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Abstract

We prove that the derivation and composition on the field IL of logarithmic hyperseries
of [17] extend to its closure under hyperexponentials. We study the properties of these
extensions.

Introduction

Hyperexponentially closed fields

One naturally obtains hyperseries when closing fields of formal power series under deriva-
tion, integration, and transfinite sums and products. The first known instance of a thus
closed structure is the field IL of logarithmic hyperseries [17]. This is an ordered field
properly containing R, equipped with a derivation

0:L—1,
and an operation

oL x LR —T;(f,g9)— fog

called the composition law. Logarithmic hyperseries are well-based series (i.e. Hahn series
as per [25]) built upon formal symbols £, called hyperlogarithms, where w* is the base
omega exponentiation of an arbitrary ordinal u € On. These hyperlogarithms satisfy the
functional equations

VMEOn,ewu+1O€wu:€wu+1—l. (1)

One of the purposes of fields of formal series with extra structure is to provide a formal
framework which retains certain features of analytic or geometric models but which is
rid of certain problems related to analytic convergence, the non-existence of canonical
solutions to functional or differential equations... A relevant example is the use of so-
called logarithmic-exponential transseries by Ecalle [20] as formal counterparts to certain
functions involved in Dulac’s conjecture, leading to a proof of that conjecture by Ecalle.

In the case of logarithmic hyperseries, the term ¢ acts as a logarithm whereas the
terms £,» for n € N> correspond to extremely slowly increasing functions on R=°. Here,
the geometric model for £, is Kneser’s real analytic solution L to Abel’s equation in [31]

Vr>0,L(logr)=L(r)—1,
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of which (1) is a formal generalization. The inclusion of terms ¢, for arbitrary infinite
(not all of which can correspond to real-valued functions for cardinality reasons) is partly
motivated by logic, where one would want to have at one’s disposal saturated models of
those types of structures.

The rich structure on IL makes it an interesting object to act on other fields of formal
series. In [8], van der Hoeven, Kaplan and the author introduced the notion of a hyperserial
field as the action of IL on a field of well-based series by analytic functions (see Section 2.4).
Fields of well-based series enjoy a notion of transfinite sums which is described in Section 1.
An R-linear function between fields of well-based series which commutes with those sums
is said strongly linear. A hyperserial field is a field of well-based series T over R equipped
with an external composition law og: L x T>R — I, with the following properties (along
with a few additional details):

i. For all s T>R, the map .— T; f— fors is a strongly linear morphism of ordered
rings.

ii. For all f,gc L with ¢ >R and all s € TR, we have fo(gors)=(fog)ors.
iii. For all s,t€T>® and 1€ 0On, we have s <t =l nops<l,nort.

iv. For all s€ TR and § € T with 6 < s, we have foy (s+6)= Zker(Sk,
The class IL itself is a hyperserial field with strongly linear derivation and integration opera-
tors. However it is not closed under functional inversion. In particular, for any € On, the
hyperlogarithm function L u: L>R® — L>R: g £ uo0 ¢ is not surjective. In other words,
the functional right inverse E,» of L~, called the hyperexponential function of strength w*,
is not totally defined on IL>®. In order to obtain bijective hyperlogarithms, one must extend
IL, as a hyperserial field, with a formal element efj’u for each € On, which corresponds
as a function to E,x. It was shown [8, Theorem 1.4] that certain hyperserial fields called
confluent hyperserial fields have a closure under those hyperexponential functions. More
precisely, we say that a hyperserial field (T, o) is hyperexponentially closed if each function
Lgw: TR — T>R for i € On is surjective. Then any confluent hyperserial field T is
naturally contained in a hyperexponentially closed confluent hyperserial field T with the
following initial property: if ®: T — U is an embedding into a hyperexponentially closed
hyperserial field U, then there is a unique embedding ¥: T — U which extends ®.

T < T
e\, |3V
U

In particular, there is a minimal closure L of logarithmic hyperseries under hyperexpo-
nentials, where each hyperexponential function E,u: L>® — L>R is defined and bijective.
Each series f in L is obtained by combining hyperlogarithms, hyperexponentials, and
well-based sums with real coefficients. This suggests that f should have a well-defined
derivative 5( f) and should act on L>® through a left composition g+— f3&g. The goal

of this paper is to prove that this is the case, and to show that the operations 0:L—1L

and &: L x L>R — >R retain certain important properties of their respective restrictions
to L and L x >R
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Our overarching goal, as part of a research program laid out in [6], is to extend these
operations to Conway’s class No of surreal numbers [14]. Indeed we showed with van der
Hoeven [7] that No can be seen, in a natural way, as a hyperexponentially closed confluent
hyperserial field that properly contains L. We thus require more general theorems in
order to extend derivations and compositions on hyperserial fields to their closure under
hyperexponentials. In other words, we must extend Schmeling’s work [37] on fields of
transseries and their exponential closure to hyperserial fields and their hyperexponential
closure. The results of this paper consist in showing that certain properties of a given
configuration o: U x T>® — V or 9: U — V between hyperserial fields, which are true in
the case when U=T=V =1L, extend through the closure under hyperexponentials. Their
respective statements involve technical conditions on U, T and V, so it is simpler for now
to introduce them in the specific case when U=T=V =1.

The properties of derivations and composition laws which we are looking for are inspired
by properties of germs in Hardy fields [12]. A Hardy field is a field H D R of germs at +oo
of real-valued functions, which is closed under derivation. Thus H comes equipped with a
structure of ordered valued differential field (H, 4+, x, <, <, 9) (see [2]). As [3, 5] illustrate,
many properties of (H, +, x, <, <, d) follow from two simple axiomatic properties in the
language of ordered valued differential rings:

H1. For all f€H>? with f > 1, we have d(g) > 0.
H2. For all fe€H with f <1, we have 0(f) < 1.

Ordered valued differential fields satisfying H1 and H2 are called H-fields with small
derivation. Given two germs f, g in a Hardy field H with g > R, i.e. lim 4o, g =400, the
germ fog of r— f(g(r)) is well-defined. If fogéeH for all such f, g, then we also have
a composition law o: H x H>R® — H, with the following properties:

C1. For all f€H and g,h € H>®, we have goh >R and fo(goh)=(fog)oh.

C2. For all g€ H”R, the function H — H; f+— f o g is a strictly increasing morphism
of rings.

C3. For all f€H>R, the function H>R— H>R; g~ fo g is strictly increasing.

In certain cases, such as the field Han,exp Of germs definable in the o-minimal expansion
Ran,exp Of the real ordered field by the exponential and restricted analytic functions [18],
we have Taylor approximations for germs:

C4. Forall feH, ge H>R, § < g with 6 4%7 and for all n € N, we have

Folg+a) Y LU0 5t (an(p)og)on

k=0

One thus expects derivations and composition laws on hyperserial fields to satisfy formal,
strongly linear versions of H1, H2, C1, C2, C3 and C4 such as i, ii, iii and iv above. We
will see throughout the paper that straightforward definitions of derivations and composi-
tion laws on hyperexponentially closed fields do yield those properties.

Outline of the results

Let us now describe our results. The main obstacle on our way is the difficult task of
dealing with the summability of transfinite families. This is why we gather a rather large
set of tools to that effect in Sections 1 and 2, which also defines fields of well-based series
over R. Section 3 introduces the notion hyperserial fields. Section 4 focuses on transserial
subfields and subgroups, which are substructures of hyperserial fields that are only closed
under the logarithm, as opposed to the whole calculus of logartihmic hyperseries.
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In Section 6, we show that the derivation I — IL extends into a derivation L — L
with similar properties:

Result A (Corollary of Theorem 6.7). [Corollary 6.22] There is a unique extension
of 0:IL.— 1L into a derivation 9:L — L with the following properties:

i. Ois strongly linear.

i. d(fog)=0(g) xd(f)og for all f €L and g L>E.

Moreover (IL,d) is an H-field with small derivation.

Relying on results from [5, 17], we give a more precise description of the model theory
of L as an ordered differential valued field.

Result B. [Theorem-6.23] The structure (]1, +, X, <, -<,5) s an elementary extension of
Dahn-Géring’s [15] and Ecalle’s [20] field (TLg, +, %, <, <, 0) of logarithmic-exponential
transseries.

Section 7 regards composition laws. In particular, we prove that the composition law
o:IL x L>® — IL extends uniquely into a composition law L x L>R — T,

Result C (Corollary of Theorem 7.1). [Corollary 7.24] There is a unique extension
of o:Lx LR — I into a function &:1L x LB — IL with the following properties:

1. For all g€ L>", the function L—1L; f— fog is a strongly linear morphism of
ordered Tings.

i. For all feL and g,h e L>®, we have f6(g3h)=(f3g)3dh.

Then we show in Section 8 that the Taylor expansions property iv of I, or C4 in the
context of Hardy fields, extends to L:

Result D (Corollary of Theorem 8.13). [Corollary 9.3] For all f € L, geL”R and
0 € IL with § < g, we have

- Nk 5
(Vmesupp f,(d(m)3g)d<mdg)=> f5(g+08)=> 9%(f)og (Jl;) 9 sk.
keN ’

Section 9 is dedicated to the proof that elements of IL act as monotonous functions:

Result E (Corollary of Theorem 9.16). [Corollary 9.20] For all f € >R, the function
11>R—>]~L>R; g— fog
18 strictly increasing.
It should be noted that the results A through E are all obtained via the same method,

which we describe in Section 5. Finally, we focus on the structure (L>&, 3, <). Adapting
arguments from [17, 23, 21], we prove the following:

Result F. [Proposition 9.23 and Theorem 10.16] The structure (>R, 3, <) is a bi-ordered
group where any two strictly positive elements are conjugate.
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We also apply this in order to solve the inequation fo g> go f for positive elements
f, g in the group (Proposition 10.25).
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1 Strongly linear algebra

Convention. Before we start, we set a few conventions.

Set theory. We adopt the set-theoretic framework of [8]. In particular, the underlying
set theory of this paper is NBG set theory. This is a conservative extension of ZFC
which allows us to prove statements about proper classes.
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Ordinals. We consider the class On of ordinals as a “generalized” ordinal. If v is a
class, then ¥ < On means that ¥ € On or v = On. For generalized ordinals, we use
bold font notations v, p, A to suggest that v, g, A may be equal to On, whereas
the notations a, v, #, p and so on are only used for true ordinals «, v, 8, p € On.
We also extend the relations < and < on On by making On maximal, and we set

wOn.=On.

Ordered monoids. If (M, <) is an ordered monoid such as N, R, one of our hyper-
serial fields T or groups of monomials 91, then M~ denotes its subclass of strictly
positive elements in M, whereas M7 denotes the class of non-zero elements of M.

1.1 Fields of well-based series

Let (9, X, 1, <) be a linearly ordered abelian group, possibly class-sized. We write R[[91]]
for the class of functions s: 91 — R whose support

supp s:={meM:s(m)#0}

is a well-based set, i.e. a set which is well-ordered in the reverse order (90, >). The elements
of M are called monomials, whereas those in R7 M are called terms.

We see elements s of $ as formal well-based series s=7)_ smm where for m € M, the
symbol sy denotes the value s(m) € R. If supp s # &, then we write

0; := maxsupp f€IM and
T 1= Sp,0s€ RTM

respectively for the dominant monomial and dominant term of s. For m € 91, we set
Semi= Z SpM,
n>m

and s. :=s.1. For s,t €%, we say that ¢ is a truncation of s and we write t < s if
supp (s —t) > supp s. The relation < is a well-founded partial order on $ with minimum 0.
By [25], the class $ is an ordered field under the pointwise sum

(s+1):=> (sm+tmm,

m

st::Z ( Z sutn)m,

m ub=m

and the Cauchy product

suty has finite support). The positive cone $” ={s€$:5>0} is
$7:={s€B:s£0Asp, >0}

(where each sum 3 =

We have an embedding of ordered groups

(mta X,-<)—>($>, X,<);mf—> Z n
n=—m

and we identify 9 with its image in $~.

The order on M extends into a strict quasi-order < on $ defined by s <t if and only
if R” |s| < |t]. We write st if t <s is false, i.e. if there is r € R~ with |s| <7 [t]. We also
write s <t if s<t and t < s, i.e. if there is r e R~ with r |s| > |¢t| and 7 |[t| > s. Then < is a
dominance relation as per |5, Definition 3.1.1], and it corresponds to the natural valuation
on the ordered field (%, +, x, <). In particular (8, +, x, <, <) is an ordered valued field
with convex valuation ring $:={s€$:s<1}.
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When s,t are non-zero, we have s <t (resp. s<t, resp. s<t) if and only if 05 < (resp.
05 < 0y, TESP. 05 =104).
We write
P, = {s€P:suppsCM~}
$= = {seP:suppsCM=}={se€B:s5<1}, and
$77 = {s€8:s>R}={seB:s=>0As>1}.
Series in $., $= and $~~ are respectively said purely large, infinitesimal, and positive

infinite. A subclass & of 9 is said infinitesimal if all its elements are infinitesimal. We say
that & is small if we have s <1 for all s € &.

Remark 1.1. On the notation s vs f. The reader will notice that we sometimes write
f, g and so on for well-based series, and sometimes rather s, ¢, and so on. The notation
f, g is used to suggest that we consider f and ¢ as functions acting on a field through a
composition law, whereas s,t are used to suggest that we are seeing s,t as objects on which
certain functions, e.g. right compositions and derivations, act. Sometimes both contexts
are relevant, and we have to make a choice.

1.2 Well-based families
Let I be a set. A family (s;)icr in $ is said well-based if
1. J;crsupp s; is well-based, and
ii. {iel:mesupps;} is finite for all me M.
Then we may define the sum )., s; of (si)ier as the series

S a3 n )

el el

We have the following consequence of |28, Proposition 3.1(e)]:

Lemma 1.2. Let I,J be sets and let (fi j) (i, jyerx. be a well-based family. For each ig€ I
and for each jo € J, the families ( fiy j)jes and (fi j,)ier are well-based. Moreover families

(ZjEJfZ‘J‘)Z‘e] and (3, fij)jer are well-based, with

> (zfu) DEETESY (z f)

i€l \ jeJ (i,§)eIxJ jed \ iel

One of the main difficulties of our work here is to prove that certain families are
well-based. In some cases, the proof can be done using elementary arguments, but they
sometimes require more powerful tools. In particular, we will rely on results in [34, 28, 37].

1.3 Neumann’s theorems
For G C9 we write 6":=6 --- S ={s;---5,,:51,...,5,€ S} and

ntlmes
= U S"={s1---s5,:n€NAsy,...,5,€S}.
neN

We have the following important results of B. Neumann:
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Lemma 1.3. [34, Lemma 3.2 and Corollary 3.21| Let &,T C9M be well-based. Then the
class & - % is well-based. Moreover, for all me & - T, the set {(u,0) €GE X T:m=uv} is
finite.

Lemma 1.4. [34, Theorems 3.4 and 3.5| Let & CIN= be well-based. The class &> is well-
based. Moreover, for all me &>, the set {n€ N:me &"} is finite.

A consequence of Lemma 1.4 is that for all € € $~, the set (suppe)®° is well-based and
for all (rp)nen€ RN the family (rn Ek)ke]N is well-based.

