to assess the predictivity of a model in a range of interest.

The organization is as follows. Section 2 briefly recalls the formalism of Gaussian processes
and Bayesian optimization (BO). Section 3 presents reGP and its theoretical properties. The tCRPS
and its use for selecting regions of interest are then presented in Section 4. Section 5 presents a
reGP-based Bayesian optimization algorithm called EGO-R, together with the convergence analysis
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Figure 3: Left: prediction of the Steep function with the proposed methodology (black line: re-
laxation threshold t; blue points: relaxed observations). Right: µn versus f (with more
observations for illustration purposes). The model interpolates the data below t. The blue
points are relaxed observations.

of this algorithm and a numerical benchmark. Finally, Section 6 presents our conclusions and
perspectives for future work.

2. Background and Notations

2.1 Gaussian Process Modeling

Consider a real-valued function f : X→ R, where X ⊆ Rd , and suppose we want to infer f at a
given x ∈X from evaluations of f on a finite set of points xn = (x1, . . . ,xn) ∈Xn, n≥ 1. A standard
Bayesian approach to this problem consists in using a GP model ξ ∼ GP(µ, k) as a prior about f ,
where µ :X→R is a mean function and k :X×X→R is a covariance function, which is supposed
to be strictly positive-definite in this article.

The posterior distribution of ξ given Zn = (ξ (x1), · · · ,ξ (xn))
T is still a Gaussian process, whose

mean and covariance functions are given by the standard kriging equations (Matheron, 1971). More
precisely:

ξ |Zn ∼ GP(µn, kn) , (1)

with
µn(x) = µ(x)+ k (x, xn)K−1

n (Zn−µ(xn)) (2)

and
kn(x, y) = k(x, y)− k (x, xn)K−1

n k (y, xn)
T , (3)

and where µ(xn)= (µ(x1), . . . ,µ(xn))
T, k (x, xn)= (k(x, x1), . . . ,k(x, xn)), and Kn is the n×n matrix

with entries k(xi, x j). We shall also use the notation σ2
n (x)= kn(x, x) for the posterior variance, a.k.a.

the kriging variance, a.k.a. the squared power function, so that ξ (x) |Zn ∼N
(
µn(x), σ2

n (x)
)
.
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The functions µ and k control the posterior distribution (1) and must be chosen carefully. The
standard practice is to select them from data within a parametric family {(µθ ,kθ ) , θ ∈ Θ}. A
common approach is to suppose stationarity for the GP, which means choosing a constant mean
function µ ≡ c ∈R and a stationary covariance function k(x,y) = σ2r(x− y), where r :Rd →R is
a stationary correlation function.

A correlation function often recommended in the literature (Stein, 1999) is the (geometrically
anisotropic) Matérn correlation function

r(h) =
21−ν

Γ(ν)

(√
2ν‖h‖ρ

)ν

Kν

(√
2ν‖h‖ρ

)
, ‖h‖2

ρ=
d

∑
j=1

h2
[ j]

ρ2
j
, (4)

for h = (h[1], . . . , h[d]) ∈ Rd , and where Γ is the Gamma function and Kν is the modified Bessel
function of the second kind. The parameters to be selected in this case are (σ2, ρ1, . . . , ρd , ν) ∈
(0,∞)d+2 with σ2 the process variance, ρi the range parameter along the i-th dimension, and ν

a regularity parameter controlling the smoothness of the process. Two other standard covariance
functions can be recovered for specific values of ν : the exponential covariance function for ν = 1/2
and the squared-exponential covariance function for ν → ∞.

A variety of techniques for selecting the parameter θ have been proposed in the literature, but
we can safely say that maximum likelihood estimation is the most popular and can be recommended
in the case of interpolation (Petit et al., 2021). It simply consists in minimizing the negative log-
likelihood

L (θ ; Zn) =− log(p(Zn |θ)) ∝ log(det(Kn))+(Zn−µ(xn))
TK−1

n (Zn−µ(xn))+ constant, (5)

where p stands for the probability density of Zn. Other methods for selecting the parameters include
the restricted maximum likelihood method and leave-one-out strategies (see, e.g., Stein, 1999; Ras-
mussen and Williams, 2006).

2.2 Bayesian Optimization

The framework of GPs is well suited to the problem of sequential design of experiments, or active
learning. In particular, for minimizing a real-valued function f defined on a compact domainX, the
Bayesian approach consists in choosing sequentially evaluation points X1, X2, . . . ∈X using a GP
model ξ for f , which makes it to possible to build a sampling criterion that represents an expected
information gain on the minimum of f when an evaluation is made at a new point. One of the
most popular sampling criterion (also called acquisition function) is the Expected Improvement (EI)
(Mockus et al., 1978; Jones et al., 1998), which can be expressed as

ρn(x) = E
(
(mn−ξ (x))+ |Zn

)
, (6)

where mn = min(ξ (x1), · · · ,ξ (xn)). The EI criterion corresponds to the expectation of the excursion
of ξ below the minimum given n observations, and can be written in closed form:
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Proposition 1 (Jones et al., 1998; Vazquez and Bect, 2010b) The EI criterion may be written as
ρn(x) = γ

(
mn−µn(x), σ2

n (x)
)

with

γ : (z, s) ∈R×R+ 7→
{ √

sφ

(
z√
s

)
+ zΦ

(
z√
s

)
if s > 0,

max(z,0) if s = 0,

where φ and Φ stand for the probability density and cumulative distribution functions of the stan-
dard Gaussian distribution. Moreover, the function γ is continuous, verifies γ(z, s)> 0 if s > 0 and
is non-decreasing with respect to z and s on R×R+.

When the EI criterion is used for optimization, that is, when the sequence of evaluation
points (Xn)n>0 of f is chosen using the rule

Xn+1 = argmax
x∈X

ρn(x) ,

the resulting algorithm is generally called the Efficient Global Optimization (EGO) algorithm, as
proposed by Jones et al. (1998). The EGO algorithm has known convergence properties (Vazquez
and Bect, 2010b; Bull, 2011).

A variety of other sampling criteria for the minimization problem can be found in the literature
(see, e.g., Frazier et al., 2008; Villemonteix et al., 2009; Srinivas et al., 2010; Vazquez and Bect,
2014), but we shall focus on the EI algorithm in this article.

2.3 Reproducing Kernel Hilbert Spaces

Reproducing kernel Hilbert spaces (RKHS, see e.g., Aronszajn, 1950; Berlinet and Thomas-Agnan,
2004) are Hilbert spaces of functions commonly used in the field of approximation theory (see,
e.g., Wahba, 1990; Wendland, 2004). A Hilbert space H (X) of real-valued functions on X with
an inner product (· , ·)H (X) is called an RKHS if it has a reproducing kernel, that is, a function
k : X×X→R such that k(x, ·) ∈H (X), and

( f , k(x, ·))H (X) = f (x) (7)

(the reproducing property), for all x ∈X and f ∈H (X). Furthermore, given a (strictly) positive
definite covariance function k, there exists a unique RKHS admitting k as reproducing kernel.

Given locations xn = (x1, · · · ,xn) ∈Xn, and corresponding values zn ∈Rn, suppose we want to
find a function h ∈H (X) such that h(xn) = (h(x1), . . . ,h(xn))

T = zn. Then, the minimum-norm
interpolation solution is given by the following proposition.

Proposition 2 (Parzen, 1959; Matheron, 1981) The problem
minimize ‖h‖H (X)

subject to h ∈H (X)

h(xn) = zn

(8)

has a unique solution given by szn
= k(·, xn)K

−1
n zn.

7
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Observe that the solution szn
is equal to the posterior mean (2) when µ = 0.

Moreover, for any f ∈H (X) and x ∈X, the reproducing property (7) yields the upper bound∣∣ f (x)− szn
(x)
∣∣≤ σn(x)‖ f‖H (X), (9)

with σn(x)=
√

kn (x, x). Note that σn(x) is the worst-case error at x for the interpolation of functions
in the unit ball of H (X).

3. Relaxed Gaussian Process Interpolation

3.1 Relaxed Interpolation

The example in the introduction (see Figures 1–3) suggests that, in order to gain accuracy over a
range of values of interest, it can be beneficial to relax interpolation constraints outside this range.
More precisely, the probabilistic model in Figure 3 interpolates data lying below a selected thresh-
old t, and when data are above t, the model only keeps the information that the data exceeds t.