Lemma 1.5. Let (s;)ier be a family in 8. Assume that there is a well-based and infini-
tesimal set T CIN, a well-based set S CTIM and a function N: [ — N such that we have

supp s; C TN . g foralliel.

Assume that (sj)je. is well-based whenever J C I and N(J) is finite. Then (s;)ier is well-
based.

Proof. Assume for contradiction that (s;);er is not well-based. So there is an injective
sequence (ig)ren € I and a sequence (my)gen € MY with mp<my < -+ and my, €supp s;,,
for all k€ N. We have {my: k€ N} CT°°- S where T S is well-based by Lemmas 1.3
and 1.4. So {my:k €N} is well-based and we may assume that (my)ien is constant. Fix
teT> and s € S with mj=ts for all k€ N. We have t € TN#) for all k€ N. By Lemma 1.4,
this implies that {N(ix): k € N} is finite, so (s;,)ken is well-based: a contradiction. O

Corollary 1.6. Let (Sn,m)n,m)en2 be a family in 3 such that each (sy,m)meN forn €N
1s well-based. Assume that there is a well-based and infinitesimal set T CIM and a well-
based set S CIM with

Vn,m €N, supp s, ,m CT"-S.

Then (sp.k)n,kyen? s well-based.

We say that a subclass & Cilit is good if it is well-based, small and if moreover G C &.
If G is small and well-based, then by Lemma 1.4, the class 6*° 2 & is good.

Proposition 1.7. Let $=R[[9N]] be a field of well-based series. Let I be a set and let f:
I — N be an arbitrary function. Let (s;)icr be a well-based family in $ and let 6 1. The

family (s; 5f(i))¢€1 18 well-based.

Proof. Let & :=(J,.;suppsi;. So & is well-based. For (i, k)€l x N, write s;:=
S (f(l)> ,r.f(l)—k'gk SO
(2 k )
supp s;.x C & - (suppe)*.

If JCN is finite, then (s;x)ier ke is well-based as a finite union of well-based families.
We deduce with Lemma 1.5 that (s; x)ier ken is well-based. In particular (Zi(:l)o si,k)

. iel —
(5365 D);c1 is well-based by [28, Proposition 3.1(e)]. O

1.4 Elementary analysis on ordered fields

Let Fo, F1 be (possibly class-sized) ordered fields. Then they have a natural topology
called the order topology. We say that a subclass X C Fy is a neighborhood of x € X if
there is an £ € F3° with (z — e,z +¢) C X. We say that X is open if it is empty or if it is
a neighborhood of each of its points.
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The standard definition of differentiable real-valued functions can be formulated for
functions between Fg and F;. Let = € Fy and let O C Fg be a neighborhood of x. Then a
function f: O — F is said differentiable at x if there is an [ € F; such that

Ve €eF7°, 36 € FO Vy eFo, |y —z| <6 =[f(y) — f(z) — (y— )| <|y — z]e.

Then [ is unique, we write [ = f’(z) and we call f’(x) the derivative of f at x. If moreover
O is open and f is differentiable at each x € O, then we say that f is differentiable and
we write f’ for the function O — Fy;y— f'(y).

Many elementary properties of differentiable functions on R are retained in the more
general context of ordered fields. In particular, the sum and product of differentiable
functions at a point is differentiable at this point. Moreover, for f, g differentiable at x
(resp. on O), we have

(f9)'(z) = ['(x) g(x) + f(z) ¢'(x).

In other words, the derivation operator f+— f’(x) behaves as a derivation on the collection
of differentiable functions at . We also have a chain rule: if f: O — U CF is differentiable
at © where U is a neighborhood of f(z), and ¢g: U — Fy is differentiable at f(x) where
F5 is an ordered field, then go f is differentiable at x with

(go f)(z)=f'(z) g'(f (). (1.1)

See [11, 35] for more details on these facts.

1.5 Flatness

Let $=R[[M]] be a field of well-based series. For s € $>, we write s™:=max (s,s™1) and
s7:=(s1T)71. SosT=s"1if s<1and st =s otherwise. Asin [37, 30], it is useful to consider
the following orderings on $-:

Definition 1.8. Let s,t €%$~. We say that s is flatter than t and we write
skt if (sT)"<tt foralln€N~, and
st if there are m,n € N~ with t+ < (sT)m < (tT)".
We also write s Xt if s <t or s=t. We write
s<t if s"<t forallneN~, and
s=t if there are m,n € N~ with t<s™<t".
We also write s Lt if st or s=t.

The relations < and < are partial orderings on $~. We sometimes extend them to i
by writing s <t whenever |s| < |t|, and s <t whenever |s| < |t|. Note that s <t if and
only if vds > vd; where v is the natural (or standard, or Archimedean) valuation on the
ordered group M. See [5, p 83-84], for more details.

Lemma 1.9. Let L: (%7, x) — (%, +) be a strictly increasing morphism. Then for all s,
t €87, we have

st <= L(s)=<L(t),

skt < R~ L(s) < L(t),

st <= L(s)x L(¢),

s<t < IreR”,rL(s) < L(t),
s=t < L(s)=<L(t), and
s=t < IreR”,rL(s)~ L(t).
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Proof. This follows from the relation L(s"™)=ns for all s € $~ and n € N and the fact
that L is strictly increasing. O

We will frequently use the following consequences of Lemma 1.9, sometimes without
mention:

Corollary 1.10. Assume that there is a strictly increasing morphism L: (37, x) — ($,+).
Then for s,t,u € $”, we have

a) st=<max (s, t1).

b) s<t=—s=t.

c) s<Kt=stxt.

Proof. The assertions a), ¢) follow from the classical valuation theoretic properties of <.
The assertion b) is an immediate consequence of Lemma 1.9. O

1.6 Strong linearity and operator supports

Let U=R[[]] and V =TR][[]] be fields of well-based series. Consider a function ®:$ — U
which is R-linear. Then ® is strongly linear if for every well-based family (s;);er in 8, the
family (®(s;))ier in U is well-based, with

@(Z si> =" B(si).

el el

By [28, Proposition 3.5], the function ® is strongly linear if and only if for each s € 8, the
family (®(m))mesupps is well-based with ®(s)=3" = sm®(m).

A very convenient way to prove that certain family related to certain operators are well-
based is to rely on the notion of operator support of [17, p 10] and relative operator support
of [8, Definition 2.4]. We recall the definitions here, and then propose a generalization.

Let $=R[[M]] and T =R[[N]] be fields of well-based series. A very convenient way to
prove that certain family related to certain operators are well-based is to rely on the notion
of operator support of [17, p 10] and relative operator support of 8, Definition 2.4]. We
recall the definitions here, and then propose a generalization.

Definition 1.11. Let ®:9 — T be a function. If M TN, then the support supp @ of
® is the class
supp ®(m)

supp P := U -

meM

The relative support supps ® of ¢ is the class

suppe @ := U
meMN

supp ®(m)
Od(m)

If .5 — T is a linear function, then we define its support and relative support as
suppV¥ := supp (¥ 19M) and
suppe ¥ = suppe (U 19M) respectively.
We next include two useful results regarding supports and relative supports.

Proposition 1.12. [17, Lemma 2.9] Let ®: 9t — T have well-based support. Then ® is
well-based.
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Proposition 1.13. [8, Proposition 2.5 Let ®: 91— T be relatively well-based. Assume
that 0 € ®(9M) and that 9o ®:IM — N is strictly increasing. Then ® is well-based and its
strongly linear extension ® is injective.

Let s € T>. If s#1, then we write 95 for the subclass of 9 of monomials m with
m < s. If s<1, then we set M=% :={1}. We write M7 := M= NIM”. We will
only consider this class in contexts where there exists a strictly increasing morphism log:
(T>, x) — (T, +). In that case Corollary 1.10(a) applies, so the class 9= (resp. M=*7)
is a subgroup (resp. submonoid) of 9.

Definition 1.14. Let &: 91— T be a function and let 2 be a subclass of N. If MCMN,
then we say that 20 is a near-support for @ if for all m e M, we have

supp ®(m) Cm - 9T=<"™. 90,
We say that 20 is a positive near-support for @ if for all m € M, we have
supp ®(m) Cm - NX™7. 97,
We say that 20 is a relative near-support for ® if for all m € M, we have
supp ®(m) C g (m) S AU §

If U:8— T is a function, we say that S is a near-support (resp. relative near-support)
for W if it is a near-support (resp. relative near-support) for W1 9.

Note that the support (resp. relative support) of ® is a near-support (resp. relative
near-support) for ®. However since supp ® and suppe ® may not be well-based, it is
sometimes useful to consider other near-supports (resp. relative near-supports) for ®. As
a general rule, we will rely on near-supports when working with derivations, and relative
near-supports when working with composition laws.

Lemma 1.15. Assume that M CIN. Let &: M — T be a function, and let 1 be a well-
based near support for ®. If p is an ordinal and (m,)<, is a strictly <-decreasing sequence
in M, then the family (P(m,))y<, is well-based.

Proof. Assume for contradiction that this family is not well-based. So we may assume that
there is a nondecreasing sequence of monomials (n;);eN and a strictly increasing sequence
of ordinals (7;)ien with n; € supp ®(m,,) for all i € N. For i € N, we fix a p; € W™
and a w; € 20 with n; =m,, p; 1o,;. Since 2 is well-based, we may assume that (10;);enN is
nonincreasing, whence that (m.,,p;);en is nondecreasing. Now for i € N, we have m,, p;=m,,
by Corollary 1.10(c). But (m,);en is strictly <-decreasing, so (m., p;)ien is strictly <-
decreasing, hence strictly <-decreasing: a contradiction. O

Lemma 1.16. Let ®: 9 — T7 be a strictly <-increasing function and let 20 be a well-
based near support for ®. If X is an ordinal and (m,)~ <, is a strictly <-decreasing sequence
in M, then the family (®(m,))y<, is well-based.

Proof. Assume for contradiction that this family is not well-based. So we may assume that
there is a nondecreasing sequence of monomials (n;);en and a strictly increasing sequence
of ordinals (7;)ien with n; € supp ®(m,,) for all i € N. We write u;:=d¢(m, ) for all i € N.
For i € N, we fix a p; € NS™i and a ; € W with n; =u; p; ;. Since 2T is well-based, we
may assume that (u;p;);en is nondecreasing. For i € N, we have u; p; =u; Corollary 1.10(c),
But (u;)ien is strictly <-decreasing, so (u;p;)ienN is strictly <-decreasing, hence strictly
<-decreasing: a contradiction. O
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1.7 Van der Hoeven’s theorem and applications

One of the main technical difficulties of the this paper will be to prove that certain families
related to hyperseries are well-based. In a number of cases, the arguments in the previous
sections will suffice, but we will often require more powerful tools pertaining to the notion
of Noetherian ordering, which we next introduce. Most of the results can be found in [27,
Appendix A], [37, Chapter 1], [26] and [28].

Definition 1.17. Let (X, <) be a partially ordered class. A chain in X is a linearly ordered
subclass of X. A decreasing chain in X is chain Y C X without minimal element, i.e.
with

VyeY,3ze€Y,(z<y).

An antichain in X is a subclass Y C X, no two distinct elements of which are comparable,
.e. with

Vy,zeY,y<z=y==2.

We say that (X, <) is Noetherian if there are no infinite decreasing chains and no infinite
antichains in (X, <).

Noetherianity is a strengthening of well-foundedness, and a weakening of well-ordered-
ness, the latter being equivalent to the conjunction of linearity and Noetherianity. In order
to derive results on Noetherian classes, it is convenient to rely on the notion of bad sequence
and minimal bad sequence of [33]. If (X, <x) is an ordered class, then a bad sequence in
X is a sequence u: N — X such that there are no i, j € N with 7 < j and u; <xu;. Given
a function f: X — NN, a bad sequence u in X is said minimal for f if for all ¢ € N, there
are no bad sequences v in X with (v, ...,v;—1) = (ug,...,ui—1) and f(v;) < f(u;).

Lemma 1.18. [37, Theorem 3.5.1] Let (X, <) be a partially ordered set and let f: X — N
be a function. If there is a bad sequence in X, then there is bad sequence in X which is
minimal for f.

Lemma 1.19. [26, Theorem 2.1] Let (X, <x) be a partially ordered class. The following
statements are equivalent

a) (X, <x) ts Noetherian.

b) There is no bad sequence in (X, <x).

¢) Every sequence in X has an increasing subsequence.

Lemma 1.20. [37, Criterion 1.5.4] Let I be a set and let S = (s;)ic; €3! be a family.
Consider the set

Ng:={(i,m) eI x M:mesupp s;},

ordered by (i, m) <g (j,n) <= m=<n. Then S is well-based if and only if (Ng, <g) is
Noetherian.

Proof. Assume that S is well-based. Consider a non-empty chain C' for (Ng, <g). Given
(i,m)€C, we have me J,;si, and (i,m) is <g minimal in C' if and only if m is <-maximal
in (J;c;8i- Consider an antichain A in (Ng, <s). Since (9, <) is linearly ordered, we must
have A CT x {m} for a certain m € M. But then A C (I x {m}) N Ng= Iy, x {m} where
Im={i€l:mesupps,}.
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In view of the definition of well-based families, we see that (Ng, <g) is Noetherian if
and only if S is well-based. O

Let (X, <) be a partially ordered set. We write

X*:= U X"={(z1,...,xn):neENAzy, ..., 2n € X}
neN

for the set of so-called finite words on X, including the empty word @ € X°. For any non-
empty word w = (wp, ..., wg) € X*\ {D}, we write we :=wy € X for the last “letter” of w,
and we write |w|:=k+1 for its length.

We next state a weaker and simplified version of van der Hoeven’s theorem [27, Appendix
A.4] on so-called Noetherian choice operators. Let (X, <) be a partially ordered class.
A function ¥ sending each x € X to a subset ¥(z) of X is called a choice operator on X.

The choice operator ¥ is said Noetherian if for all Noetherian subsets Y C X, the set

Yo:={z:3y,(yeY Axed(y)} X
is Noetherian. It is said strictly extensive if for all x € X, we have
x <V(x).

Let Y C X be a subset. Let 97(Y) denote the set of non-empty finite words (zo, ...,
x) € X*\ {@} where for each i < k, we have x;11 € 9(x;). We endow 97 (Y) with the
ordering <y defined by

W<y w' <=>we < WL.

Proposition 1.21. (van der Hoeven’s theorem) [27, Theorem A.4] Let (X, <) be a
partially ordered class and let ¥ be a Noetherian and strictly extensive choice operator on
X. Then for all Noetherian subsets Y of X, the set 97(Y') is Noetherian for <y.

Proof. This version follows from an application of [27, Theorem A.4] to a simple case.
Nonetheless, let us adapt van der Hoeven’s proof to the present simplified setting.

Assume for contradiction that 97 (Y) is not Noetherian. So there is a minimal bad
sequence (w;);en €T (Y)N for the length function w— |w|. Assume that there is an infinite
set I CIN with |w;| <2 for all i€ I. Then Y :={w;¢:i€ 1} CY is Noetherian. Since ¥ is
a Noetherian choice operator, the set

yﬁ = {y e I, Yy e 19(.%‘70)}

is Noetherian. But then {w;:i € I'} is Noetherian for <y: a contradiction.

So there is a k€ N with |w;| > 2 for all j > k. For j >k, we write z;:= (wj,...,
Wj jw,;|-1) €VH(Y). We claim that the set Z:={z;:j >k}, is Noetherian for <y. Indeed,
assume for contradiction that (z;,)ien is a bad sequence in Z with jo< j1 <---. We show that

u::= (wo, .. .,wjofl, Zj()? Zjl? .. )

is a bad sequence, contradicting the minimality of (w;);eN. Indeed assume for contradiction
that v isn’t bad. Since (zj,)ien is bad, there must exist i < jo and p € N with w; <y zj,,.
Since ¢ is strictly extensive, we have

(wj,)e €V((2),)e) > (2),)e,

S0 w; <gwk: a contradiction. Therefore Z is Noetherian. It follows since 9 is Noetherian
that {w;:7 >k} is Noetherian: a contradiction. O
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Corollary 1.22. Assume that X is linearly ordered. Let ¥ be a strictly extensive and
Noetherian choice operator on X, and let Y CX be a well-ordered subset. Define Yo, to be
the union of sets Y, n € N, where

Yo .= Y and
Y41 = YU U Y(y) for allneN.
yeY,

Then Yo is well-based.

Proof. By definition, we have ¥, C {we:w €91 (Y)} for alln € N, so Yoo C{we:w eI (Y)}.
Recall that X is linearly ordered. By van der Hoeven’s theorem, the set {we:w €97 (Y)}
is Noetherian, hence well-ordered. So Y., is well-ordered. O

Lemma 1.23. Let $S=R[[M]] be a field of well-based series and let :$ —$ be strongly
linear with ®(m) <m for all m € M. Define a choice operator ¥o on the reverse order
(9, ) by

Vm e M, Jg(m) :=supp ®(m).

Then Vg s strictly extensive and Noetherian.

Proof. The relation Vm € 9, ®(m) < m implies that ¥¢ is strictly extensive. Given a
Noetherian subset 9 CIN, i.e. a well-based subset in (9, <), the set

Dy ={m: 3y, (n€YAmesupp®(n))} C | supp d(n)
ney

is well-based, hence Noetherian in (91, ~). So ¥s is Noetherian. O

Notation 1.24. Given a function V: X — X on a class X and a k € N, we will frequently
write W for the k-fold iterate of ¥. So Ul s the function X — X with O = v and
gl = gl o o =W o U for all ke N.

Proposition 1.25. (corollary of [28, Theorem 6.2]) Let $=R[[IM]] be a field of well-based
series and let ®:8 — $ be strongly linear with ®(m) <m for all meM. Let (rx)ren€RN.

Then for all s €S, the family (ry Q[k](s))keN is well-based, and the function

Z rp @k S — $: 5 Z 7y, ®F(s)

. . keN keN
18 strongly linear.

Proof. We may assume that =1 for all £ € N. Consider the Noetherian, strictly extensive
choice operator ¥¢ of Lemma 1.23 Let s € $, write & :=supp s, and write I’ for the family

F= (w°)weﬁ$(6) e M (S), By van der Hoeven’s theorem, the ordered set (94(8), <y,) is

Noetherian. But (94(6), <gs) = (Nr, <r), so F is well-based by Lemma 1.20. For m€ &
and k € N, we have

supp ®Fl(m) C U We.
weIL (&)

We deduce that (®F/(m))mesnren is a subfamily of a well-based family, hence it is well-
based as well. O

Corollary 1.26. |28, Corollary 1.4| Let & and ® be as in Proposition 1.25. The function
Idg+ ®: 3 — 8; s— s+ D(s)
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is bijective, with functional inverse ZkeN(—l)kq)[k].

Proof. Let s€$, and write ¢:= ZkeN(—l)k@k](s). We have

(dst®)(r) = 3 <_1>kq>[k1<s>+q>(z <_1>kq>vﬂ<s>>

keN keN
= Y (—DFell(s) = > (~1)M1aFFl(s)  (by strong linearity of @)

keN keN
SR LGRS SREIEL®
keN keN>

Conversely

(Z (—1)k¢[k}>(s+q>(s)) = Y (-D*@F(s+(s))  (by strong linearity of )

keN keN

= 3 (~DFel(s) + (—1)F )

keN
SDNCIRTERS IR EE
keN keEN
= s
as above. O

This last result, and generalizations thereof can be used to define integrals in differ-
ential fields of well-based series (see [4]) strongly linear fixed points operators (see [28,
Theorem 6.3]), and solve various functional equations on fields of transseries or hyperseries
(see [28, Example 6.7] or Section 10.2).

2 Analyticity

In this section, we introduce the notion of analytic functions on fields of well-based series,
generalizing similar definitions from [1, 10]. This will play an important role in the paper
since the functions s+ f o s involved when considering composition laws o: T x U~ — V
between fields of hyperseries will often be analytic.

2.1 Power series

Let $, T, U be fields of well-based series over R. We write $[[z]] for the ring of power series

P= Z P 2%, (Pr)gen € SN
keN

over $. If P, Q € %][[z]] with Qo=0, we have a composite power series

PoQ:_PoJrZ( 5 Pnczml---@m,)zkes*nnzﬂ.

keEN \ mi+---+mp=k
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Consider the subdomain z D[[z]] of D[[2]] of power series P=3", _\ Pk 2% with Py=0.
We have a composition law o: D[[z]] x z D[[z]] — DJ[[z]]. Indeed for P =3, _\ Px 2",
Q=2 1en@k 2F € $[[2]] with Qo =0, we have a composite power series

POQ::PO+Z ( Z Panl"'an>Zk€$HZ]]'

kelN \ mi+---+mn,=k
For P D[[z]] and Q, R € zD[[z]], we have Qo R € z D][z]] and

Po(QoR)=(PoQ)oR.

2.2 Convergence of power series

Definition 2.1. Given a power series

P=>Y" PBzres]),
keN

and s €8, we say that P converges at s if the family (Pys®)pen is well-based. We then set

P(s):= Z Py sk,
veIN™
We write Conv(P) for the class of series s €8 at which P converges.
Example 2.2. Any real power series P=3", _\ 712" € R[[2]] converges on $~ by Lemma 1.4.

In fact, since the sequence (s*)gen is <-increasing whenever s 3= 1, we have Conv(P) =
$= unless P is a polynomial.

Proposition 2.3. [37, Corollary 1.5.8] For all P € $[[z]], and €,6 € $ with § € Conv(P),
we have € X § = ¢ € Conv(P).

Proof. Write P = ZkeNPk 2% and u:=¢/5< 1. By Proposition 1.7 for I =N and f =idy,
the family (P 6% u¥)pen= (Ppe®)ren is well-based. O

Lemma 2.4. Let P € $[[z]] with Conv(P)#{0}. Then Conv(P) is open.

Proof. Given ¢ € Conv(P), there is a § € Conv(P)\ {0}, and we have e+ <0 or e+ xe.
In any case, we obtain € + 0 € Conv(P) by Proposition 2.3. Therefore Conv(P) is open. [

Lemma 2.5. Let P=3, Pk 2* € §[[z]] be a power series. For all n € N, we have
Conv(P) = Conv(P™).

Proof. It suffices to prove the result for n=1. We have 0 € Conv(P) N Conv(P’). Recall
that

P'=3" (k+1) Py 25
keN
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For e € $7é, we have the following equivalences:
(Pre®)ren is well-based.
<= (Pr+1" )gen is well-based.
<= ((k+1) Pry1)ren is well-based.
We deduce that Conv(P) = Conv(P’). O

Proposition 2.6. Let P=3", Pk 2F € $[[2]] be a power series and let €, € Conv(P).

p(k)
Write Py for the power series Py.:= ZkeNPT'(E) 2k, We have 6 € Conv(Py.) and

P .(8)=P(c +9).

Proof. Note that Pyo= P and that P..(0) = P(e), so we may assume that ¢ and § are
non-zero. The power series P, is well-defined by Lemma 2.5. We have

U supp (Pyyi ) = U supp (P;e?),
i,keIN JEN

where the right hand set is well-based since (Pje’);en is well-based. For each monomial m €
M, the set In:={(i, k) € N?:m € supp(Pi1,0"+")} is contained in {(i,k) EN?:i+k € Ju}
where

Jm:={j € N:mesupp(P;8’)}.

Since (P; gl )jen is well-based, we deduce that Jy, and hence I, are finite. This shows that
(Prtie®); ken is well-based. Likewise, (Pg1;68%); ren is well-based.
For k € N, we have

HE)(E) k k+i i sk

Therefore it suffices to show that the family (Pk-+i5i5k)l" renN is well-based in order to prove
that 0 € Conv(Py.). For i,k € N, write

ot §F — g itk ok

where (u,v)=(g,%.) if §<¢e and (u,v)=(d,%s) if € <. In any case, we have v < 1 and
the family (P;1 ui+k)i7k€1N is well-based. Applying Proposition 1.7 for I =N x N and
f=(a,b)—a+b, we see that the family (P, ui+kvk)i7k€N: (Ppyic 5k)i7k€1N is well-based.

On the other hand we have § +& < ¢ or § +& <9, 50 § +¢& € Conv(P) and (P (§ +¢)*)ren
is well-based. By Lemma 1.2, we have

pk) : 4
Yt = R R () e

kelN keN ieN

= Z (kZi)PkHsiék

i, kN
S GERR
JEN 1<
= D PBi(e+dy
jeEN
= ]5(5+5),



ANALYTICITY 19

as desired. O

is a non-empty e say that a function

Lemma 2.7. Let P=3", P 2k € $[[z]] be a power series with Conv(P)# {0}. Then

the function P is infinitely differentiable on Conv(P) with P = P™ on Conv(P) for all
n€N.

Proof. Recall by Lemma 2.4 that Conv(P) is open. We first prove that P is differentiable
on Conv(P) with P'=P’. Let ¢ >0 and let s € Conv(P). For all h € $ with |h| <|s]|, we
have h < s, so Proposition 2.6 yields

i ) p(k)
Pls+h)—Pls) = 3 ol
k>0 ’
= P/(s)h+h2u,

p(h+2) (g
where U::ZkEN%hk' If u=0, then we set ¢ :=|s|. If u+#0, then we set 5::6/|u"

In both cases, we obtain |P(s+ h) — P(s) — P'(s) h| < € |h| whenever |h| < 8. So P is
differentiable at s with P’(s) = P’(s). The result for all n follows by induction. O

2.3 Roots of power series
We next consider roots of power series functions. A root of a power series P € $[[z]] is an

element s € Conv(P) with P(s)=0.

Lemma 2.8. Let P=3" _\ Pyz"€S][z]] be a power series and let R C Conv(P) be an
uncountable set of roots of P with pairwise distinct dominant terms. We have P =0.

Proof. Assume for contradiction that there is a non-zero term P, in the sequence and
consider s € R. Since the sum of (P, s")nenN is zero, for each number m with P, # 0, there

1 —
must exist at least one number n#m with 7p 7" =7p 7.'. Then 7, = (Ts—m> /m n), SO
we deduce that "

q
R C {(f—m) :n,mEJN,qEQ,Pm,Pn#O}.
Sn
Therefore R is countable: a contradiction. O

Lemma 2.9. Let P=3% . Pk 2F € §[[z]] be a power series, and let k be an infinite
cardinal. Let R C 3 be a set of roots of P with cardinal > k™ such that for each s €R, the
order type of (supps,>) is <k. Then P=0.

Proof. Assume for contradiction that P #0. We will call large the subsets X of R with
R\ X|<k. For a<r and s €3, we let 5|, denote the <-maximal truncation of s such that
the order type of (supp S| ) is <, and we write Sq| =8 — S|o- Let I denote the set of
ordinals a <  such that there is a large subset X, C'R with ¢j3=wuz for all 8 <a and ¢,
u € X,. Notice that 7 contains 0 trivially and 1 by Lemma 2.8. We prove that x € Z. Let
a <k with €7 for all <.



20 SECTION 2

If o is limit, then for each 3 <, pick a large subset X3 C R satisfying the condition
and consider the set Xq:=(1;_, X3 This set is large since o < kT and kT is regular.
Moreover it satisfies the condition for « by definition. So e € Z.

Assume now that o= 3+ 1 where S €7 and 3>0. We fix a set X satisfying the
condition for 3. For t € X, since 3> 0, we have t|53<t, so t|3 € Conv(P) is defined. We
deduce with Lemma 2.7 that t5 € Conv(PW) for all ke N. By Proposition 2.6 we have
P(t)= ]5(t|ﬁ +ig) = P:;ﬁ(tm). Assume for contradiction that Pi ,=0. Then P(i)(tw) =0
for all i € N, so P(t‘g—i—a) =0 for all € € $ with € ). In particular, given v < 3, we have
P(t)y+ 104, )=0for all r € R, which contradicts Lemma 2.8. We deduce that Py, is non-
zero. By Lemma 2.8, there is a co-countable subset of X3, hence large subset X, of R with
(ts))jn = (ug|)1, hence ujq =1v|, for all u,v € X,. This proves that a € Z. By induction, we
deduce that k €Z. For u,v € Xy, we have u=1w),, =), =v, which contradicts the fact that
X, is large. O

We note two corollaries to this result.

Corollary 2.10. Let P € $[[z]] and let € € Conv(P) with ¢ 0. If P(6)=0 for all § < ¢
then P=0.

Proof. Consider the set S of series s € $ with s e and such that the order type of
(supp s, =) is at most w. Fix an m € M~ with m < e. Each binary sequence u € 2N, we
have a yields a single element ) _,u(n)m"€S, so S is uncountably infinite. It follows
by Lemma 2.9 for x =w that P=0. O

Corollary 2.11. Let P € $[[z]] with Conv(P) # {0} and let 6 € Conv(P). We have
Conv(Pys) = Conv(P) and P = (Pys)(s):-

Proof. We may assume that J # 0. Proposition 2.6 shows that Conv(P4s) 2 Conv(P). By
<-initiality of Conv(P), we have — € Conv(P). So —é € Conv(Pys), which means that
the power series (Pis)4(—s) is well-defined. Since Conv(P,s) is <-initial and contains d,
Proposition 2.6 yields

(Pyo)+(—s)(€) = Pys(z — ) = P(e)

for all € < §. We deduce by Corollary 2.10 that P = (P,s)(—s). Applying Proposition 2.6,
this time to (Pys,—0), we get Conv(P,s5) C Conv(P), hence the equality. O

2.4 Analytic functions

Let $=R[M]], T and U be fixed fields of well-based series over R with 9t # 1 and
FCTCU. We also fix a non-empty open subclass O of 5.

Definition 2.12. Let f: O — T be a function and let s € O. We say that f is analytic
at s if there is a power series fs€ T[[z]] with Conv(fs) #{0} and a 6 € Conv(fs)\ {0} such
that for all € <6, we have

(s+e€0)= f(s+¢)=fs(e).

We say that fs is a Taylor series of f at s. We say that f is analytic if it is analytic at
each s € O.

Lemma 2.13. Let f: O —$ be analytic at s€ O. Then fs is the unique Taylor series of
f ats.
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Proof. Let P € $[[z]] and § € Conv(P)\ {0} with s+e€ O and f(s+¢)=P(e) for all
€< 0. Then the function fs— P is zero on the class of series s <, so we have f;= P by
Corollary 2.10. O

If f:O— S is analytic at s € O where O is open, then we can define
Conv(f)s:={t€O:t—seConv(f) A f(t)=fs(t—s)}.