In the following, we consider the general setting where relaxation is carried out on a set of the
form R =

⋃J
j=1 R j, where R1, . . . , RJ ⊂R are disjoint closed intervals with non-zero lengths. (The

set R = [t,+∞) was used in the example of Figure 3).
As above, we shall write xn = (x1, · · · ,xn) ∈Xn for a sequence of locations with corresponding

function values zn = (z1, · · · ,zn)
T ∈ Rn. Then, we introduce the set CR,n = C1×·· ·×Cn ⊂ Rn of

relaxed constraints, where {
Ci = R j if zi ∈ R j for some j,
Ci = {zi} otherwise.

(10)

Let also HR,n = {h ∈H (X) | h(xn) ∈ CR,n} be the set of relaxed-interpolating functions. The
following proposition gives the definition of the minimum-norm relaxed predictor.

Proposition 3 The problem {
minimize ‖h‖H (X)

subject to h ∈HR,n
(11)

has a unique solution given by sz?n , where z?n is the unique solution of the quadratic problem

argmin
z∈CR,n

zTK−1
n z. (12)

3.2 Relaxed Gaussian Process Interpolation

The main advantage of Gaussian processes is the possibility to obtain not only point predictions but
also predictive distributions. However, Proposition 3 only defines a function approximation. We
now turn relaxed interpolation into a probabilistic model providing predictive distributions whose
mean is not constrained to interpolate data on a given range R. The following proposition makes a
step in this direction.

8
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Proposition 4 Let ξ ∼ GP(0, k), xn = (x1, · · · ,xn) ∈Xn, zn ∈Rn and x′m = (x′1, · · · ,x′m) ∈Xm be a
set of locations of interest where predictions should be made. Write Zn = (ξ (x1), . . . ,ξ (xn))

T and
Z′m = (ξ (x′1), . . . ,ξ (x

′
m))

T. Then the mode of the probability density function

p
(
Z′m, Zn |Zn ∈CR,n

)
(13)

is given by
(
sz?n(x

′
m), z?n

)
.

In other words, the relaxed interpolation solution of Proposition 3 corresponds to the maximum a
posteriori (MAP) estimate under the predictive model (13). Conditional distributions with respect to
events of the type Zn ∈CR,n have been used in Bayesian statistics for dealing with outliers and model
misspecifications (see, e.g., Lewis et al., 2021, and references therein). This type of conditional
distributions is also encountered for constrained GPs (see, e.g., Da Veiga and Marrel, 2012; Maatouk
and Bay, 2017; López-Lopera et al., 2018), when constraints come from expert knowledge.

However, the predictive distribution (13) is non-Gaussian since the support of Zn is truncated.
In particular, no closed-form expression is available for any of its moments, and sampling requires
advanced techniques (e.g., variational, MCMC). Motivated by this observation, we propose instead
to build a goal-oriented probabilistic model using the following definition.

Definition 5 (Relaxed-GP predictive distribution; fixed µ and k) Given xn ∈ Xn, zn ∈ Rn, and
a relaxation set R (finite union of closed intervals), the relaxed-GP (reGP) predictive distribution
with fixed mean function µ and covariance function k is defined as the (Gaussian) conditional
distribution of ξ ∼ GP(µ, k) given Zn = z?n, where z?n is given by

z?n = argmin
z∈CR,n

(z−µ(xn))
T K−1

n (z−µ(xn)) , (14)

with CR,n defined by (10).

Observe that (14) reduces to (12) when µ = 0. Consequently, the mean of the distribution is the
predictor sz?n from Proposition 3 in this particular case, and is equal to µ + sz?n in general. Moreover,
the reGP predictive distribution can be seen as an approximation of (13), where p(Zn |Zn ∈CR,n)

has been replaced by its mode. As discussed earlier, the main advantage of the reGP predictive
distribution compared to (13) is its reasonable computational burden since it is a GP. Therefore, it
makes it possible to use adaptive strategies for the choice of R, as in Section 4. Moreover, it also
has appealing theoretical approximation properties, as discussed in Section 3.3.

As discussed in Section 2.1, the standard practice is to select the mean and the covariance
functions within a parametric family {(µθ ,kθ ) , θ ∈ Θ}. In this case, we propose to perform the
parameter selection and the relaxation jointly. This is formalized by the following definition of
relaxed Gaussian process interpolation.

Definition 6 (Relaxed-GP predictive distribution; estimated parameters) Given xn ∈ Xn, zn ∈
Rn, a relaxation set R (finite union of closed intervals), and parametric families (µθ ) and (kθ )

as in Section 2.1, the relaxed-GP (reGP) predictive distribution with estimated parameters is the

9
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Figure 4: An example of reGP predictive distribution with R = (−∞,−1]∪ [1,+∞) on a function f
represented in dashed black lines. The solid black lines represent the relaxation thresh-
olds. The problem (15) was solved only in z as the parameters of the (constant) mean and
(ν = 5/2 Matérn) covariance functions were held fixed for illustration purposes.

(Gaussian) conditional distribution of ξ ∼ GP(µθ , kθ ) given Zn = z?n, where z?n and θ = θ̂n are
obtained jointly by minimizing the negative log-likelihood:(

θ̂n, z?n
)

= argmin
θ∈Θ, z∈CR,n

L (θ ; z) , (15)

with CR,n defined by (10).

Remark 7 (On minimizing (15) jointly) Let Zn,1 be the values within the range R, and Zn,0 the
values in Rc =R\R that are not relaxed. The negative log-likelihood can be written as

L (θ ; Zn) =− ln
(

p
(
Zn,0 |θ

))
− ln

(
p
(
Zn,1 |θ , Zn,0

))
, (16)

where the first term is a goodness-of-fit criterion based on the values in Rc, and where the second
term can mainly be viewed as an imputation term, which “reshapes” the values in R with the in-
formation from Zn,0. (Note also that θ appears in the second term. When this term is minimized
with respect to Zn,1, it becomes a parameter selection term that promotes the θs compatible with
the excursions in CR,n.)

For illustration, we provide an example of a reGP predictive distribution in Figure 4, with an
union of two intervals for the relaxation set R.

10
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Remark 8 (Numerical details) Minimizing (15) with respect to z falls under the scope of quadratic
programming (see, e.g., Nocedal and Wright, 2006) and could be solved efficiently using dedicated
algorithms. This suggests that specific algorithms could be developed for the problem. In this work,
we simply use a standard L-BFGS-B solver (Byrd et al., 1995) using the gradient of (15).

3.3 Convergence Analysis of reGP

In this section, we provide several theoretical results concerning the convergence of the method
proposed. This section can be skipped on first reading.

3.3.1 KNOWN CONVERGENCE RESULTS ABOUT INTERPOLATION IN RKHS

Recall that the fractional-order Sobolev space W β

2 (Rd), with regularity β ≥ 0, is the space of func-
tions on Rd defined by

W β

2 (Rd) =
{

h ∈ L2(Rd), ‖h‖
W β

2 (Rd)
=
∥∥ĥ
(
1+‖·‖2)β/2∥∥

L2(Rd)
<+∞

}
,

where ĥ ∈ L2(Rd) is the Fourier transform of h ∈ L2(Rd).
For a given X ⊂ Rd , define the Sobolev spaces W β

2 (X) =
{

h|X, h ∈W β

2 (Rd)
}

endowed with
the norm

‖h‖
W β

2 (X)
= inf

g∈W β

2 (Rd),g|X=h
‖g‖

W β

2 (Rd)
. (17)

The following assumption aboutX will sometimes be used in this section.

Assumption 1 The domain is non-empty, compact, connected, has locally Lipschitz boundary (see,
e.g., Adams and Fournier, 2003, Section 4.9), and is equal to the closure of its interior.

Assumption 1 ensures that the previous definition coincides with other commons definitions, and
makes it possible to use well-known results from the field of scattered data approximation, by pre-
venting the existence of cusps. Many common domains—such as hyperrectangles or balls, for
instance—verify Assumption 1.

A strictly positive-definite reproducing kernel k :X×X→R is said to have regularity α > 0 if
the associated RKHS H (X) coincides with W α+d/2

2 (X) as a function space, with equivalent norms.
As such, the Matérn stationary kernels (4) have correlation functions r whose Fourier transform
verifies (see, e.g., Wendland, 2004, Theorem 6.13)

C1
(
1+‖·‖2)−ν−d/2 ≤ r̂ ≤C2

(
1+‖·‖2)−ν−d/2

for some C2 ≥ C1 > 0, and have therefore Sobolev regularity α = ν on Rd (see, e.g., Wendland,
2004, Corollary 10.13) and consequently also onX, using (17) and Lemma 24. Other examples are
given by Wendland (2004), for instance.