Proposition 2.14. Let P € T|[[z]] with Conv(P)#{0}. Then P is analytic on Conv(P)
with Ps= Py5 and Conv(P)s= Conv(P) for all § € Conv(P).

Proof. Let § € Conv(P). The class Conv(P) is open by Lemma 2.4, with Conv(Py;)=
Conv(P). By Proposition 2.6, we have P(§ +¢) = Py5(e) for all e € Conv(P), so P is
indeed analytic on Conv(P) with Conv(P)s 2 Conv(Pys) = Conv(P). But we also have

Conv(P)s C Conv(Pys5) =Conv(P) by definition, hence the result. O

Corollary 2.15. Let f: O — T be analytic at s€ O. Then there is an open neighborhood
O; of s such that f1 Os is analytic.

Proof. Define O, = {s+ $=°} where ¢ is any element of Conv(f;)\ {0}. Then Proposi-
tion 2.14 yields the result. O]

Proposition 2.16. Let f: O — % be analytic at s € O and let U C Conv(f)s be a non-
empty open subclass containing 0. Then f is analytic on s+ U, with fsys= (fs)+s for all
0eU.

Proof. Let € U and set t:=s+4. Since U >0 is open and non-empty, we find a p#0
with 6 + € U for all e < p. Thus f(t+¢)= fs(d +¢) whenever ¢ < p. But given such ¢,

we have fs(6+¢)= (m(s) by Proposition 2.6, whence

ft+e)=f(0+¢) = (fo)1s(e).
So f is analytic at t with fi=(fs)4—s) O

Proposition 2.17. Let f: O — 3 be analytic at s€ O. Then f is infinitely differentiable at
s, and each f™ for n €N is analytic at s with Conv(f("))SQ Conv( f)s. Moreover, we have

(k) (g
fs: Z f k!( ) Zk.

keN

Proof. Recall that fs is infinitely differentiable on Conv(fs). By Lemma 2.7, each deriva-
tive f;™ for n € N is a power series function on Conv( f;), and is thus analytic on Conv( fs)
by Proposition 2.14. It follows since Conv( f)s is a neighborhood of s that f is infinitely

differentiable at s. By Lemma 2.7, given & € Conv(f)s, we have f((s+6) = f,((8) =
()™ (6). Therefore f™ is analytic at s with fs(n) = (f)™ and Conv(f™), D Conv(f)s.

Write fs=3, xSk ZF. We have f*)(s) = (fs)(k)(()) = (fs)®)(0) = k! 5. We deduce that
(k) (5
fo=ken k:!()zk' -

Corollary 2.18. Let O C$ be open and non-empty and assume that O =| |, ; O; where
each Oj is open and non-empty. Let (s;)ic1 be a family where s;€ O; for alli €. Let (P;);e1
be a family of power series in B[[z]] with (s;+ Conv(F;)) D O;. The function f: O — %
such that for all i €1 and s € O;, we have f(s) = Pi(s —s;) is well-defined and analytic.
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Proof. Let s€ O and let i €I with s € O;. We have s —s; € O; — s; C Conv(F;) so ]5,(5 —8;)
is defined. In particular f is well-defined. The class O; — s; is a neighborhood of 0, so there
is a 0 € Conv(F;) \ {0} such that s; +¢ € O; whenever € 5. Given €<, we have

Fls+€)=Pls-+e—5) = (P)s(su(e)
by Proposition 2.6. Therefore f is analytic at s with fs=(F;)(s_s,)- O

We leave it to the reader to check that analyticity, at a point or on an open class, is
preserved by sums and products. The following result will be used extensively in the paper
to show that the composite of analytic functions is analytic.

Proposition 2.19. Assume that 9 is densely ordered. Let UCT be open. Let f:U— U,
9: O — U and let s € O such that g is analytic at s and f is analytic at g(s). Write

Jos)= Z an 2" and gs= Z by, 2.

neN neN

Let ey € Conv( f)g(s) and € € Conv(g)s with
Vm e N~ b, e™ <ey. (2.2)
The function fo g is analytic at s with € € Conv(fo g)s, and (fo g)s= fys)0 (95— g(s))-

Proof. For n€N and k€ N~, set X, j:={ve (N7)":|v|=k}.

Cn,k = Z an bvm T bv[n]v

'UeXn,k

80 fos)© (95— 9(8)) = f(9(5)) + X pcn> nen Cnk) zF. Note that since £ € Conv(g)s C
Conv(gs), the set

Sy:= U supp (b, e™)

meN

is well-based. We have &4 <er by (2.2). Let m € MM with &, <m < ey. This exists since
(9, <) is densely ordered. The set &f:={]J,, . supp (a, m") is well-based. For n € N and
k € N~, we have

SUpD Cn, k ek C (&y- m-h)n. Sy,

1

where &,-m™" is well-based and infinitesimal, and &y is well-based. Since each family

(cnk€¥)k>0 for n € N is well-based with sum (g(s +¢) — g(s))", we conclude with Corol-
lary 1.6 that (cp Ek)ne]l\]7/§>0 is well-based. We deduce by Lemma 1.2 that

flg(s+e) = > anlg(s+e)—g(s)"

nelN

=3 an( > bk5k>n

neN keN>

= e+ Y Y et

neN keIN>

— He)+ Y (Z k>k

keN> \ neN

= (Jaw o (55— 9))) ().
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By Proposition 2.3, we deduce that fo g is analytic at s, hence the result. OJ

Remark 2.20. Another well-known type of analytic functions is that of restricted real-
analytic functions of [16, 18|. If I is a non-empty interval of R and f:I — IR is an analytic
function, then f extends into a function f:I+$~— R+ 3= given by

7 _ fBr) 4
VTGI,V€<1,f(T+€).—sz:\T o
€

We say that f is a restricted real-analytic function on $. The function f is in fact analytic.

3 Hyperserial fields

The eponymous hyperexponentially closed fields are particular cases of hyperserial fields.
Those in turn are fields of well-based series T equipped with an action

o Lx T~ —T

of the field of IL logarighmic hyperseries on T. In this section, we define those notions,
starting with logarithmic hyperseries.

3.1 Logarithmic hyperseries

The field I of logarithmic hyperseries of [17] is a field of well-based series R[[£]] whose
group of monomials £ is obtained using formal transfinite products of hyperlogarithms.
It equipped with its natural derivation 0: L — I and composition law o:IL x L~ — 1.
Here, we recall the definition of I and some of its properties.

Logarithmic hyperseries Let a € On. Let £., denote the group of functions « — R
ordered lexicographically. In other words £, is the Hahn product group Hw <a (R, +).
Monomials [ € £, are written as formal products [=1I, <, E;V where for v < «, the real
term [, € R is the value of I: « — R at . Thus ¢, denotes the monomial such that for
L <, we have

(¢y),=1 if 1=~ and (¢,),=0 otherwise.

L., is defined as the ordered field of well-based series L, :=R[[£<4]]. If a, # are ordinals
with 3 < a, then we let £5 ,) denote the subgroup of £, of monomials [ with [, =0
whenever v < 3. As in [17], we write

Liga) = Rl[£g,0]]
£ = U Leu
a€0n
L = R[[£]]

We have natural inclusions £5 4) € £<o C £, hence natural inclusions Lig o) C L<q C L.

Derivation on IL., The field L., is equipped with a derivation 0: L., — L., which
satisfies the Leibniz rule and which is strongly linear. Write El =1], < l; le g, for
all v < a. The derivative of a logarithmic hypermonomial [ € £, is defined by

a([)::<z wi) L (3.1)

y<a
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1

S0 0(t) =1

for all v < a. In view of (3.1), the derivation 9 has well-based support

supp 0 = {fi :y € On}.
For f €L,y and k € N, we sometimes write f*):= o°k(f).

Composition on L., Assume that o =w" for a certain ordinal v. Then the field L,
is equipped with a function o: L., X ]L?; — L.y where in particular, for all € On
with 1+ 1<wv, we have £ u+10Llyr ="~ put1—1 [17, Lemma 5.6]. For v <a, the map oy :
L<q— Lo defined for f €<y by o (f):= fol,yis onto L, o) [17, Lemma 5.11]. Given

g €Ly o), we write g17 for the unique series in L., with gT“Yoé7 =g.

3.2 Hyperserial fields

Let v <On and set A:=w". Informally, a hyperserial field of force v is the action of L »
on a field of well-based series by monotonous and analytic functions.

More precisely, let T =IR[[91]] be an ordered field of well-based series and let o: L, » X
T~ — T be a function. For r € R and m € M, we define m" as follows: set

o= 1,
m" = fpom ifm>1, and
m’ = fyTom ! ifm<1.

For p < On, we define M+ to be the class of series s € T~ with £, 05 €M~ for all v <wH.
The elements of M, are said L u-atomic, and L.,-atomic series are said log-atomic.
Finally the elements of 901y are said atomic.

We say that (T, o) is a hyperserial field of force v if the following axioms are satisfied:

HF1. L_y—T; f+— fosis astrongly R-linear ordered field embedding for all s € T~".
HF2. fo(gos)=(fog)osforall feL.y, gLy, and s€ T>".

(k) o .
HF3. fo(t+0)=Y,cntmr o forall f€Lox, t€T>", and § € T with § <.

HF4. (N os< 2ot for all ordinals ;1< v, all y<w, and all s,t € T> with s <t.
HF5. The map R x 9M— M; (r,m) —m” is a law of ordered R-vector field on 9.
HF6. flo (St) :Elos—f-flot for all S,t€T>’>.

HF7. supp/1om =1 for all m € M~ and supp yroa > ((yoa)~! for all 1 < p<v, all
v <wt and all a €M, x.

The axioms HF6 and HF7 are assumed to hold trivially when v =0. In most cases we
will assume that v > 0. A consequence of the axioms is that £y acts as the identity function:

Lemma 3.1. Let T be a hyperserial field of force v. For all s € T~ , we have lyos=s.

Proof. Let me M~ and r € R>. We have fpom=m! and (m!)! =m!*!=m! by HF5. The

function 9T — 9M; n— nl is strictly increasing by HF5, hence injective. Thus m! =m. We

obtain (r{y) om=rm by HF1. In I, we have {yo (ry) =1Ly, so HF2 yields {yo (rm)=rm.
Now let s € T~>~ and write s =705+ where r € R~ and § <0;. By HF3, we have

(k)
eoos:z KOOTW&’C:NSJF&:S. O
keN ’
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Definition 3.2. Let (T, oy) and (U, oy) be hyperserial fields of force v. We say that a
strongly linear morphism of ordered rings ®: T — U s a hyperserial embedding of
force v if we have

oOM) C N, and
VieL,VseT>", ®(fors) = foyu®(s).
We say that (T, or) is a hyperserial subfield of (U, oy) of force v and we write (T,
op) C(U,op) if TCU and idm: T — U is a hyperserial embedding of force v.

The hyperserial field (T, o) is said confluent if 9+ 1 and if for all © € On with p<v
and all s €T~ there are an a € M+ and a v <w* with

lyos=/lyoa. (3.2)
In the sequel, we will mostly work with confluent hyperserial fields.
Example 3.3. Consider the internal composition law o: Ly X le’; — L of Section 3.1.

Then [8, Theorems 3.16 and 1.1] the structure (L., o) is a confluent hyperserial field of
force v.

In view of HF3, Propositions 2.16 and 2.17 together imply the following:
Lemma 3.4. Each f € L.y induces an analytic function Ap: T=" — T;s+ fos, with

Conv(Ayf)s D T™¢ and A](ck) = Af(k)
for all s€ T>~ and k € N.

3.3 Hyperlogarithms

Let T'=R[[9M1]] be a confluent hyperserial field of force v > 0. Given v <X, we write L., for
the function T=»" — T>"; s+ {, 0 s, called the hyperlogarithm function of strength ~.
For each s € T~ and p € On with u <wv, the L. n-atomic element a in (3.2) is unique,
and we write 9,x(s):=a. Let us show how the value of /0 s is determined by £ 1 00,nu(s).
Let s € T~ and write s =750, (1 + &) where s € R” and 5:= (s — r505) (1505) ! is
infinitesimal. Let ¢ € {—1,1} with 055 1. We set /1 01:=0. Then by [8, Proposition 4.3],
the function log: T> — T defined by
(=¥ s

k+1 7%

logs=1tf1005+logrs+ Z
kelN

is a strictly increasing morphism (T, x) — (T, +) which extends L;. We call it the
logarithm on T. For any decomposition s =t7u where t >0, r € R~ and u~ 1, we have

P _1\k
log s =logt +log(ru)=1logt+logr+ Z % (u— 1)+ (3.3)
keIN

where log is the restricted analytic logarithm of Remark 2.20.

Proposition 3.5. The function log: T> — T is analytic with

Conv(log)s=T~*={6€T:5<s} and log®(s) = (=1)F 1 (k— 1) s~F
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for all s > 0.
Proof. Let s€T>. For k€N, set ag ¢:=(—1)*"1(k—1)!s7*. For § <s and k>0, we have

ag,s 6%  (=1)F—1 (5)’“

ok \s

k R
Since %, < 1, the family (aj, s0%)gen> is well-based and > ohenN> O,z =log (1+9). We have

k!

1og(s+5)_1og<s(1+g>> =log s+ log (1 +9,).

That is, the function log is analytic at s with logs =1log(s) + 3, (71)167]: ™ ok and

Conv(log)s 2 {6 € T:0 < s}. Note that 1 ¢ Conv(L) so s ¢ Conv(logs). It follows that

og®™)(s) .
Conv(log)s={0 €T :0 <s}. By Proposition 2.17, for each k € N, the series lgk# is the
(k + 1)-th coefficient al’z!’s of logs. So log®™(s)=ay, s=(=1)k"1(k—1)!s". O

Proposition 3.6. Let (U,o) be a confluent hyperserial field of force 1 and let ¥: T — U
be a strongly linear and strictly increasing morphism of rings with ¥(logm)=1log ¥(m) for
all me M. Then we have

U(log s) =log ¥(s)
for all s T~.
Proof. Let s € T~ and write s=705(1+¢) where r € R” and € < 1. Since VU is R-linear

and strictly increasing, we have ¥(r (1+¢)) < 1. Since ¥ is strongly linear and preserves
products, we have ¥(log(r (1+¢))) =log ¥(r (1+¢)), whence
)

U(log(r (1+¢))) =¥(log(r (1+¢))) =log ¥(r (1 +¢)) =log ¥(r (1 +¢)).
It follows that
U(log s) =¥ (logds) + ¥(log(r (1+¢))) =log U(ds) +log U (r (1+¢)) =log U(s). O

Now let s € T>~ and n <wv. There is an ordinal v < w” such that ¢ := L,(s) —
L,(d,n(s)) < Ly(s). As a consequence of HF2 and HF3, for any such +, we have

AT (s
Lun(s) = Lun(oun(s) + 3 L) L]g!(% (5)) g (3.4)
k>0

We will often pay close attention the partial functions Ln ] 9,n7: 9, n — T~ for all n <
v. The family (T, (Lon 1 9Mun)y<y) is called the skeleton of (T, o), and its properties
sometimes reflect those of the whole structure (T, o). See for instance [8, Theorem 1.1,
Corollary 7.24] and Propositions 6.3 and 7.5.

3.4 Hyperexponentiation

For the end of Section 3, we fix a p<wv. Given y <A, the function L.: T>" — T>" is
strictly increasing, so it has a partially defined left inverse E., defined by E,(L+(s))=s for
all s€ T~ 7. The partial function E. is called the hyperezponential function of strength ~.
The hyperexponential function of force 1, i.e. the partial inverse of log, is denoted exp and
called the exponential function.
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We say that T is a confluent hyperserial field of force (v, p) if each E, for v <wh
(or equivalently each E,n for n < p) is totally defined on T=>~. Note that the relation
lv10l =2 41— 1 for all ¢« with ¢ +1 < p yields the functional equations

VseT> ", Lt1(Ly(s)) = Ly+1(s)—1 and
VS€T>7>7EML+1(S+1) = EwL(E L+1(8))- (3.5)

w

In the sequel of this subsection, we assume that T is a confluent hyperserial field of force
(v, p). We will briefly describe how exp and each E,» for n < p act on T=".
Let ¢ €T. For all e <1 and r € R, we have

exp(p+1r+¢)=exp(r) exp(go)( %5"3), (3.6)
kelN

where exp(r) € R~ is the standard exponential of r € R as a real number, and thus
exp(r) (Zk eN%s’“) is the value at r + ¢ of the restricted analytic function exp. More-

over, the axioms HF7 and HF1 imply that we have
exp(Ty.) =M. (3.7)

Proposition 3.7. Let U be a confluent hyperserial field of force (1,1). Then (U, +, X,
exp, <) is an elementary extension of (R, 4+, X, exp, <).

Proof. By applying (3.6) for o =0, we see that exp extends the real exponential function.
We have ¢} < ¢y in L. x which implies by Lemma 3.1, HF1 and [8, Proposition 4.4] that
log s < s for all s €U~ and that log(s) <s—1 for all s€U~. We claim that exp(s) > s"
for all n € N and s > n2. Indeed let s € U and n € N with s >n?. First assume that s<1. So
s=r+ s for a certain r € R?Y and a s € U~. We have 7 >n? so exp(r) > 7" so exp(s) ~

ni 1 s) > S SO
exp(s) > s". This proves that exp satisfies Ressayre’s axioms of [36]. By [18, Corollary 4.6],
we deduce that (U, +, X, exp, <) can be expanded into a structure Uy exp With so-called
restricted analytic functions in such a way that Uap exp is an elementary extension the
structure Ran,exp Of real numbers with restricted analytic functions and the exponential. In
particular (U, +, X, exp, <) is a model of (R, +, X, exp, <), hence an elementary extension
by Wilkie’s theorem [38]. O

exp(r) > 1"~ s™ so exp(s) > s". Assume now that s> 1. We have exp(

Now let n < p with >0, write 3:=w", let ¢ € T=~ such that Eg(y) is defined, and
let v < 3. For k € N, we define series ¢, 1 € L., inductively by

tyo = ¢y, and (3.8)

by kb1 = (H £p> th g (3.9)

p<p
Then [8, Lemma 7.8] for all € € T with € < %7 the family ((t,.10 Eg(¢)) e¥)pen is
well-based, with ’
ty k0 Ep(0)
L(By(p)) = S ko Lale) i (3.10)

k!
keN

Lemma 3.8. For k€N~ and n€suppty i, there are an€ N, a PeN[X;,...,X,] and
Yy -5 Y € (77, B) with n:f[%ﬁ) . P(fhhﬁ), e ,f[%“ﬁ)).
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Proof. We prove this by induction on k € N~. We obtain the result for k=1 by setting P =
1. Assume the result holds for k and let n € supp ¢, x+1. So there is ng € supp ¢, 5 and
m € supp nj, with n = 10,5 m. The inductive assumption yields no= €[, g) - P({[y, 8); - - -,
{4, p)) for certain n € N, P€ N[Xj,..., Xi] and v1,..., 7 € (7, B). Recall that for all p < f3,
we have

Uplos= Y. flf[o,mfh,ﬁ):( > f[o+1,ﬁ>>£[p,ﬁ>- (3.11)

p<o<p po<pB

Yo,8) 10 = Lo0,8) 0,8 PUmpys - L) 0.8 L0,8) - (PEnnp)s -5 b))

= fh,m'( > f[oﬂ,m)'P(fm,ﬁ>7---a€m,ﬁ>)Mh,mf[w)'(P(fm,ma---a

Y<o<pB
e[’Ynyﬁ)))l'
By (3.11), the support of g g)- (P(£[y, )+ [y,,3)))" consists of polynomial combinations
of terms £, 11 g) for v € (v;, B) for certain i € {1,...,n}. The result follows. O

Following [8, Definition 7.10 and Lemma 7.14|, we define:

Definition 3.9. A series o € T~ is said 1-truncated if we have supp ¢ = 1, i.e. if ©
is positive and purely large. For 0<n <, a series o € T~ is said B-truncated if we have

Vv < 3,supp ¢ = (LV(Eg(ap)))*l.

We write T s for the class of S-truncated series in T. We sometimes write Eg(¢) =: Ef
when ¢ € T.. 3. We have T, 3+ RZC T, 5 [8, Lemma 7.13]. Thus the axiom HF7 for
n states that Lg(Mg) C T 5. In fact [8, Corollaries 7.21 and 7.24|, we have the converse
inclusion

Vse T, Lg(vs(s)) = #5(Lsg(s)), and (3.12)
E;F“@ = Mg, if T has force (v,n+1). (3.13)

By [8, Proposition 7.18], for each s € T, there is a <J-maximal truncation fz(s) of s
which is f-truncated, and there is a v < 8 with

ot ia) < Eslta()
W) < o Ealaala)) (319

So (3.10) applies to ¢ :=13(s) and e:=5— .

Lemma 3.10. Let n<v and v <X with yw < 3. For all a €, we have d5(L,(a))=a.
Proof. Set p:=~yw. We have {,0/, =/, so Ly(L~(a)) =< L,(a). Since p< 3 and a is L.g-
atomic, we deduce that d5(L(a)) =a. O
3.5 Hyperexponential closure

Definition 3.11. Let v <On and let (T,0) be a confluent hyperserial field of force v. We
say that T is hyperexponentially closed if T has force (v,v).

As in the case of transseries [27, 37|, a confluent hyperserial field can be embedded into
a hyperexponentially closed one. More precisely:
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Definition 3.12. Let T be a confluent hyperserial skeleton of force v < On and let p < v.
A hyperexponential closure of T of force p is a confluent extension T,y of T
of force (v, pu) with the following initial property: if U is another confluent hyperserial
skeleton of force (v, u) and if ®: T — U is an embedding of force v, then there is a unique
embedding V: T ,) — U of force v that extends ®.

c
T — T(<M)

e\ |3
U

A hyperexponential closure of T is a hyperexponential closure of T of force v.

Note that a hyperexponential closure of force p if it exists is unique up to unique
isomorphism. We will write T, for the hyperexponential closure of T of force p if it
exists, and we set T:="T(.,).

Theorem 3.13. [8, Theorem 7.4| Let T be a confluent hyperserial skeleton of force v < On
and let p<v. Then T has a hyperexponential closure of force .

In particular, we have the hyperexponential closure L of I, which we call the class of
finitely nested hyperseries.

4 Transserial subfields and subgroups

4.1 Transserial subgroups and subfields

It will frequently be convenient to define derivations and compositions on subgroups R[[S]]
of a given hyperserial field U=R][[]], for & C 4, before we extend them to transserial fields
containing IR[[&]]. This is the purpose of transserial subgroups which we next introduce.

Definition 4.1. Let v < On with v > 0. Let U=R][[]] be a confluent hyperserial field
of force v. Let & C i be a subset with log(&) C R[[G]]. Then we say that R[[S]] is a
transserial subgroup of T. If moreover & is a subgroup of U, then we say that R[[S]]
is a transserial subfield of T.

Since (U, log) is a transserial field, transserial subfields are simply transserial fields
contained in (U, log). The following notion of exponential extension is also similar to that
of [37, Section 2.3.1].

Lemma 4.2. Let v < On with v >0. Let U=R|[[U]] be a confluent hyperserial field of
force (v,1). And let G=TR][[S]] be a transserial subgroup. Then the class

ex: R[[&™
G :=R[[EFIET]
s a transserial subfield of U with G C G**P.

Proof. The class R[[G7]] is a subgroup of Us. so EiR[[gw is a subgroup of Y. Let me &.
We have supplogm C 6~ so logm € GN U, =R[[67]], so m= E12™ e E]1RHG>”. We deduce
that G C G**P, i.e. that log EiR ISy C G**P, Thus GP is a transserial subfield of U. O
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As in [37, Section 2.3.4], we may define an increasing tower (G,))ycon of extensions
of G which, except possibly for G(g) =G, are transserial subfields of U, and where

Geni= J G
v€On
is a transserial subfield of U with a total exponential. Indeed, set G, :=R[[&()]] where
e 5(:=6,

R[[S7
o 6(7+1)::E1 (&)l

o S(y:= Up<76(p) if v is a non-zero limit.

We define the exponential height EHg(f) of f € G(<1) over G as the least ordinal
with f e G(W)‘

for all v € On, and

4.2 Extending transserial derivations

Let U =RJ[[U]] be a confluent hyperserial field of force v and let G C U be a transserial
subgroup. A transserial derivation G — V is a strongly linear function 9: G — V with
Vs, g€G,sge G = J(sg)=0(s) g+s0(g), and
Vme GNU,d(logm) = @
Let 9: G — V be a transserial derivation and assume that 0 has a well-based and positive
near-support Ws. We extend 0 into a transserial derivation 9: G(«1) — G by induction
on the exponential height as follows:

Let s € G(<1), set v:=EHg(s) and assume that O(t) is defined for all ¢ € Gy with
EHg(t) <. If v=0, i.e. s€ G, then O(s) is already defined. Assume that v>0. If 9 is
defined at each logm for m € supp s and the family (O(logm) m)mesupps is well-based, then
0 is defined at s, and we set

Jd(s):= Z smO(logm) m.

mesupps
By induction on EHg(s), we see that the definition is warranted.

Lemma 4.3. If me G)N and 0 is defined at m, then
supp d(m) Cm - Y=™7. 9.

Proof. We prove this by induction on EHg(m). This is immediate for m € G. So let
m € G(<1)NY such that the result holds for all n € G.1)NY with EHg(n) < EHg(m).
Write ¢ :=logm. So EHg(n) < EHg(m) for all n € supp ¢. We have 9(m) =09(y) m. Let
q€suppd(m). So gq=m-u for a certain u € supp d(n). By the induction hypothesis, we
have u € n-U=X"%. 90, where n- B <™% =n, whence n-Y*"7 CPYX™7= [t follows that
gem-Y=™7. 90, as desired. O

We will see that 9 is well-defined. It is easy to see then by induction that it is the
unique extension of d into a transserial derivation G<1)— G.

Proposition 4.4. The function 0 is well-defined on G.y).

Proof. We prove the result by induction on EHg(s) for s € G(<1). So let s € G 1), write
(v,m) :=EHg(s) and assume that we have g€ Dy for all g € G(<1) with EHg(g) <~. We
may assume that s ¢ G. Note that for all m € supp s, we have EHg(logm) < v so logm € Dy
by the induction hypothesis. So 9 is defined at m. Thus it is enough by to prove that the
family (O(m))mesupps is well-based.



TRANSSERIAL SUBFIELDS AND SUBGROUPS 31

Assume for contradiction that (O(m))mesupps is not well-based. So there is a strictly
decreasing family (m;);eN in supp s such that (9(m;));en is not well-based. Write m; =e¥:
for each i € N. There is a family of monomials (n;);en with n; <n;4+; and n; € supp 9(m;)
for all i € N. For all i € N, there are a b; € supp ¢; and a q; € supp 9(b;) with n;=q; m;. By
Lemma 4.3, we may write q; = b; p; tv; for a certain p; € U= 7= and w; € 205.

Since Wy is well-based, we may assume that tog =115 ---. Let ¢, 7 € N with ¢ < j. Write
s, j for the <-maximal common <-lower bound or ¢; and ¢;, and write (J;, ;) = (@i — ¥i,;,
©;j — ¢i,j). Assume for contradiction that b; € suppd;. The inequalities n; < n; and w; = to;
0i=0; b;p; < bjp;. Recall that p; =1 so %% b; <b;pj, so %% b; Xb;. But
since ; ; is <-maximal with ¢; ; < ¢4, @5, we have 6; — d; = 6; whence % > b; and
%% » 1. Tt follows that %% b; = e% 3 supp (¢4,7) > b;: a contradiction. This proves that
bj € supp ; ;. In particular b; € supp ¢;. Therefore, we may assume that b; =b; 1% ---.

We have EHg (i) < v so the family (9(b))scsuppy; is well-based. Since q; < qij41< - -,
we deduce that there is a j > such that b; = by, for all k> j. But then (qj)r>; witnesses
that supp 0(b;) is not well-based: a contradiction. We deduce that (O(m))mesupps is well-
based. O

imply that e

We next give a strengthening of [37, Proposition 4.1.5]:

Proposition 4.5. Let 0: T — T be a strongly linear function with

J(logm) = @ for all me M.
Then we have
O(u)
(O(st)=0(s)t+s(t)) and J(logu) = 0
for all s,t €T and ueT~.

Proof. We first prove that 0 satisfies the Leibniz rule. Consider m,n € 2. We have

3(mmnn) =0(logmn)=9(logm) + d(logn) = @ + w

n
We deduce that d(mn)=90(m)n+mad(n). Now let s,t€T. We have

d(st) = 8(2 smtnmn>

mn

= Z Smilnd(mn)
= 2 smtna(m)n-f—z SmtamO(n)

= EZ sma<m>) (£t> + (Z w) (z tnﬁ(n)>
= 8($t+58(t). ' ) '

So the Leibniz rule holds for 9. We deduce that we have O(t**1) =k 9(t) t* for all t € T
and k€ N. Now let u € T~ and write u =710, (1+¢) where r € R~ and € < 1. Note that
O(u) _19Qu) (1+e)+7r0,0(e) _ 0(u) , 9(¢)

u oy (1+¢) "o, +(1+6)'
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_1\k
Recall that logu =1log 0, + logr + Zke]N'( ) ek+1 o

1
_ (=D i1
d(logu) Jd(logd,) +0 Z P
keN
_ 1)k
= 8(;:) +1§\T (]{;j)l 3(€k+1)
_ a(bau)m(s)z (—1)keh
v keN
_ 00u) | 9(e)
T o, (te)
_ O(u)
as desired. OJ

4.3 Schmeling’s axiom T4

Definition 4.6. Let T =R[[9]] be a transserial subfield. Then T is a transseries sub-
field if it satisfies the following axiom

T4. If (r;m;)ieN€ R* M7 is a sequence of terms with r;41m;41 € termlogm; for all
1 €N, then there is an i € N with

m;1 = minsupplogm;, and
ri+1 € {_Ll}
for all j>1.