We now recall a classical convergence result about interpolation in RKHS with evaluation points
in a bounded domain. Consider a kernel k : X×X→ R, and let (xn)n≥1 ∈XN be a sequence of
distinct points. The following property (a minor reformulation of Theorem 4.1 of Arcangéli et al.

11
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(2007)) gives error bounds that depend on the Sobolev regularity of k and the so-called fill distance
of xn ∈Xn, defined by

hn = sup
x∈X

min
1≤i≤n

‖x− xi‖. (18)

Proposition 9 Let k be a reproducing kernel with regularity α > 0. IfX verifies Assumption 1, then

sup
x∈X

σn(x). hα
n , n≥ 1 , (19)

where . denotes inequality up to a constant, that does not depend on (xn)n≥1.

Using (9) and Proposition 9, this yields the following uniform bound.

Corollary 10 Let k be a reproducing kernel with regularity α > 0, H (X) the RKHS generated by
k, and let f ∈H (X). As above, let szn

be the solution of (8) for zn = ( f (x1), · · · , f (xn))
T, n ≥ 1.

IfX verifies Assumption 1, then

‖ f − szn
‖L∞(X) . hα

n ‖ f‖H (X) . (20)

3.3.2 CONVERGENCE RESULTS FOR REGP

Let k : X×X→ R be a continuous strictly positive-definite reproducing kernel. In this section,
we consider the zero-mean reGP predictive distribution obtained from ξ ∼ GP(0, k), with relaxed
interpolation constraints on a union R =

⋃q
j=1 R j of disjoints closed intervals R j with non-zero

length. Let H (X) be the RKHS attached to k, f ∈H (X), and consider a sequence (xn)n≥1 ∈XN
of distinct points. Furthermore, define (the) regions X j = {x ∈X, f (x) ∈ R j} for 1 ≤ j ≤ q and
X0 =X\

⋃
j≥1X j. We give results about the limit of the sequence of reGP predictive distributions

that suggest an improved fit inX0.
Let sR,n = sz?n be the relaxed predictor from Proposition 3 based on (x1, · · · ,xn)

and ( f (x1), · · · , f (xn))
T, n ≥ 1. The following proposition establishes the limit behavior

of (sR,n)n≥1.

Proposition 11 Let U ⊂X and let HR,U denote the set of functions h ∈H (X) such that, for all
x ∈U, {

h(x) ∈ R j if f (x) ∈ R j for some j,
h(x) = f (x) otherwise.

(21)

Then the problem
min

h∈HR,U
‖h‖H (X) (22)

has a unique solution denoted by sR,U. Moreover,

sR,n
H (X)−−−−→ sR,U, (23)

with U the closure of {xn}.

12
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In particular, when {xn} is dense in X, then U =X and (sR,n)n≥1 converges to sR,X, which is
the minimal-norm element of the set HR,X.

The next proposition tells us that the interpolation error on X0 can be bounded by a term that
depends on the norm of sR,X.

Proposition 12 For any x ∈X0 and n≥ 1,

| f (x)− sR,n(x)| ≤ 2σn,0(x)‖sR,X‖H (X), (24)

where σn,0 is the power function obtained using only points inX0 for predictions.

This yields the following error bounds when the design is dense.

Proposition 13 Suppose that {xn} is dense and that k has regularity α > 0. Let B ⊂ X0 verify
Assumption 1. Then, for all n≥ 1,

‖ f − sR,n‖L∞(B) . hα
n ‖sR,X‖H (X). (25)

Let d(y, A) be the distance of y ∈R to A⊂R. For j ≥ 1, x ∈X j, and for all n≥ 1:

d(sR,n(x), R j). hα
n ‖sR,X‖H (X) if α < 1, (26)

d(sR,n(x), R j).
√

(|ln(hn)|+1)hn ‖sR,X‖H (X) if α = 1, (27)

and
d(sR,n(x), R j). hn‖sR,X‖H (X) if α > 1 , (28)

where . denotes inequality up to a constant, that does not depend on f , n or (xn).

Finally, we investigate the following question: how large can be the norm of f compared to the
approximation ‖sR,X‖H (X)?

Proposition 14 Suppose that k has regularity α > 0 and that there exists some j ≥ 1 such that X j

has a non-empty interior. We have

sup
h∈HR,X

‖h‖H (X) =+∞, (29)

with HR,X given by (21) for f ∈H (X).

This result shows that the norm reduction obtained by approximating f with relaxed interpolation
constraints can therefore be arbitrarily high in the finite-smoothness case. A stronger version of
Proposition 14 for the special case where R = [t,+∞) can be derived, and shows that

sup
h∈HR,X

‖h‖L∞(X) =+∞ .

Overall, no matter the element of HR,X at hand, reGP converges to a function sR,X which:
coincides with f on X0, verifies f (x) ∈ R j ⇔ sR,X(x) ∈ R j for all x ∈X, and is “nicer” than f in
the sense of ‖·‖H (X). Furthermore, reGP yields error bounds carrying the norm of sR,X, which can
be arbitrarily smaller than the norm of f in the case of a finite-smoothness covariance function.

13
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Remark 15 Note that σn ≤ σn,0 due to the projection residuals interpretation. Empirical and
theoretical results about the screening effect (see, e.g., Stein, 2011; Bao et al., 2020), suggests
that σn'σn,0, if k has smoothness α > 0. In this case, observe that—no matter the element of HR,X

at hand—the bound (24) is larger by only a small factor compared to (9) with f = sR,X. (However,
to the best of our knowledge, no result exists concerning the screening effect for arbitrary designs.)

Remark 16 The equality (29) does not hold in general for infinitely smooth covariance functions.
For instance, Steinwart et al. (2006, Corollary 3.9) show that HR,X = { f} if the interior of X0 is
not empty and k is the squared-exponential covariance function (i.e. (4), with ν → ∞).

4. Choice of the Relaxation Set

4.1 Towards Goal-Oriented Cross-Validation

The framework of reGP makes it possible to predict a function f from point evaluations of f .
Suppose we are specifically interested in obtaining good predictive distributions in a range Q ⊂ R
of function values, and accept degraded predictions outside this range. To achieve this goal, the
idea of reGP is to relax interpolation constraints. Naturally, it makes sense to relax interpolation
constraints outside the range Q but it could happen that relaxing interpolation constraints does not
improve predictive distributions on Q. Therefore, the question arises as to how to automatically
select a range R in R\Q, on which interpolation constraints should be relaxed.

In the following, we put R(0) = R \Q, and we view the relaxation set R as a parameter of
the reGP model, which has to be chosen in R(0) along with the parameters θ of the underlying
GP ξ . A first idea for the selection of R is to rely on the standard leave-one-out cross-validation
approach to select the parameters of a GP (Dubrule, 1983; Rasmussen and Williams, 2006; Zhang
and Wang, 2010). Using the formalism of scoring rules (see, e.g., Gneiting and Raftery, 2007; Petit
et al., 2021), selecting parameters by a leave-one-out approach amounts to minimizing a selection
criterion written as

Jn(R) =
1
n

n

∑
i=1

S (PR,n,−i, f (xi)) , (30)

where PR,n,−i is reGP predictive distribution with data zn,−i = (z1, . . . ,zi−1, zi+1, . . . ,zn) and relax-
ation set R. The function S in (30) is a scoring rule, that is, a function S : P×R→R∪{−∞,+∞},
acting on a class P of probability distributions on R, such that S(P, z) assigns a loss for choosing
a predictive distribution P ∈P , while observing z ∈R. Scoring rules make it possible to quantify
the quality of probabilistic predictions.

Since the user is not specifically interested in good predictive distributions in R(0), validating the
model on R(0) should not be a primary focus. However, simply restricting the sum (30) by removing
indices i such that f (xi) ∈ R(0) would make it impossible to assess if the model is good at predicting
that f (x) ∈ R(0) for a given x ∈X. For instance, in the case of minimization, with Q = (−∞, t(0))
and R(0) = [ t(0),∞), it is important to identify the regions corresponding to f being above t(0), even
if we are not interested in accurate predictions above t(0), because we expect that an optimization
algorithm should avoid the exploration of these regions.