Note that the axiom T4 is preserved under taking transserial subgroups. We claim that
L satisfies T4. Indeed, consider (r;m;);en as in Definition 4.6 for .. Writing mp=1[€ £,
we have my =/, for a certain ordinal v, whence 7 ;mi4;=/¢,4; for all ¢ € N. In particular
rji+1=1€{—1,1} and m;; =minsupp - for all j >i. This shows that in fact L satisfies
the stronger axiom TEL4 of [32, Section 5. It is known [9, Theorem 8.4] that the field
No of surreal numbers with its natural logarithm satisfies T4 (see also [24, Theorem 8.1]
for a different proof).

4.4 Extending transserial right compositions

Let U =RR[[U]] be a confluent hyperserial field of force v and let G C U be a transserial
subgroup. A transserial right composition G — V is a strongly linear map A: G — V with

Vs, g€ G,sgeG = A(sg)=2,(s) Ng), and
Vte GNU AR >0AA(logt) = log A(t).

Consider a transserial right composition A on G. We wish to extend A into a transserial
right composition Ay on G ). The definition of A is already done in [37, Section 5.3
and will coincide with the definition of A, on G(. 1) in Proposition 4.7. In order to adapt
Schmeling’s arguments to this setting our case, we note the following facts:

e Schmeling’s proof does not rely on the fact that the transserial field be closed under
products, so it works for transserial subgroups,
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e any partial right composition of force v > 1 is a right composition as per [37, Defi-
nition 5.1.1],

e Dby [37, Theorem 5.3.2], any such right composition extends uniquely into a right
composition Ap: Gc1)— V(<y).

We thus have:

Proposition 4.7. Assume that U satisfies T4. Let G be a transserial subgroup of U
and let N: G— V be a transserial right composition. Then /A extends uniquely into a
transserial right composition G(<1)— V(<.

See also [10, Section 9] for a similar extension result in the case of surreal numbers.

5 A proof method

Since every element of L is obtained by combining sums, hyperexponentials and hyper-
logarithms of logarithmic hyperseries, there is a unique way to extend the derivation and
composition law on logarithmic hyperseries to finitely nested hyperseries, while preserving
the hyperserial structure and strong linearity. For instance, the series

Cpotl2e 1 4+035 ot

Ot 02 03 ot
elw w+1 w—+2 + ew + .

f=t+6+6+ -+

will have derivative

< Lot bols--)o eiu2+532+1+---
d(f)=1+22 +-«-+<el+«~>+((“ o )+ b (5.)

_60 Loty loly--- boly - Ly ---

Likewise, strong linearity leaves us no choice in extending each right composition oy: I —
IL; f— fog to L for fixed g € IL”>". For instance, we ought to have

fog=Li(g)+(La(9)*+ -+ +exp(Lu(g) + (Lut1(9))?+ ) + Bl Ly2(g) + )+ (5.2)

One of the main difficulties of this paper is to make sure that the transfinite families
involved in extending o: IL x I.”>" — IL and 9: L. — L are well-based. This is not a trivial

problem, because given monomials m, n € I and with m > n, there is no reason that we
should have

suppmos>nos or supp d(m) = d(n). (5.3)

Indeed this fails, in general, in IL already. In fact, it may seem highly improbable that
such complicated sums as (5.1,5.2) above should always be well-based. In IL, the existence
of a well-based support for the derivation and a well-based relative support for the right
composition with s allowed van den Dries, Kaplan, van der Hoeven [17] and then those
authors and myself [8] to circumvent this problem. Unfortunately, this approach fails in the
case of (hyper)exponential extensions, as Schmeling’s work [37, Chapters 4 and 5| on the
difficult case of exponential extensions already illustrates. Indeed, any monomial m =e¥
for ¢ € Ly gives rise to a derivative

m’ = d(p) m. (5.4)

So the operator support suppé of & already contains supp 5(@) for all purely large series in
L, hence it cannot be well-based. As for the composition law, the fact that the definition
of exp(p o s) involves the Taylor expansion of m implies that the relative support of J
involves the support of each iterate 5[’“], ke N.
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However, a more careful study of those phenomena will show that 9 and S, have a
well-based near-support and a well-based relative near-support respectively (see Defini-
tion 1.14). This fact is not sufficient to justify that those operations are strongly linear, but
what it lacks is made for by Schmeling’s work. More precisely, it is possible to construe
the hyperexponential closure L of LL as the exponential closure of a subgroup

G=E+LCL

where E =R[[&]] is a subclass I whose monomials a € & are all log-atomic. Any two
distinct log-atomic series a, b are more than sufficiently far apart from one another that
the notion of near-support and relative near-support are conducive to proofs of strong
linearity for functions on [E. We will combine this with Schmeling’s results for extending
derivations and compositions through exponential extensions, in order to show strong
linearity. Using this trick requires a precise description of (hyper)exponential extensions
which is the purpose of this section.

5.1 Internal hyperexponential closure

We fix generalized ordinals g <v < On with v >0, a confluent hyperserial field U= R[[]]
of force (v,v). If T is a confluent subfield of U of force v, then by Theorem 3.13, the
inclusion T < U extends uniquely into an embedding T(. ;) — U« ). But since U itself
has force (v, u), we have U="U(, ). So T, ) is naturally included into U. Taking from
[8, Section 8], we will show how T,y can be described as a subclass of U.

Consider the lexicographical order <jex on the class of ordered pairs (v, 1) where v € On
and 1 < p, that is

(7,1) <tex (p,0) <= ((y<p) or (y=pand n<a)).

Note that this is a well-ordering.
Let G = R[[&]] be a transserial subgroup of U. We will define increasing tower
(&(y,m))yeon,n<p of extensions of &. We first define an extension &y, of & for all 1 <

v. Note that R[[67]] is a transserial subgroup of T. So we may set S| = EiRHGW as
in Section 4. Now let 0 < n <wv and set f:=w". If n=1+1 is a successor, then we
set 6 :=w". Otherwise, we set 6 := 3 =w". We write &, for the direct internal pro-
duct &(,) =& - &[] where &, is the class of exponentials

t= exp( Z log(t,) o Eg), where

peT s\ Ls(T>7)

e cach t, for o € (GNU, g)\ Lg(GNU>") lies in L,
e hsuppt:={pe(GNUy g)\ Lg(GNU>"):t,# 1} is a well-based set,
o theset {¢p+7Z:pchsuppt} is finite.
In other words &, is the group generated by & and the subgroups
’8<ﬁ o Eg g ua

for all p € (GNU. )\ Lg(GNTU>"). The definition of &, ) is then by induction on
<lex, as follows:

Definition 5.1. Let G=R[[S]] CU be a transserial subgroup. For v€ On and n< p, we
define

L 6(070) =06.
o &y i=(6(y,)) fn=1t+1 is a successor.
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o Gy = Ua<n6(%g) if >0 is a limit.
* 6n0=Us, G0 >0
We set Gy n):=R[[Sy,n)l], 50 Go,0)=G. We have an inclusion Gy o) C G, y) when-
ever (v, M) <iex(p,o). We set
Secw= U Snor

v€On

Note that &gy =6 and G(<g)= G. Moreover, we have G )= R[[& < u)]] by [8,
Lemma 2.1]. The following shows that our notation does not conflict with that in [8,
Section 8|, which it in fact extends.

Proposition 5.2. Assume that T=R|[[9N]] is a confluent subfield of U of force v. Then for
each (v,m) where n< p and v € On, the class Ty, y) is a confluent subfield of U of force
v. Moreover T ) is the smallest confluent subfield of U of force (v, u) which contains T.

Proof. This follows from the more general construction of T(. ) of [8, Section 8§]. O
An important feature of the construction is the following:

Proposition 5.3. [8, p 66] Assume that T =IR[[9M]] is a confluent subfield of U of force
v. For v€On and n< p with n <v we have

(ﬂﬁ(%n))wn =M,n.

Proposition 5.4. Let v < On with v >0 and let T=R[[9M]] be a hyperserial field of force
v that satisfies T4. Then for all w<wv, the field T, satisfies T4.

Proof. Since each member of the tower extension (T(’Y,n))VGOﬂ/\W< u is a transserial field,
it suffices to show that T, satisfies T4 for all n < p. Let n < p and let (r;m;);en be a
sequence as in Definition 4.6. If n=0, then r1 m; € T so we can conclude using the validity of
T4 in T. Assume that n>0. If m; € T, then we conclude as previously. Otherwise, we must
have my = L1 Ef, for a certain w”-truncated series ¢ and a certain ordinal vy with yw <w.
Since 1 >0, the series E7, is log-atomic, so ri4; M4 = Lyt14; EZy for all ¢ € N. This
sequence is as specified in T4, so T4 holds in that case. This concludes the proof. O

In particular, the field L (and all its transserial subfields) satisfies T4, and even
Kuhlmann-Mantova’s axiom TEL4.

5.2 Hyperexponential height

Let v < On, let u<v and let U be a hyperserial field of force v. We define the hyperez-
ponential height HHy( f) over U of a series f € U ) as the <jex-least ordered pair (v, n)
with f €U, 5. So we have HHy(f) =(0,0) <= f e U.

Lemma 5.5. If m€ )\ U, then n in HHy(m)= (v, n) must be a successor ordinal.

Proof. New monomials are only added at successor stages of the inductive definition of
U(< ) as per Definition 5.1, hence the result. O
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4

0
°n’ appears

Example 5.6. Consider the extension L) /L. For each n € N, the series e~
eto
first in £(;, 1). So the hyperseries £+ 2¢ 13 e—e +4e”® + - first appears in £, q),

Lo

—fo —elo —e® L. .
fot2e043e™ H4e™ 4o firgt appears in £(w,2)- Therefore we have

hence e}

—¢ _ebo 76650
HHL e€0+2e +3e +4e
w

+) — (w,2).
As a corollary of Proposition 5.3, we obtain:

Corollary 5.7. Let m€ U ) and o <v with m € (U< p))we \ U and write HHy(m) =: (7,
n). Then o <n.

5.3 Decomposition lemmas

We will rely on transserial subgroups & and their exponential closure G(.1) in order to
extend derivations, compositions and their properties. Here, we establish our recurring
method to prove the main results of this paper.

Fix p<v. Let P C U ) be a subclass with P —1CP. We write [E(P) for the class
of well-based sums g € U, of the form

9= r4Ls,(BL)
v<p

where p is an ordinal, (LgW(E(fz

))~v<p is strictly <-decreasing, and
o (ay)y<pis a sequence of infinite additively indecomposable ordinals,
e (B3,)y<p is a sequence of ordinals.
o (r)y<pelR”
such that for all v < p, we have
ay < A,
Byw < oy,
vy € (PN(Ucp)a) \ La,(U77).

Note that each LﬁW(E;pj) for v < p is log-atomic. We write G(P) :=E(P) + U,..
Lemma 5.8. The class G(P) is a transserial subgroup of U< ).

Proof. We have E(P) C (U< )~ by definition so G(P) C (U ,))». Consider a monomial
m € U,y NE(P) and fix o, §, ¢ as above with m = Lg(EY). If a =w, then =0 and
logm=FE¥f "' ¢ E(P) since P — 1 CP. If a >w, then we have logm= Ls, 1(E?) € E(P). So
[E(P) is a transserial subgroup of U ). We deduce that G(P) is a transserial subgroup

Lemma 5.9. Let a€ E(P) N, and n€ .. We have akn.

Proof. Write a = Lg(E?) where a=w" for a certain n € (0, ), a 8 with fw < «, and
a € (PN(Uxpw)sa)\ La(U>7). We have EZ =0,(a) by Lemma 3.10. Since U is 7-
confluent and E? ¢ U, we have d,(n) #0,(a), whence in particular log(d,(a)) % log(04(n)).
By Lemma 1.9, we deduce that a % n. O
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Lemma 5.10. Assume that (G(P))(<1) CP. Then (G(P))(<1):U(<“):P,

Proof. Set K:= (G(P))(<1). It is enough to prove that U ,) C K. The result then
follows from the inclusions K CP C U ,y. Let us show by induction on HHy(f) that
each f €U, lies in K. Let f € Ui, such that we have g € K for all g € U, with
HHus(g) <iex HHu( f). Note that K is a field of well-based series so it is enough to prove
that supp f CIK. This is true if f € U by definition of K and Lemma 4.2. Assume that
f¢U. Since K is closed under exponentiation, it is enough to prove the inclusion

G:= U supp logm C K.
mesupp f

Let me &. If HHy(m) <jex HHy(f), then we have m € K by the induction hypothesis.
Otherwise we can write m = Lg;1(E7 ) where n€ (0, u), fw <w” and ¢ € (U< p))s,wm \
L(U>") satisfies HHy() < HHy(f). If n > 1, then the induction hypothesis directly
yields ¢ €K, so ¢ € P, whence m= Lg11(E";) € E(P). Assume now that n=1, so 3=0
and m=E7, ! The induction hypothesis and the inclusion P —1C P yields p —1€P. If
¢ —1€ L,n(U>7), then we have m € U so m € K. Otherwise, we have m € E(P) so me K.
We deduce that f €. It follows by induction that Ui ,,) C K. OJ

Schmeling showed [37] how to extend derivations, compositions and how to preserve
Taylor expansions to exponential closures of transseries fields. We will extend his results
to the hyperexponential closure as follows:

e Considering the class P of series for which a given operation or property is extended,
we show that

G(P)CP. (5.5)

Monomials in E(P) are log-atomic, so they satisfy a > b <= a>>b. Combining this
with properties of near-supports and relative near-supports, it is often possible to
prove (5.5) in an easier fashion than by directly proving that U ) CP.

e Applying or extending Schmeling’s results, we show that if G CU( ) is a transserial
subgroup, then we have

GCP= G1)CP.

e Using Lemma 5.10, we conclude that P =T, ).

6 Extending derivations

In this section, we fix g, v < On with 0 < g <v, and we write A :=w”. We will see how
to extend derivations when taking the hyperexponential closure of a given field.

6.1 Hyperserial derivations

Definition 6.1. Let (U,0) and (V,o0) be confluent hyperserial fields of force v with (U,
0) C(V,o0). A (hyperserial) derivation of force v on T is a function 9:U — 'V such that

D1. 0:U—V is strongly linear.
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D2. 0(st)=0(s)t+s0(t) for all s,t € U.

D3. d(logt) =22 for all t e U™,

D4. 9(fos)=09(s) x (f'os) for all f €LLcx and s € U>>".

Note that hyperserial derivations of force ¥ on U are in particular derivations in the

sense of [37, Definition 4.1.1]. If U, 9 are as above, then for all s € U7, we write

d(s)

S

STiz

for the logarithmic derivative of s. Indeed, we have s' =9 (log s) whenever s > 0. Notice
that (rs)'=st and that (st)t=st+¢f for all s,¢ € U7 and r e R7.

Remark 6.2. On the notation 9(f) vs f’. We sometimes use the notation f’ instead
of 9(s) and and f*) instead of &(s). In general, this reflects the distinction of Remark 1.1:
the notation f”is favored when we are considering f as a function (through a composition
law) acting on a hyperserial field, whereas J(s) is favored when we are considering s as an
object on which our derivation acts, irrespctive of how s might be construed as a function.

Consider fixed confluent hyperserial fields (U, oy;) and (V, oy) of force v. The axioms
of hyperserial derivations can be checked on the skeleton of (U, oy), as the following shows.