In the next section, we propose instead to keep the whole leave-one-out sum (30), but to choose
a scoring rule S that serves our goal-oriented approach.
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4.2 Truncated Continuous Ranked Probability Score

An appealing class of scoring rules for goal-oriented predictive distributions is the class of weighted
scoring rules for binary predictors (Gneiting and Raftery, 2007; Matheson and Winkler, 1976),
which may be written as

S (P, z) =
∫ +∞

−∞

s(FP(u),1z≤u)µ(du) , (31)

where s : [0, 1]×{0, 1} → R∪{−∞,+∞} is a scoring rule for binary predictors, and µ is a Borel
measure on R. A well-known instance of (31) is the continuous ranked probability score (Gneiting
et al., 2005) written as

SCRPS(P, z) =
∫ +∞

−∞

(FP(u)−1z≤u)
2 du ,

which is obtained by choosing the Brier score for s and the Lebesgue measure for µ .
For the case where we are specifically interested in obtaining good predictive distributions in

a range of interest Q ⊂ R, we propose to use the following scoring rule, which we call truncated
continuous ranked probability score (tCRPS):

StCRPS
Q (P, z) =

∫
Q
(FP(u)−1z≤u)

2 du. (32)

This scoring rule, proposed by Lerch and Thorarinsdottir (2013) in a different context, reduces
to SCRPS when Q=R. It can be seen as a special case of the weighted CRPS (Matheson and Winkler,
1976; Gneiting and Raftery, 2007; Gneiting and Ranjan, 2011), in which the indicator function 1Q

plays the role of the weight function—in other words, the measure µ in (31) has density 1Q with
respect to Lebesgue’s measure.

Consider for instance the case Q =
(
−∞, t(0)

)
:

StCRPS
Q (P, z) =

∫ t(0)

−∞

(FP(u)−1z≤u)
2 du. (33)

The upper endpoint t(0) of the range will be referred to as the validation threshold. Note that, in
this case, StCRPS

Q (P, z) does not depend on the specific value of z when z is above the validation
threshold. This scoring rule is thus well suited to the problem of measuring the performance of a
predictive distribution in such a way as to fully assess the goodness-of-fit of the distribution when
the true value is below a threshold, and only ask that the support of the predictive distribution is
concentrated above the threshold when the true value is above the threshold.

We provide in Appendix A some properties of the scoring rule (32) and closed-form expressions
for the case where Q is an interval (or a finite union of intervals) and P is Gaussian. To the best of
our knowledge, these expressions are new.

4.3 Choosing the Relaxation Set using the tCRPS Scoring Rule

Given a range of interest Q, the tCRPS scoring rule makes it possible to derive a goal-oriented
leave-one-out selection criterion, that we shall call the LOO-tCRPS criterion:

Jn (R) =
1
n

n

∑
i=1

StCRPS
Q (PR,n,−i, f (xi)) . (34)
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Figure 5: Illustration of the choice of a relaxation set. The range of interest Q is determined by the
threshold t(0). The relaxation set R corresponding to the region above t has been obtained
by the procedure described in Section 4.3.

Using (34), we suggest the following procedure to select a reGP model. First, choose a sequence
of nested candidate relaxation sets R(0) ⊃ R(1) ⊃ ·· · ⊃ R(G) = /0. The next step is the computation
of Jn(R(g)), g = 0, . . . , G, which involves the predictive distributions PR(g),n,−i.

In principle, (15) should be solved again each time a data point (xi, zi) is removed, to obtain a
pair (θ̂ (g)

n,−i, z(g)n,−i) and then the corresponding reGP distribution PR(g),n,−i. To alleviate computational
cost, a simple idea is to rely on the fast leave-one-out formulas (Dubrule, 1983) for Gaussian pro-
cesses: for each set R(g), solve (15) to obtain θ̂

(g)
n and z(g)n = (z(g)1 , . . . , z(g)n )T, and then compute the

conditional distributions ξ (xi) | {ξ (x j) = z(g)j , j 6= i}, where ξ ∼GP(µ, k), and where µ and k have

parameter θ̂
(g)
n , using the fast leave-one-out formulas. By doing so, we neglect the difference be-

tween θ̂
(g)
n,−i and θ̂

(g)
n and the difference between z(g)n,−i and the vector (z(g)1 , . . . , z(g)i−1, z(g)i+1, . . . , z(g)n )T.

The procedure ends by choosing the relaxation set R(g) that achieves the best LOO-tCRPS value.

Figure 5 illustrates the selection of the relaxation set used in Figure 3.
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Figure 6: Left: Histogram of the values of the function c6 from the G10 problem. Right: Same
illustration but for the function cα

6 , with α = 7. The histograms are obtained from the
values of the functions on a space-filling design of size n= 100. On the left, the values are
very separated and concentrated on two modes, yielding a function close to a piecewise
constant function. After transformation, the phenomenon is mitigated.

4.4 An Example for the Estimation of an Excursion Set

We illustrate the method on the problem of estimating an excursion set {x ∈ X, f (x) ≤ 0}. We
consider the G10 optimization problem used by Regis (2014), and focus on the constraint c6 ≤ 0.
Finding solutions satisfying the c6 ≤ 0 constraint using a GP model is difficult, probably because
the values of c6 are very bi-modal, as illustrated in Figure 6. However, Feliot et al. (2017) found
that the difficulty could be overcome by performing an ad-hoc monotonic transformation z 7→ zα ,
with α = 7, on the constraint.

The estimation of an excursion set { f ≤ 0} involves capturing precisely the behavior of f around
zero. Thus, we define a range of interest Q = (−t(0), t(0)) centered on zero, with t(0) sufficiently
small (note that there may be no data in Q). Then, we consider relaxation range candidates R(g) =

(−∞,−t(g) ]∪ [ t(g),+∞) with a sequence of thresholds t(0) < · · ·< t(G) =+∞, and we select t(g) by
minimizing the LOO-tCRPS as described in the previous section.

In the case of the c6 constraint and a small value for t(0) such that there is no data in Q, the results
are presented in Figure 7. The LOO-tCRPS chooses t(g) = t(0), so the reGP predictive distributions
use only the information of being above or below zero. Moreover, observe that the corresponding
transformation after relaxation bears resemblance to the transformation z 7→ zα proposed by Feliot
et al. (2017). If we apply the reGP framework on the transformed function cα

6 (details omitted for
brevity), we find that the LOO-tCRPS chooses a large t(g) such that the interpolation constraints are
relaxed for a few observations only.

5. Application to Bayesian Optimization
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Figure 7: A reGP fit of c6, where the relaxation thresholds have been selected by LOO-tCRPS.
The observations zn are shown on the x-axis, whereas the “relaxed” observations z?n are
represented on the y-axis. Moreover, the green lines represent the value zero, and the
brown lines represent ± t(g), with t(g) chosen to be t(0) by the LOO-tCRPS. Finally, the
blue line shows a best fit by z 7→ z7.
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5.1 Efficient Global Optimization with Relaxation

The first motivation for introducing reGP models is Bayesian optimization, where obtaining good
predictive distributions over ranges corresponding to optimal values is a key issue. In this article,
we focus more specifically on the minimization problem

min
x∈X

f (x) , (35)

where f is a real-valued function defined on a compact set X ⊂ Rd , but the methodology can be
generalized to constrained and/or multi-objective formulations.

Given f , our objective is to construct a sequence of evaluation points X1,X2 . . . ∈X by choos-
ing each point Xn+1 as the maximizer of the expected improvement criterion (6) computed with
respect to the reGP predictive distribution, with a relaxation set Rn = [tn,+∞). More precisely, the
sequence (Xn) is constructed sequentially using the rule

Xn+1 = argmax
x∈X

En
(
(mn−ξ (x))+

)
, (36)

where mn = f (X1)∧ ·· · ∧ f (Xn), and En is the expectation under the reGP predictive distribution
with relaxation set Rn and data zn = ( f (X1), . . . , f (Xn))

T.
As in Section 4.3, the relaxation threshold tn at iteration n is chosen using the LOO-tCRPS

criterion (34) among candidate values

t(0)n < t(1)n < · · ·< t(G)
n , (37)

where t(0)n is the validation threshold, which delimits the range of interest Qn =
(
−∞, t(0)n

)
used at

iteration n. In the following, the optimization method just described will be called efficient global
optimization with relaxation (EGO-R), in reference to the EGO name proposed by Jones et al.
(1998).

Implementation specifics are detailed in Section 5.3. In the next section, we show that using the
EI criterion with a reGP model yields a convergent algorithm.

5.2 Convergence of EGO-R with Fixed Parameters and Varying Threshold

In this section, we extend the result of Vazquez and Bect (2010b) and show the convergence of the
EGO-R algorithm, in the case where the predictive distributions derive from a zero-mean Gaussian
process with fixed covariance function.

We suppose thatX is a compact domain and that k :X×X→R is continuous, strictly positive-
definite, and has the NEB (no-empty ball) property (Vazquez and Bect, 2010b), which says that
the posterior variance cannot go to zero at a given point if there is no evaluation points in a ball
centered on this point. In other words, the NEB property requires that the posterior variance σ2

n (x)
at x∈X remains bounded away from zero for any x not in the closure of the sequence of points (Xn)

evaluated by the optimization algorithm. A stationary covariance function with smoothness α > 0
verifies the NEB property (Vazquez and Bect, 2010b), whereas the squared-exponential covariance
function does not (Vazquez and Bect, 2010a).
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Proposition 17 Let k : X×X→ R be a continuous strictly positive-definite covariance function
that verifies the NEB property, H (X) the corresponding RKHS and f ∈H (X). Let n0 > 0. Let
(Xn)n≥1 be a sequence inX such that, for each n≥ n0, Xn+1 is obtained by (36) with tn > mn. Then
the sequence (Xn)n≥1 is dense inX.

Proposition 17 implies the convergence of EGO-R with a fixed threshold t > mini≤n0 f (Xi). In
this case, the theoretical insights from Section 3.3 suggest a faster convergence might be achieved
due to the improved error estimates (24) and (25) in a neighborhood of the global minimum.

The convergence of EGO-R also holds in the case of a varying relaxation set Rn = [tn,+∞),
with tn > mn, and in particular when tn is selected at each step using the LOO-tCRPS criterion (34)
with a validation threshold t(0)n > mn. In this case, the norm term in (24) gets smaller if (tn)n≥1 is
decreasing.

5.3 Optimization Benchmark

In this section, we run numerical experiments to demonstrate the interest of using EGO-R instead
of EGO for minimization problems.

5.3.1 METHODOLOGY

In practice, we must choose the sequence of thresholds (37). The validation threshold t(0)n should
be set above mn to ensure there is enough data to carry out the validation. We propose two different
heuristics: a) a constant heuristic, where t(0)n is kept constant through the iterations and set to an
empirical quantile of an initial data set constructed before EGO-R is run, and b) a concentration
heuristic, where t(0)n corresponds to an empirical quantile of zn.

In the case of the constant heuristic, we set t(0)n to the α-quantile of the function values on
an initial design, which is typically built to fill X as evenly as possible with, e.g., maximin Latin
hypercube sampling (McKay et al., 2000). The numerical experiments were conducted with α =

0.25 in this article.
In the case of the concentration heuristic, we consider an α-quantile of the values of f at

the points visited by the algorithm (again with α = 0.25). As the optimization algorithm makes
progress, the evaluations will likely concentrate around the global minimum. Thus, t(0)n will get
closer to the minimum value, and the range Qn = (−∞, t(0)n ) of validation values will get smaller.
Besides, since we expect better predictive distributions in this range, a better convergence may be
obtained.

Both heuristics can be justified by the idealized setting of the convergence result from the pre-
vious section. Proposing alternative adaptive strategies to the concentration heuristic, or more gen-
erally conducting a theoretical study on the performance of such adaptive strategies, is out of the
scope of this article.

For a given t(0)n , the candidate relaxation thresholds t(g)n , g= 1, . . . , G, are chosen so that t(g)n −mn

ranges logarithmically from t(0)n −mn to max f (Xi)−mn (with G = 10, in the experiments below).
To assess the performances of EGO-R with the two heuristics for choosing t(0)n , we compare

them to the standard EGO algorithm. For all three algorithms, we use a first initial design of size
n0 = 3d, and we consider GPs with constant mean and a Matérn covariance function with regularity
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Table 1: Optimization benchmark. The acronym G-P stands for Goldstein-Price.
Problem d
Branin 2

Six-hump Camel 2
Three-hump Camel 2

Hartman 3, 6
Ackley 4, 6, 10

Rosenbrock 4, 6, 10
Shekel 5, 7, 10

Goldstein-Price 2
Log-Goldstein-Price 2

Cross-in-Tray 2
Beale 2

Dixon-Price 4, 6, 10
Perm 4, 6, 10

Michalewicz 4, 6, 10
Zakharov 4, 6, 10

ν = 5/2. The maximization of the sampling criteria (6) and (36) is carried out using a sequential
Monte Carlo approach (Benassi et al., 2012; Feliot et al., 2017).

For reference, we also run the Dual simulated Annealing algorithm (inspired by Xiang et al.
(1997)) from SciPy (Virtanen et al., 2020), with the default settings and with a random initialization.

The optimization algorithms are tested against a benchmark of test functions from Surjanovic
and Bingham (2013) summarized in Table 1, with nrep = 30 (random) repetitions, and a budget of
ntot = 300 evaluations for each repetition. This benchmark is partly inspired by Jones et al. (1998)
and Merrill et al. (2021). In particular, we also use a log-version of the Goldstein-Price function as
Jones et al. (1998).

To evaluate the algorithms we use, for each test function, several targets defined as spatial quan-
tiles of the function and estimated with a subset simulation algorithm (see, e.g., Au and Beck, 2001).
Then, the performances of the algorithms are evaluated using the fractions of runs that manage to
reach the targets and the average numbers of evaluations to reach the targets (with unsuccessful runs
counted as ntot).

5.3.2 FINDINGS

The full set of results is provided in Appendix C. In Figure 8, we present a representative subset of
these results.

First, observe in Figure 8 that the EGO-R methods can be considerably helpful and can outper-
form EGO largely on functions that are difficult to model with stationary GPs, such as Goldstein-
Price, Perm (10), and Beale.
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Observe also that the EGO-R methods have about the same performance as EGO on functions
that are easy to model with stationary GPs. This is the case of the Log-Goldstein-Price and the
Branin functions, for which the LOO-tCRPS criterion for choosing the relaxation set detects that
the larger values help predict near the minimum, and that no relaxation is needed as a result.

Furthermore, it is instructive to compare the performances of the EGO-R algorithms on the
Goldstein-Price function on the one hand, with the performance of the EGO algorithm on Log-
Goldstein-Price function on the other hand. Using reGP modeling enables to perform as well as
with the logarithmic transform, but in an automatic way. This is also illustrated by Figure 9, which
shows that the (non-parametric) transform learned by reGP resembles a logarithmic transform.

Finally, observe that the constant heuristic performs as well as EGO on Ackley (10), whereas
the concentration heuristic lags behind. A closer look at the results for this function shows that
the concentration heuristic get sometimes stuck in a local minimum. We explain this by the fact
that the reGP model with the concentration heuristic can become very predictive in a small region
around the local minimum, and underestimate the function variations elsewhere (the variance of the
predictive distributions above t(0)n are too small, and the optimization algorithm does not sufficiently
explore unknown regions). To this regard, the constant heuristic is probably more conservative.
Overall, taking the results from Appendix C into account, the concentration heuristic appears to be
more (resp. less) efficient than the constant heuristic when there are few (resp. many) local minima.

6. Conclusion

This article presents a new technique called reGP to build predictive distributions for a function
observed on a sequence of points. This technique can be applied when a user wants good predictive
distributions in a range of function values, for example below a given threshold, and accepts de-
graded predictions outside this range. The technique relies on Gaussian process interpolation, and
operates by relaxing the interpolation constraints outside the range of interest. This goal-oriented
technique is kept simple and cheap: there are no additional parameters to set compared to the stan-
dard Gaussian process framework. The user only needs to specify a range of function values where
good predictions should be obtained. The relaxation range can be selected automatically, using a
scoring rule adapted to reGP models.

Such goal-oriented models can then be used in Bayesian sequential search algorithms. Here
we are interested in the problem of mono-objective optimization and we propose to study the EI /
EGO algorithm with such models. In a first step, we guarantee the convergence of the reGP-based
algorithm on the RKHS attached to the underlying GP covariance. Then, we provide a benchmark
that shows very clear benefits of using reGP models for the optimization of various functions.