Proposition 6.3. Let 0: U — 'V be a strongly linear function with
J(logm) :@ for all me i, and

O(Lyra)=0(a) (luoya) forall 0< u<X and a€ Uy,nk.

Then 0 is a hyperserial derivation of force v.

Proof. By Proposition 4.5, the conditions D2 and D3 hold for 9. We prove by induction
on u < X that we have d(fos)=09(s) f'os for all f€Lc,nand s€U>". Let u <A such
that the result holds strictly below p and write oo :=w*. We claim, and we will prove in a
moment, that for §e{0}U{w”:n< p} and s € U™, we have 9(¢0s) =0(s) ;0s. Notice
that this is immediate for 4 =0. For p=1, it follows from D3. Assume that the claim is
true. The chain rule is preserved by composition so we have 9({,0s)=09(s) ;o s for all

y<whtland s U>. Now let [€ £__u+1 and s € U>~. We have

d(los) = 0| exp Z [ lys108
/Y<(JJH+1
= 6( Z [Vﬂwﬂos)exp( Z [Wﬂwﬂos) (by D3)

y<whtl y<whtl
= 9(s) g 0105 |los
/Y<WH+1

= 8(8)(( Z lwﬂiYH)[)os

= J(s)los.
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We conclude by strong linearity that d(fos)=0(s) f'os for all feL_ u+1 and s€U>".
So we may assume that g >0 and it is enough to prove the claim. Let s € U>" and
write a:=04(s) There is 8 < a such that e :=/{gos — {goa is infinitesimal. We have
s =Eg(Lg(a) +¢€) so d(s) = (d(a) Lgoa+ d(c)) l<pos by the induction hypothesis. We
deduce that

A(s) by, 05 =(0(a) Lzoa+d(e ))i—(/l 0s. (6.1)

Note that ¢/, %—1 € £(3,q) S0 We may consider = Eb_l)Tﬁ € L.,. By the chain rule in
1
L, we have (E(Eﬁ)’o%:%(émoﬂg) g/ ,so f=(¢!%). By HF3, we have

0 e P18V (k+1) 5 p
E—gos:fo(eﬁoa_i_g)_e_ﬁoa_i_z (a) k!O[Boagk_
keEN
Recall that ©
18 (k)
loos=tyon+ Y L) ol30d

k>0

by (3.4). For k€ N~ we have (Elﬁ)(k) € L., so we may apply the induction hypothesis at
t,¢goa, and obtain

A((((eL) Mo tgoa)=0(lg0a) (¢[7)F+Votg0a.

Therefore
ETﬁ oﬂgoa) (fw)(k)oégoa
8(6&08) = é oa +Z 6k+6(6)2 a—'gk_l
=0 = (k—1)!
18\ (k+1) 163 (k+1)
— / (ga) Oeﬁoa k (604) Ogﬁoa i
= 0J(a)l,oa+d({goa) Z 7l " +0(e) Z k! ¢
2, ¢ 7
— 8(a)€;oa+a(a)€ﬁoa os——2oqa |+d(e)2os
Eﬁ Eﬁ gﬁ
gl
= (0(a) %Oa—i-a(&t))e—?‘os
B
= O(s)l,os. (by (6.1))
By induction, this proves D4 for 0. 0
6.2 H-fields

We are particularly interested in derivations which behave similarly to the derivation of
germs in Hardy fields (see [6]). Thus we rely on the notion of H-field with small derivation
of [2, 5].

Definition 6.4. Let 9: U — U be a derivation of force v. We say that (U, 0) is an H-
field if we have

H1. 0(s)>0 for all se U7,
We say that the derivation 0 is small if it satisfies

H2. 0(g) <1 for allec U™,
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If both H1 and H2 hold, then we say that (U,0) is an H-field with small derivation.

Lemma 6.5. Assume that (U, 0) is an H-field. Then we have
i. Ker(0)=R.
i. For all m,neyU” we have m>n=—=9(m) > d(n).

ii. For all m,ne U7, we have m» n=—>mt =nf.

Proof. The assertion ii follows as in the proof of |9, Proposition 64(1)]. We next prove i.
We have 9(1) = 9(1)2=209(1) by the Leibniz rule, so (1) =0. So for r € R, we have
d(r)=r9d(1) =0, whence R C Ker(0). Conversely, let z € Ker(9) and write z =2y + 7+ 24
where supp z. > 1, r € R and z5 < 1. Assume for contradiction that z, # 0. Then by i1,
we have 0(z) ~ 0(7;). We have 9(|7;|) >0 by H1, so we deduce that |0(z)| =9(|z]) #0: a
contradiction. So z, =0, whence 9(z) = 9(z<). Assume for contradiction that z#0. By

H1, we have 9((|z<])7!) >0 and |0(2<)| =0(|2<]) = 0z<D"" - (); a contradiction. So 24=0,

l2<[?
whence z=r € R. Let us now prove iii. Let m,n €4~ with m»>n. By Lemma 1.9, we have
logm = logn. Since supplogm Usupplogn > 1, we have mf =9(logm) = d(logn) =nt. O

In particular, if (U, 9) is an H-field according to Definition 6.4, then it is an H-field
according to [2, Definition, p 3.

Example 6.6. The standard derivation ’: L.y — L. of [17] is a hyperserial derivation
of force v and (Lcy, /) is an H-field with small derivation [17, Theorem 1.2].

Our goal in this section is to prove the following theorem:

Theorem 6.7. Let v <On and p <v with u>0. Let (U,0), (V,0) be hyperserial fields of
force v with (U,0) C (V,0). Let 9:U—V be a derivation of force v. Assume that O has
a good near-support Wy. Then O extends uniquely into a derivation 9y U<y — U< p)
of force v, and Wy is a near-support for 0. Moreover, if (U,0) is an H-field with small
derivation, then so is (Ui ), Op)-

6.3 Defining the derivation

Fix (U, o), (V,0), 0 and 205 as in Theorem 6.7. We inductively define 9,, along with the
class Dy of series s € U, at which it is defined. The induction is on the exponential
height (v, n) of s over U. We say that 0, is defined at s € Ui, if

i. s€U. We then set
Ou(s):=0(s). (6.2)
ii. s€<p), n=1 and logs e Dy. We then set
Ou(s) :=0p(log s) s. (6.3)

ili. s€h<py), n=t+1forar>0and s=tm where m € Dy and hsupp t C Dy, and the
family (0p(¢) EL:(¢)log(ty) o (Eu(¢)))epehsuppt is well-based. Then we set

@L(s)::( 5 au«o)E;L(so)log(tga)'o<Ewb<so>>)sm+sau<m>. (6.4)

@€Ehsuppt
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In the case when tm=L.(E?,) (i.e m=1 and hsuppt={¢}), we have

Ou(Ly(EL)) = 0ul ) ELi(p) £ 0 En(p). (6.5)
iv. s€U( )\ U<y and supp s C Dy, and the family (9p(m))mesupps is well-based. We
then set
Ou(s) = Z SmOu(m). (6.6)
mesupps

Proposition 6.8. Let n <v with, set a:=w" and let me€ (U p)o. We have m € Dy <=
Lo(m) € Dy. Moreover, if m € Dy then dy(La(m)) = dp(m) £}, om.

Proof. We prove this by induction on EHy(m). Let (v, n):=EHy(m). If (v, n)=(0,0),
then me U and Lq(m) € U and 9p(La(m)) =9 (La(m)) =9 (m) 5,0 m =9y (m) £, 0m.

Assume that (7, ) >1ex(0,0). Then since m is a monomial, we know that n=:+11is a
successor. Write 3:=w*. We have m = 7 where ¢ :=Lg(m) € (U<p), g and EHy(p) < (7,
n) . Note that a < fw by Corollary 5.7.

Assume first that a=1. If =1, then we have m € Dy <= ¢ = L1(m) € Dy by ii. By
(6.3) we have 9,(m)=0,(p)m, whence 9 (L1(m))=09,(p) {1 om, if applicable. Recall that
Dy is a group, so Dy —1="Dy. If f=w, then we have me Dyg<—= p € Dg<—= ¢ — 1€ Dy
by iii. If L1(m)=E* '€ U, then we have ¢ — 1 €U, and m € Dy by ii. Moreover (7.2) yields

() = ulip ~ 1) Bl ~ 1) =) P2 ) g (o) o,

If Eg_l ¢ U, then Eg_l €Dy ¢ —1€Dyg<=me Dy by iii. We conclude as above
that 9 (L1(m)) =0y (m) 1 om.

If B> w, then we are in case iii and we have m € Dg<=> ¢ ED3<:>L1(E )€ Dy. We
conclude with (7.4) that dj,(L1(m)) = dp(m) £1 om if applicable.

This treats the case when a=1. Assume now that o =w and f=1. We have m € Dg<—>
p €Dy by ii. Since ¢ is log-atomic, the induction hypothesis yields m € Dy<=> L, () € D,
with 9Ly (¢)) = Ou(e) £, 0 ¢ if applicable. We have Ly(p) = Ly,(m) — 1 so m € Dy <
L,(m) € Dy. Moreover, we have

Ou(Lw(m)) = Ou(Lu(p)) =0ulp) o ¢
Ou(m) = Ou(e)m if m, p € Dy, whence
0 Y
Op( L)) = () =425 = Gp(m) L 0y m = O (m) £ om

if applicable.

In all other cases, the inequality aw < 8 implies that G > 1, so we will only deal with
the cases i and iii. Moreover, we have m € Dy <= ¢ € Dy by iii.

If a=pw, then ¢ is L.y-atomic. The induction hypothesis yields ¢ € Dy <= L,(¢) €
Dy, and if applicable. If ¢ € Dy, then we have du(m) =0d,(¢) E5(¢) by (6.5). Since Lqo(p) =
L(m) —1, we obtain

E('loﬂﬁ
65/

Op(La(m)) = 0u(La()) = Ou(p) Lo © ¢ = Ou(m) om=0y(m) loom,

if applicable.
If =7, then L (m) = ¢ so by iii, we have Lo(m) € Dy <= m € Dy. If applicable, we

have Gp(m) = D) A () = Ou(La(m)) 2-om by (6.5), 50 D La(m)) = Ou(m) o m.
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If B=aw, then Lo(m)=E§ . If Ef~' ¢ U, then by iii, we have Lo(m) € Dy <=
¢ —1€Dy<=meDy. If applicable, we have 0y (Lo(m)) =0u(¢ —1) ﬁom: Oul( ) ﬁ—‘,”om
pOta B

and du(m) =0p() i om by (6.5). Therefore 9y, (La(m))=0,(m) £, om. If Eg_l €U, then
p€eU, so 9 €Dy, someDy. We obtain p(La(m)) =0u(m) ¢, om by the same arguments.
If 3> aw, then we have Lo (m) = Lo(Ef). Since a > w, the series Lq(m) occurs in iii, and
we have Lq(m) € Dy <= ¢ € Dy<= me Dy. If applicable, we have d,,(m) =0, (¢) Ej(¢) =
0 i/ m and
() f-om an |

Ou(La(m)) = Bu(m) Ei(¢) € om=d,(p) i_; om=d,(m) ¢, om.

This concludes the proof. O

Lemma 6.9. For s,t €Dy with st € Dy, we have Op(st) =0u(s)t+ s0u(t).

Proof. We have supp sUsupptUsupp st C Dy by iv. So as in the proof of Proposition 6.3,
by (7.5), it is enough to prove the result for s,t€ DyN i< - By Proposition 6.8, we have
Ou(logm) = 9™ for all m e Dy N (< - Thus

m

(s t) = (log(st)) s t=(9,(logs) + dp(logt)) st= <8“T@)+8“T(t)> st=0,(s) t+59,(t). O

Proposition 6.10. Let G = R[[6]] C (U ,)) be a transserial subgroup with G C Dy.
Then G<1)C Do.

Proof. This follows from Proposition 4.4. O

6.4 The near-support

We write Py for the subclass of Dy of series s such that for all n € supp s, we have
supp Op(n) Cn-YX"-Wy. For s € Dy, we have s € Py <= supps C Py.

Lemma 6.11. For ¢ € (Ui )~ NPa, we have Ef € Pp.

Proof. We have d,(EY) = 0u(p) EY by Proposition 6.8. Let m € supp dy(EY). So there
is a n € supp du(p) with m=nEY. We have ne€p-U=P. 20, for a certain p € supp ¢. We
have EY > supp ¢ > 1, so p-U=PC V¥ some EY- BXET .91, as desired. O

Proposition 6.12. We have Dg="P;.

Proof. We prove by induction on EHy(s) that Vs € U, s € Dy = s € Py. This is
immediate if EHyy(s) = (0,0) by our hypothesis that 205 is a near-support for 0. Let s €
U< ), set EHy(s) =: (7, n) and assume that we have g € Py for all g € Dy with EHy(g) <
(7v,m). It is enough to prove that supp s C Py, so we may assume that s is a monomial.

If n=1, then s = EY where ¢ € (U(,,))», and EHy(¢) < (v, n). We conclude with
Lemma 6.11 that s € Pj.

If n=1¢+1 where ¢+ >0, then s =tm where in particular hsupp t C Py. By Lemma 6.11,
it is enough to prove that supplogs CPy. So it is enough to show that for ¢ € hsuppt and
7 <A with yw < w*, we have L,(EY.) € Py. Given such a monomial a:= L.(EY.), we have
Ou(a) = 0u(p) EL(p) ll0 E(g) by (6.5). Let m € supp dp(a). So there is n € supp ()
with m=nE..(¢) £; 0 E,.(p). Write

q:=EL(p) x (1 0 Eu(g)),
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so m=nagq. Note that 1 < q < L,41(E}) < a, so g € =% The induction hypothesis at
¢ yields n€p - BP0 for a certain p € supp p. We have supp ¢ = (L (E%)) ™! since ¢
is w-truncated. In particular supp ¢ > (L, (EZ.))'=a~!. Moreover ¢ < a, so qp € T
We deduce that m € a-U=*. 20y, so m € Py. This concludes the proof. O

Lemma 6.13. Assume that O has a good near-support Wy with O(Wo) C R[[Wal]. Then
Wy is a near-support for OF for all k€ N.

Proof. We prove this by induction on k. For k <1, this is immediate. Let k£ € N such
that the result holds at k, let s € U and let m € supp s* 1) Thereisne supp s) with me
supp d(n). Now the induction hypothesis yields a py € U with pr < 05 with n € (05pg) - Wo.
We deduce by the Leibniz rule that

m € (suppd(ds)) - prp- Wy or
m € 05 (suppO(pg)) Wy or

m € 05-Ppg- U supp@(m)).

roeMNMy

Recall that 20 is a near-support for 9. Thus, in the first case, we have
m € (0spp) - V¥ 2WF C 0, - V- 2.

In the second case, we have m € (0spy) - B¥Px. 203, We have B¥Pk CU %% so m e (0, ppi1) -
Wy as desired. In the third case, we have (J,cgy, supp 9(w)) € Wy so we can conclude

directly. This proves that 20y is a near-support for oF. O

Proposition 6.14. The standard derivation 0: Loy — L. has a positive good near-
support Wy with 0(Wa) C R[[W5]].

Proof. Set 25 := (supp 9)> = {éi: v <A}, For m € Wy, we have supp d(m) Cm - Wy C
Wy, so (Wy) C R[[Ws]]. O
6.5 Extending hyperserial derivations

Proposition 6.15. We have E(Pjy) C Pp.