A key element of the reGP approach is the definition of a range of interest Q, for instance
a range of the form

(
−∞, t(0)

)
in a minimization problem. In some use cases the range will be

provided by the user, but in others it is desirable to set it automatically. Two simple heuristics have
been proposed in Section 5.3 to achieve this goal in our optimization benchmark, and it has been
observed that the choice of heuristic has an impact on the exploratory behaviour of the resulting
Bayesian optimization algorithm. Finding better heuristics, studying their properties, and assessing
their impact in Bayesian optimization applications, is an important direction for future research.
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Figure 8: For each case, the top plot is the average number of iterations to reach the spatial quantile,
and the bottom plot is the proportion of successful runs. Both are represented versus the
level of the spatial quantile. The gray dotted line stands for the Dual simulated Annealing
algorithm, the red line for the standard EGO algorithm, and the blue and green lines for
EGO-R, with the “Constant” and “Concentration” heuristics. The results are shown until
the success rates of the three previous methods fall below the 66% threshold materialized
by the black dashed line. 23
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Figure 9: A reGP fit to the Goldstein-Price function with n = 30 points, with R =
[
103,+∞

)
. The

observations zn are shown on the x-axis, whereas the relaxed observations z?n are repre-
sented on the y-axis.

More generally, the goal-oriented approach proposed in this article is not limited to single-
objective (Bayesian) optimization. The example of Section 4.4 shows that it is also readily appli-
cable, for instance, to level set estimation problems, for which a number of GP-based sequential
design—aka active learning—strategies have been proposed in the literature (see, e.g., Chevalier
et al., 2014; Bogunovic et al., 2016, and references therein). Other extensions are possible but
will require more work. Noisy observations are one such example: considering that the inter-
polation constraints are already relaxed by the presence of noise, how should we transpose the
goal-oriented modeling approach to this setting? Constrained and/or multi-objective optimization
is another interesting but challenging direction for future research: in this case the function of in-
terest in multivariate—one objective and several constraints, or several objectives—which requires
significant adaptations to proposed methodology.
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Appendix A. Properties of the Truncated CRPS

We shall now write (32) more explicitly for the case where the range of interest is an interval
Q = (a,b),−∞≤ a < b≤+∞, and provide closed-form expressions for the case where, in addition,
the predictive distribution P is Gaussian.

Remark 18 The value of the tCRPS for an interval Q = (a,b) remains unchanged if the interval is
closed at one or both of its endpoints.

Remark 19 The value of the tCRPS for a finite (or countable) union of disjoint intervals follows
readily from its values on intervals, since Q 7→ StCRPS

Q (P, z) is σ -additive.

We shall start by defining a quantity that shares similarities with (6).

Definition 20 EI↑q(P, z) = E
(
(N1∨·· ·∨Nq− z)+

)
with N j

iid∼ P.

The following expressions hold for a general predictive distribution P.

Proposition 21 Suppose that P has a first order moment.

• Let a,b ∈R with a≤ b. Then,

StCRPS
a,b (P, z) = (b∧ z−a)+ + EI↑2(P,b)−EI↑2(P,a)

−21z≤b

(
EI↑1(P,b)−EI↑1(P,a∨ z)

)
. (38)

• Let b ∈R and N1,N2
iid∼ P. Then,

StCRPS
−∞,b (P, z) = b∧ z + EI↑2(P,b)−E(N1∨N2)

−21z≤b

(
EI↑1(P,b)−EI↑1(P,z)

)
. (39)

• Finally, if a ∈R, then

StCRPS
a,+∞ (P, z) = StCRPS

−∞,−a(P,−z), (40)

where P is the distribution of −U if U is P-distributed.

Now, leveraging well-known analytic expressions (see, e.g., Nadarajah and Kotz, 2008; Cheva-
lier and Ginsbourger, 2013), we have the following closed-form expressions in the Gaussian case.

Proposition 22 (Nadarajah and Kotz, 2008; Chevalier and Ginsbourger, 2013)
Suppose that P =N (µ,σ2) and let φ and Φ denote respectively the pdf and the cdf of the standard
Gaussian distribution. Then

• EI↑1(P,z) = σ h1
(

µ−z
σ

)
, with

h1(t) = t Φ(t)+φ (t) , (41)
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• for q≥ 2, we have EI↑q(P,z) = σ hq
(

µ−z
σ

)
, where

hq(t) = qt Φq(δ
t
q;0,DqDT

q ) + qΦ(−t)q−1
φ(t) +

q(q−1)
2
√

π
Φq−1(δ

t
q−1;0, 1

2 Bq), (42)

where Φq(·;m,Σ) is the cdf of the multivariate N (m,Σ) distribution,

Bq = 2diag(0,1Tq−2)+1q−11
T
q−1,

Dq is the matrix representing the linear map

Rq→Rq, (y1, . . . , yq)
T 7→ (−y1, y2− y1, y3− y1, . . . , yq− y1)

T,

and δ t
q = (t,0Tq−1)

T,

• finally for q = 2 we have
E(N1∨N2) = µ +

σ√
π
. (43)

For a scoring rule S : P×R→R and P1,P2 ∈P such that y ∈R 7→ S(P1, y) is P2-integrable,
write S(P1, P2) = EU∼P2 (S (P1,U)). The propriety of scoring rules is an important notion that for-
malizes “well-calibration” in the sense that a generating distribution must be identified to be optimal
on average.

Definition 23 (see, e.g. Gneiting and Raftery, 2007) A scoring rule S : P ×R→ R is said to be
(strictly) proper with respect to P if, for all P1,P2 ∈P , the mapping y ∈ R 7→ S(P1, y) is P2-
integrable and the mapping P1 ∈P 7→ S(P1, P2) admits P2 as a (unique) minimizer.

A strictly proper scoring rule S on a class P induces a divergence

(P1,P2) 7→ S(P1, P2)−S(P2, P2),

which is non-negative on P×P , and vanishes if and only if P1 = P2. In the case of the truncated
CRPS, simple calculations lead to (Matheson and Winkler, 1976):

StCRPS
Q (P1, P2)−StCRPS

Q (P2, P2) =
∫

Q
(FP1(u)−FP2(u))

2 du.

It follows that StCRPS
Q is proper for any measurable Q⊂R, and is strictly proper with respect to the

class of non-degenerate Gaussian measures on R as soon as Q has non-empty interior.
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Appendix B. Proofs

Lemma 24 (Aronszajn, 1950, Section 1.5) Let k : X×X→ R be a positive-definite covariance
function, U ⊂ X, and H (U) be the RKHS attached to the restriction of k to U×U. The RKHS
H (U) is the space of restrictions of functions from H (X) and the norm of g ∈H (U) is given by

inf
h∈H (X), h|U=g

‖h‖H (X). (44)

Proof of Proposition 3. First the existence and the uniqueness of the solution are given by the first
statement of Proposition 11 (with HR,n = HR,{x1,··· ,xn}).

Furthermore let z ∈R and write α = K−1
n z, the reproducing property (7) gives

‖sz‖2
H (X) = α

TKnα = zTK−1
n z, (45)

and therefore

min
h∈HR,n

‖h‖2
H (X) = inf

z∈CR,n
min

h∈H (X),h(xn)=z
‖h‖2

H (X) = inf
z∈CR,n

zTK−1
n z,

where the last infimum is uniquely reached by the evaluation of the solution on xn.

Proof of Proposition 4. Write Km,n for the covariance matrix of the random vector
(

Z′m
T, ZT

n

)T
.

Using the equalities (5) and (45), and a slight abuse of notation by dropping irrelevant constants
with respect to z′ and z ∈CR,n, we have

−2ln
(

p
(
z′, z |Zn ∈CR,n

))
=
(

z′T, zT
)

K−1
m,n

(
z′T, zT

)T
= min

h∈H (X),h(xn)=z,h(x′m)=z′
‖h‖2

H (X).

This gives
inf

z′∈Rm,z∈CR,n
−2ln

(
p
(
z′, z |Zn ∈CR,n

))
= min

h∈H (X),h(xn)∈CR,n

‖h‖2
H (X),

which is reached by taking z = z?n and z′ =
(
sz?n(x

′
1), . . . ,sz?n(x

′
m)
)T.

Proof of Proposition 9. First, one has

sup
x∈X

σn(x) = sup
x∈X

sup
‖ f‖H (X)=1

| f (x)− szn
(x)|= sup

‖ f‖H (X)=1
‖ f − szn

‖L∞(X).

Now, let f ∈H (X) such that ‖ f‖H (X) = 1, andXo be the interior ofX. The boundary ofXo

is the one of X under Assumption 1, and the Sobolev space W α+d/2
2 (Xo) defined by (17) is norm-

equivalent to the Sobolev–Slobodeckij space (see, e.g., Di Nezza et al. (2012, Proposition 3.4) for a
statement on Rd and Grisvard (1985, Theorem 1.4.3.1) for the existence of an extension operator).

Then, one can apply (Arcangéli et al., 2007, Theorem 4.1) to f − szn
restricted to Xo to show

that, for hn lower than some h0 (not depending on f or (xn)n≥1), we have:

‖ f − szn
‖L∞(X) = ‖ f − szn

‖L∞(Xo) . hα
n ‖ f − szn

‖W α
2 (Xo) . hα

n ‖ f − szn
‖H (X) . hα

n (46)
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by continuity of f − szn
, since ‖·‖

W α+d/2
2 (Xo)

≤ ‖·‖
W α+d/2

2 (X)
due to the definition (17), W α+d/2

2 (X)

being norm equivalent to H (X), and because of the projection interpretation of szn
(see, e.g.,

Wendland, 2004, Theorem 13.1). Finally, one can get rid of the condition hn ≤ h0 for simplicity by
increasing the constant eventually, since supx∈Xσn(x)≤ supx∈X

√
k(x, x)<+∞ by compacity.

Proof of Proposition 11. First observe that HR,U is not empty since it contains f . Furthermore, it
is easy to verify that HR,U is convex and that it is closed since pointwise evaluation functionals are
continuous on an RKHS. The problem is then the one of projecting the null function on a convex
closed subset; hence the existence and the uniqueness.

Then, the function sR,n is the projection of the null function on the closed convex set HR,n.
Moreover, the sequence (HR,n)n≥1 is non-increasing, so the sequence (sR,n)n≥1 converges
in H (X) to the projection of the null function on

⋂
n≥1 HR,n (see, e.g., Brezis, 2011, Exercice 5.5),

i.e. the solution of (22), with U = {xn}. But this last solution is also the solution on the closure
since it verifies the constraints by continuity.

Proof of Proposition 12. Define x0
n and z0

n to be data points within X0, and sx0
n,z0

n
the associated

(interpolation) predictor, i.e. the solution of (8). Observing that sx0
n,z0

n
interpolates sR,n, we have:∣∣ f (x)− sR,n(x)

∣∣ ≤ ∣∣ f (x)− sx0
n,z0

n
(x)
∣∣+ ∣∣sx0

n,z0
n
(x)− sR,n(x)

∣∣
≤ σn,0(x)‖ f‖H (X0)+σn,0(x)‖sR,n‖H (X0)

≤ 2σn,0(x)‖sR,X‖H (X),

since f coincides with sR,X onX0, sR,X ∈HR,n, and by Lemma 24.

Lemma 25 If k has smoothness α > 0, then there exists h0 > 0 depending only on α such that, for
all x,y ∈X verifying ‖x− y‖ ≤ h0, we have

‖δy−δx‖H ?(X) . ‖x− y‖α , for α < 1, (47)

‖δy−δx‖H ?(X) .
√
|ln(‖x− y‖)|‖x− y‖, for α = 1, (48)

and
‖δy−δx‖H ?(X) . ‖x− y‖, for α > 1. (49)

Proof. Since equivalent norms give equivalent operator norms on the topological dual of a normed
space, it suffices to show the result for a unit-variance isotropic Matérn covariance function (4) of
regularity α .

In this case, we have

‖δy−δx‖2
H ?(X) = k(x, x)+ k(y, y)−2k(x, y) = 2(1− rα(‖x− y‖)) ,

with rα the corresponding isotropic correlation function. Standard results on principal irregular
terms (see, e.g., Stein, 1999, Chapter 2.7) give the results.
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Lemma 26 Let B⊂X verifying Assumption 1 and hn,B be the fill distance ofXn,B = {x1, · · · ,xn}∩
B within B, with the convention hn,B = diam(B) ifXn,B is empty. Then, hn,B . hn.

Proof. The idea of the proof is given by Wendland (2004, Lemma 11.31), but it is interlinked with
a much more sophisticated construction, so we provide a specific version here for completeness.
Adams and Fournier (2003, Section 4.11) shows that B verifies a cone condition with radius ρ > 0
and angle φ ∈ (0, π/2). If Xn,B is not empty, then the compacity of B ensures the existence of
an x ∈ B such that d(x,Xn,B) = hn,B. (IfXn,B is empty, then the rest of the proof is also valid taking
an arbitrary x ∈ B.)

A cone C originating from x with angle φ and radius δ = min(hn,B, ρ) is contained in B and its
interior do not contains observations. Furthermore, Wendland (2004, Lemma 3.7) shows that there
exists a y ∈ C such that the open ball B

(
y, δ sin(φ)(1+ sin(φ))−1

)
is subset of C, and therefore

contains no observations as well. Thus, hn ≥ δ sin(φ)(1+ sin(φ))−1. Now, if hn,B ≤ ρ , then the
desired result follows. If not, the result holds as well since hn,B ≤ diam(B).

Proof of Proposition 13. For the first assertion, let σn,B be the power function using only the obser-
vations within B. Using Proposition 12, the inequality σn,0 ≤ σn,B given by the projection residuals
interpretation, and applying Proposition 9 to B yields a bound depending on the fill distance hn,B of
{x1, · · · ,xn}∩B within B. Finally, Lemma 26 allows us to conclude.

Regarding second assertion, f is continuous so the sets X j are compact for j ≥ 1. In addition,
they are disjoint so

δ = min
1≤ j<p

inf
x∈X j,y∈Xp

‖x− y‖> 0.

Suppose now that hn < δ and let j ≥ 1, x ∈ X j and 1 ≤ i ≤ n the index of the closet xi to x. By
definition, ‖x−xi‖≤ hn and therefore x∈X0∪X j. Let H ?(X) be the (topological) dual of H (X)

and δy : h ∈ H (X) 7→ h(y), which lies in H ?(X) for all y ∈ X. Then using the reproducing
property (7), we have

|sR,n(xi)− sR,n(x)| ≤ ‖δxi−δx‖H ?(X)‖sR,n‖H (X) ≤ ‖δxi−δx‖H ?(X)‖sR,X‖H (X),

and therefore

d(sR,n(x), R j)≤ ‖δxi−δx‖H ?(X)‖sR,X‖H (X)+d(sR,n(xi), R j).

Now, if xi ∈X j, then d(sR,n(xi), R j) = 0. Otherwise, xi ∈X0 necessarily and then, using the fact
that sR,X(x) ∈ R j, we have:

d(sR,n(xi), R j)≤ |sR,n(xi)− sR,X(x)|= |sR,X(xi)− sR,X(x)| ≤ ‖δxi−δx‖H ?(X)‖sR,X‖H (X).

So one can use Lemma 25 along with the previous statements to conclude if hn < min(δ , h0).
Finally, treating the case hn ≥min(δ , h0) is straightforward using the fact that supx∈X

√
k (x, x)

is finite thanks to the compacity ofX and d(sR,n(x), R j)≤ |sR,n(x)−sR,X(x)| for j≥ 1 and x∈X j.

Lemma 27 If g, h ∈W γ

2 (X) for γ > d/2, then gh ∈W γ

2 (X).
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Proof. By the definition (17) of W γ

2 (X), the functions g and h can be extended into functions
on Rd , having their product in W γ

2 (R
d) (Strichartz, 1967, Theorem 2.1). Taking the restrictions

shows the desired result.

Proof of Proposition 14. We use a bump function argument. Let B(x0,r)⊂X j (with r > 0) be an
open ball. There exists a C∞ function φ : Rd →R such that

0≤ φ ≤ 1,
φ(x) = 1 only if x = 0,
φ(x) = 0 if x ∈X\B(0,r).

Let c∈ R j \{ f (x0)}, φn = φ (n(·− x0)) as a function onX, and fn = (1−φn) f +cφn, for n≥ 1. We
have φn ∈W α+d/2

2 (Rd) as a function on Rd , so it belongs to W α+d/2
2 (X) as a function on X, and

Lemma 27 ensures that fn ∈H (X). Moreover, it is easy to check that fn ∈HR,X. Observe that the
sequence ( fn)n≥1 converges pointwise to a discontinuous function that lies thus outside H (X).

Suppose now that ‖ fn‖H (X) 9 +∞ then one can extract a bounded subsequence of norms
and a classical weak compacity argument would yield a weakly convergent subsequence, which is
impossible since the pointwise limit is not in H (X).

Lemma 28 Use the notations of Proposition 17 and let (yn)n≥1 be a sequence in X. Assume that
the sequence (yn)n≥1 is convergent, denote by y? its limit and assume that y? is an adherent point of
the set {xn}. Let t∞ = liminf tn, then

• sn(yn)→ f (y?) if f (y?)< t∞,

• liminfsn(yn)≥ t∞, otherwise.

In particular, we have
liminfsn(yn)≥min( f (y?), t∞). (50)

Proof. Suppose that y? /∈ {xn}. Then, let
(
xφ(n)

)
n≥1 be a subsequence converging to y? and let

ψ(n) = max{φ(k),φ(k)≤ n}. We proceed as in Proposition 13 to have:∣∣sn(xψ(n))− sn(yn)
∣∣≤ ‖δxψ(n)−δyn‖H ?(X)‖sn‖H (X)→ 0, (51)

thanks to Lemma 25 and the inequality ‖sn‖H (X) ≤ ‖ f‖H (X).
Finally, have sn(xψ(n)) ≥ min

(
f
(
xψ(n)

)
, tn
)

by construction, so liminfsn(xψ(n)) ≥
min( f (y?) , t∞), which gives the second assertion thanks to (51). Observe that f (xψ(n)) < tn ul-
timately if f (y?)< t∞ for the first assertion.

If y? ∈ {xn}, then the result also follows similarly.

Lemma 29 Using the notations of Proposition 17 and writing vn = supx∈Xρn, tn(x), we have
liminfvn = 0.
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Proof. This is an adaptation of Lemma 12 from (Vazquez and Bect, 2010b).
Let y? be a cluster point of (xn)n≥1 and let

(
xφ(n)

)
n≥1 be a subsequence converging to y?. We

are going to prove that vφ(n)−1→ 0. Define

zφ(n)−1 = mφ(n)−1− sφ(n)−1(xφ(n)).

Then, Lemma 28 gives1 liminfsφ(n)−1(xφ(n))≥min( f (y?), t∞). Moreover we have

mφ(n)−1 ≤min
(

f
(
xφ(n−1)

)
, tφ(n)−1

)
,

since φ(n− 1) ≤ φ(n)− 1, so limmφ(n)−1 ≤ min( f (y?), t∞) holds because
(
mφ(n)−1

)
n≥1 is non-

increasing. The previous arguments show that limsupzφ(n)−1 ≤ 0.
Moreover, one can use (Vazquez and Bect, 2010b, Proposition 10, (i)⇒ (ii)) similarly to show

that σ2
φ(n)−1(xφ(n))→ 0 and therefore

vφ(n)−1 = γ

(
zφ(n)−1, σ

2
φ(n)−1(xφ(n))

)
≤ γ

(
sup
k≥n

zφ(k)−1, σ
2
φ(n)−1(xφ(n))

)
→ 0,

since γ is non-decreasing with respect to its first argument and continuous.

Proof of Proposition 17. This is an adaptation of Theorem 6 from (Vazquez and Bect, 2010b).
For f ∈H (X), write (xn)n≥1 for the corresponding sequence (Xn)n≥1 generated by EGO-R. More-
over, write sn = sRn,n for the reGP predictor at the step n to avoid cumbersome notations. Then,
for x ∈X, write ρn, tn(x) = γ(mn− sn(x), σ2

n (x)) for the expected improvement under the reGP pre-
dictive distribution, with γ the function defined in Proposition 1.

Suppose that there exists some x0 ∈ X such that σ2
n (x0) ≥ C1 > 0. The sequence (mn)n≥1

converges and the reproducing property (7) yields

|sn(x0)| ≤
√

k(x0, x0)‖sn‖H (X) ≤
√

k(x0, x0)‖ f‖H (X),

so the sequence (|mn− sn(x0)|)n≥1 is bounded by, say C2. We have then

vn = sup
x∈X

ρn, tn(x)≥ γ
(
mn− sn(x0),σ

2
n (x0)

)
≥ γ (−C2,C1)> 0

by Proposition 1. But this yields a contradiction with Lemma 29, so the decreasing se-
quence

(
σ2

n
)

n≥1 converges pointwise onX to zero. Proposition 10 from Vazquez and Bect (2010b)
then implies that every x ∈X is adherent to {xn}.

Lemma 30 Assume that b is finite, and that either a is finite too or
∫ 0
−∞

FP(u)du =
∫ 0
−∞
|u|P(du) is

finite. Then

StCRPS
a,b (P, z) = (b−a∨ z)++R2(a,b)−2R1(a∨ z,b), (52)

where

Rq(a,b) =
∫ +∞

−∞

1a≤u≤b FP(u)q du. (53)

1. Lemma 28 yields liminfsn−1(xψ(n))≥min( f (y?), t∞) with ψ(n) = max{φ(k),φ(k)≤ n}, and the claim follows by
extracting a φ -subsequence.
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Proof.

StCRPS
a,b (P, z) =

∫ +∞

−∞

1a≤u≤b (1z≤u−FP(u))
2 du

=
∫ +∞

−∞

1a≤u≤b
(
1z≤u +FP(u)2−21z≤u FP(u)

)
du

=
∫ +∞

−∞

(
1a∨z≤u≤b +1a≤u≤b FP(u)2−21a∨z≤u≤b FP(u)

)
du

= (b−a∨ z)++R2(a,b)−2R1(a∨ z,b).

Lemma 31 Let a,b ∈R with a≤ b. Let q≥ 1. Then

Rq(a,b) = b−a+EI↑q(P,b)−EI↑q(P,a). (54)

Proof.

Rq(a,b) =
∫
1a≤u≤b FP(u)q du

=
∫
1a≤u≤b

q

∏
j=1

E
(
1N j≤u

)
du with N j

iid∼ P

= E

(∫
1a∨N1∨···∨Nq≤u≤b du

)
= E

(
(b−a∨N1∨·· ·∨Nq)+

)
= b−a+EI↑q(P,b)−EI↑q(P,a).

.

Proof of Proposition 21. The first result is given by Lemma 30 and Lemma 31.
Then using the dominated convergence theorem, it is easy to see that, when a→−∞

EI↑q(P,a) = E(N1∨·· ·∨Nq)−a+o(1), (55)

and therefore

Rq(−∞,b) = lim
a→−∞

Rq(a,b) = b+EI↑q(P,b)−E(N1∨·· ·∨Nq) , (56)

which gives the second statement.
Finally, a change of variable gives∫ +∞

a
(FP(u)−1z≤u)

2 du =
∫ −a

−∞

(FP(u)−P(U =−u)−1−z<u)
2 du,

and the last statement follows by observing that a probability measure admits at most a countable
number of atoms.
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Appendix C. Optimization Benchmark Results

The results are provided in Figure 10, Figure 11, Figure 12, and Figure 13, for the other test func-
tions from Table 1, using the same format as in Figure 8. Observe that the two heuristics for reGP
yield (sometimes very) substantial improvements on Zakharov (4), Zakharov (10), Three-hump
Camel, Perm (4), Perm (6), Rosenbrock (4), and Rosenbrock (6). However, only the “Concentra-
tion” heuristic yields clear benefits for Zakharov (6), Dixon-Price (4), Dixon-Price (6), and Rosen-
brock (10). Furthermore, the “Concentration” heuristic underperforms slightly on the (multimodal)
Shekel problems. Finally, the EGO and EGO-R algorithms yield indistinguishable results on the
remainings cases.
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Figure 10: Same as Figure 8. The gray dashed line stands for the Dual simulated Annealing al-
gorithm, the red line for the standard EGO algorithm, and the blue and green lines for
EGO-R, with the “Constant” and “Concentration” heuristics.
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Figure 11: Same as Figure 8. The gray dashed line stands for the Dual simulated Annealing al-
gorithm, the red line for the standard EGO algorithm, and the blue and green lines for
EGO-R, with the “Constant” and “Concentration” heuristics.
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Figure 12: Same as Figure 8. The gray dashed line stands for the Dual simulated Annealing al-
gorithm, the red line for the standard EGO algorithm, and the blue and green lines for
EGO-R, with the “Constant” and “Concentration” heuristics.
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Figure 13: Same as Figure 8. The gray dashed line stands for the Dual simulated Annealing al-
gorithm, the red line for the standard EGO algorithm, and the blue and green lines for
EGO-R, with the “Constant” and “Concentration” heuristics.
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