Proof. Since any monomial in [E(Pp) is atomic, this follows from Lemma 1.15. O
Proposition 6.16. We have (G(Ps))(<1) C Po-

Proof. The class Pj is closed under sums so by Proposition 6.15, we have G(Pjs) C
Ps. Lemma 6.9 and Proposition 6.8 imply that 0,1 G(Pp) is a transserial derivation on
G(Ps). We deduce by Proposition 6.10 that 9,1 G(Py) extends uniquely into a transserial
derivation on the field (G(Ps))(<1).- An easy induction using Proposition 6.8 shows that
this extension coincides with 9, on (G(Ps))(<1)- Therefore (G(Ps))(<1) S Dy. We conclude
with Proposition 6.12. O

Corollary 6.17. We have Py=U -
Proof. Apply Lemma 5.10. O

Corollary 6.18. The function Oy: U< ) — V(<) is a derivation of force v and 2y is
a good near-support for Oy,.
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Proof. We already know since U ) € Py that 9y, is strongly linear on U ,,) with near-
support Wy. It satisfies the Leibniz rule by Lemma 6.9. Finally, by Propositions 6.8
and 6.3, it is a derivation of force v. O

Assume that U is an H-field. Let Py denote the subclass of U ,) of series s with

Vm,nesupps \{l},m>=nAm>1 = 0Oy(m)>du(n), and (6.7)
s>R = 0Ou(s) >0. (6.8)

Note that Py contains U by H1 and Lemma 6.5.

Proposition 6.19. Let G =R/[[S]] be a transserial subgroup of U<y with & =&~
and G CPy. We have G*P C Pyg.

Proof. Let s€ G*P and m,ne€supps \ {1} with m > 1,n. Note that logm,logne G C Py.
We have supp logmUsupplogn =1 so (6.7) for logm and logn yields

Ou(m) ~ Op(Nogm)m  and

Ou(n) ~ Op(Tiogn) M.
Assume that n> 1. Then logm =logn, so (6.7) for diogm + Oogn yields Ou(Tiogm) = Opu(Tiogn)-
Therefore dp(m) > dyu(n). Assume now that n<1. Set v:= L We have v € S by our

logn

hypothesis on &. We claim that 9,,(v) > 0p(n). Indeed, by (6.7) for logn, we have d,,(logn) =
Ou(V1ogn) 50 Opu(v) XMBI‘;—;))Q. We have ¢1 < ¢y in L.y, so Lemma 3.1 and HF1 yield
logn < n. We deduce with Corollary 1.10(c) that n (logn)2=n. So n (logn)? <1, whence
Ou(0) = Op(n). Set u:=01ogm. We have Op(m) = 0p(u) m > 0y(u). By (6.7) for u+v and
since u > 1> v, we have d,(u) > 9u(v), whence dy(m) > du(n). This proves that s sat-
isfies (6.7). We also deduce that dy(s) ~ Ou(7s) = Ou(log 75) 7s. Since 75 >0 and G > log 75>
R, we deduce by (6.8) at log 7y that 9,(s) >0. So s € Py. O

6.6 The extension theorem for derivations

Theorem 6.20. Assume that (U,0) is an H-field with small derivation. Then (U< ), 0u)
1s an H-field with small derivation.

Proof. Since Wy is small, we have J,(m) < m for all m € (. ). In particular H2 holds.

We prove by induction on the lexicographic order <y that for all v € On and n < p,
we have U, ) € Pu. Let (7, 7n) such that the result holds for all (p, o) <jex (7, n). For
5 € U< ), we have s € Py if and only if m +n € Py for all m,n€supps. So Py contains
R[[U, <o M,]] whenever av€ On and (9,),<q is an increasing sequence of subsets of £« ,)
with Vp <a,9, C Pg. So we may assume that 1 is the successor of some ordinal ¢. Write
o :=w" and set

Gy = U supp logm,
me (Hiy, )1

6. = U (supplogm)~!, and
mE (HU(5,0))1)

G = 6,U6G_.

So R[[&]] is a transserial subgroup of Ui,y with & = &~ 1. By Proposition 6.19, we may
assume that ¢ >0 and it is enough to prove that R[[S]] C Py. So let s € R[[S]].
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Let m,n€supp s with m,n > 1 and m=#n. By the induction hypothesis, we may assume
that m ¢ U, ). So m= Lg(EY) for a certain ¢ € (U, \ La(U@’Z) and a B <A
with fw < a.

We distinguish two cases. First assume that n¢ ., ). So n= Lp(E:f ) for a certain
Y€ (Up,)ma\ LQ(IU(?:)) and a p < X with pw < @. We may assume that m >=n. By
Lemma 3.10, we have ¢ > or ¢ =1 and p> 3. So we have 7,> 7 in general. Note that

T, Ty € Py by the induction hypothesis so 0, (7y,) = Ou(7y). Moreover, we have
Op(m) ~ Ou(1,) X Lig.a)0 B and (6.9)
Bu(n) ~ Ou(ry) X Ly )0 EL.

If =1, then < p 50 Ju(m) = Ou(Ty) X £]5.0)0 BL = (1) X iy )0 B = Ou(n). If o>
then £( )0 B> (), o0 E;/’ by Lemma 3.10, so likewise Oy (m) > dp(n).
Now assume that ne€ i, ). Set
a = 0y(m)=EZ, (by Lemma 3.10)
b == 04(n) €Uy, (since Uy, is confluent)
and ¢ = Ly(b).

Note that o= La(a) €Uy, \ (LQ(U(?’;))) whereas ¢ € LQ(IU(?’:)), so ¢ # 1. For sufficiently

large p < @, we have L,(m)— Ly(a) <1 and Ly(n) — L,(b) < 1. We deduce by H2 and D4
that

Ou(Lp(m)) ~ Ou(Ly(a)) =0u(p) x £p,ayoa and

Ou(Lp(n)) ~ Ou(Lp(b)) = Ou(9)) X £p,q) 0 b.
Assume that m > n. Lemma 3.10 implies that ¢ >, so as above we have J,(L,(m)) ~
Ou(1p) X Ly 0y 0 = Op(Ty) X £ 0y 0 b~ Op(Lp(n)). We have £,0m < £,0n so D4 yields

Opu(Tp) X L0y 0 o Ou(Ty) x Ly ayob -

Op(m) ~ E;)om E,’)ou

Opu(n).

a“(Tw)Xé[pya)Ob au(Tw)Xf[pya)Oa
fon ~ £om Na”'(u)'
Now let n € supp s and m € supp s with m > 1>n. We need only prove that 9,,(m) > dp(n)
to conclude that s satisfies (6.7). Set a:=0,(m), b:=0,(n"1), and

¢ = fa(La(m))=La(a) and

¥ = fa(La(n™")) = La(b). (by (3.12))
If me Uy,,,), then we have 0,(m) € U, ,) by confluence, so ¢ € U, ). If m¢ U, ,), then
we have m = Lg(EY) for an ordinal § with fw <a, and a @€ (U(y,,))>,a \ LQ(U(?’:)), and
then p =o€ Uy, ,). So in any case ¢ € U, ,). Likewise, we have ) € U, ,). Let p <a be

large enough, so that L,(m) — L,(a) <1 and L,(n~1) — L,(b) <1. By H2 and D4, we have
au(Lp(m)) ~ 6,,,(Lp(a)) = 6,,,(@) X e[p,a) oa and
Ou(Lp(n™1)) ~ Opu(Ly(b)) =Ou(th) X €], 40 b.
Applying D4 and D2 yields

If n>>m, then symmetric arguments yield gy (n) ~

Iu(Lp(m)) lp.a)oc
Op(m) =L Ou(p) x —=— and
® E;)om ® ﬁ;)om
Ou(Lp(n=1))n? n? (£().a)0b)
)=~ = Out) x Ty e
P p
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By (6.7) at DW—F%GU(%L) and v € Ui, ,,), we have 9p(¢) >~ 6,,,(%) x%{%wx%y. We

have f,on~'=nand ¢, ,yo b~ Ly(n"1) <n~!, so Corollary 1.10(c) yields
n? (E(p a)© b) 1
que(p7a)obzu<<_

7
It follows that Ou(y) > Ou(n), whence Op(m) > Ou(n). This concludes the proof that s
satisfies (6.7).

Assume furthermore that s >IR. Note that 9p(s) ~ 0u(7s) by (6.7). If 9, € Uy, ,,), then
7s € P 50 Ou(7s) > 0. Otherwise we have 0,,(0s) ~ Op(7y) X £i,qy0 E as in (6.9) for a
certain ¢ € Py ﬂU(><’Z) and a certain 3 € (0,a). We deduce that 0,,(7,) >0, so 0(0s) >0,
$0 Op(7s) > 0. Therefore d,(s) > 0. This proves that s € Py. So R[[S]] C Py. By Propo-
sition 6.19, we have (R[[S]])*® C Py where U, , C (R[[S]])*P. So this concludes our
inductive proof that U ) C Py. In particular H1 holds for (U ,),dy) by (6.8). O

In order to complete our proof of Theorem 6.7, we must prove the unicity of d,.

Proposition 6.21. The function 0y, is the only extension of 0 into a hyperserial derivation
Uicp) — Vicp) of force v.

Proof. Let d be a right composition U« p) — V(<) which extends 9. We claim that
0 =0y, and we prove the result by induction on the exponential height (v, n) of s over U.
We have 9 =3, on U by definition. Now let s € U< ) such that we have A(t) = du(t)
for all t € U ) with HHy(t) < HHy(s). By D1, we may assume that s is a monomial.
By D3 and D1, it is enough to prove that d(m) = ,(m) for all m € supp logs. Consider
such a monomial m. If n=1 or n is a limit, then we have HHy(m) < HHys(s), whence
d(m) = d,(m). Otherwise write =1+ 1 for a certain ¢ > 0. We have m = L,(EY,) for
certain p < A with pw <w" and ¢ € (U« y))» o With HHy(p) < HHy(s). The induction
hypothesis yields d(¢) = (). We deduce with D4 that d(m) =,,(m). By induction, we
deduce that 9 and Oy coincide. O

This concludes the proof of Theorem 6.7.

Corollary 6.22. There is a unique extension of the standard derivation I — 1L into a
hyperserial derivation I — 1L of force On. Moreover, (L, +, X, <, <,0) is an H-field.

Proof. This follows from Theorem 6.7 and [5, Theorem 1.2]. O

6.7 Model theory of (]L, +, X, <, <, ")

The field Tig of logarithmic-exponential transseries of [15, 20] can be realized [10, The-
orem 4.11] as a subfield of (LL<,)(<1), hence Tpg C L. The elementary first order theory
of (Tig, +, X, <, <, d) is studied in [5]. It is in particular model-complete. Consider the
hyperserial derivation d of Corollary 6.22 on L. We conclude this section by proving that
L is an elementary extension of Tt .

Theorem 6.23. The inclusion Tig—— L is an elementary embedding for the structures
of ordered differential valued fields.



EXTENDING COMPOSITIONS 47

Proof. By [6, Theorems 15.0.1 and 16.0.1] it suffices to show that INL is the union of an
increasing family (IF,)o<y,<on of subfields of well-based series [F, =: R[[F,]], where

i. each F, is closed under 9, and
ii. each §, has an element m, with §,>m, and m & 5(I~L)
For v € On with 0> v, we set o, :=w®*” and
8= (L<a,)(<wr)  L<ar o€, C L.
We claim that I, :=R[[T,]| satisfies the conditions. First note that for f € L, there is
v €On with v >0 and f € (L<a,)(<wr), Whence f€F,. So L=J,.,.onFv

Moreover we have £, © ee C (£<ay)(<wp) Whenever ¢ >v so the family (IF,)o<y<on
is increasing for the inclusion. Let v € On with v > 0. By D4, we have

O(Lca, 06 ) C(R) X O(Lca,) 0 C(Lecq,0e) x (Lea, 0 ) CLeg,0e.

We deduce that 9(L<q, 0 o) CTF,. We also have 0((£<a,)(<wr)) € (L<a,)(<wr) by The-

orem 6.7. By the Leibniz rule, we deduce that IF, is closed under d. R
For m € (£<a,)(<wr) and [€ £2, | we have m < [o ego Set m,, := d(— (e ')~1). Since

l;' < &, the axiom HF1 yields m, = (e e )T L, 0 e So m, < §,. This concludes
the proof. 0

7 Extending compositions

We now look into extending composition laws. Instead of always considering binary laws
o:(f,g)— fog, it is sometimes more convenient to work with unary right compositions
og: fr fog for fixed g. Our main goal in this section is to prove the following theorem:

Theorem 7.1. Let v < On and p < v with 0 < p. Let (U, oy), (V,ovy) be hyperserial
fields of force v such that U satisfies Schmeling’s axiom T4. Let N\:U—V be a right
composition and assume that /\ has a good relative near-support Wa. There is a unique
right composition

A Uc p) — Vi)

of force v which extends A. Moreover 20 is a relative near-support for A,.

7.1 Hyperserial right compositions
We fix a v <On and a p < v with >0, and we write A:=w". Consider two hyperserial
fields (U, oy) and (V, oy) of force v.
Definition 7.2. A (hyperserial) right composition U—V of force v is a function
A:U — V which satisfies the following properties:

RC1. The function /\:U—V is a strongly linear morphism of rings.

RC2. Forall f €Ly and s € U7, we have A(f oy s)= f oy (A(s)).
Example 7.3. Consider the field L,v», seen as a hyperserial field of force v. Now let

(T, o) be any hyperserial field of force v. Then for each s € T=>~, HF1 and HF2 imply
that the function os: L., — T; f— fos is a right composition.
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We see that hyperserial embeddings U — V of force v are simply right compositions
of force v which preserve monomials.

Proposition 7.4. Right compositions /\: U — WV of force v are strictly increasing.

Proof. Since U is a real-closed field and V is an ordered field, any morphism of rings
U —V is strictly increasing. O

Like in the case of hyperserial derivations, the nature of right composition can be
checked on the skeleton of U.

Proposition 7.5. Let A:U—V be a strongly linear function with
A(luroy g) = Lur(D(g))

for allp<v and gei,n. Then A is a right composition of force v.

Proof. Let C denote the class of series f € L.y with A(fog)= fo/A(g) for all ge U~
We prove that we have L, ,» C C by induction on p < v, starting with p=1.

Consider g € U~ and write g =140, (1 +¢4) where ry € R~ and £, <1 as in (3.3). We
have A(g) =7y A(dg) (1+ A(ey)) where A(gg) <1, so

k
k—l—l

logg = logbg—i-log'rg—i—z k:+1 gg 5 and
kEN
k
logA(g) = logA(Dg)+logrg+Z k:—i—)l A(gg)ktt
kEN
—1)*
- A(logbg)—i—logrg—i—A(Z (l<:+)1 55“)
kEN

= A(logg).

We deduce that C contains [ € £ if and only if it contains log[. Note that by strong
linearity of A\, the class C is closed under sums of well-based families. Moreover, for f,h € C
with A >R, we have foh € C. So we need only prove that we have £ ,» € C for all n<v. Let
1 >0 such that this holds for all : < 7. So L.,,» C C by the previous arguments. Let g€ T~
and write g:=0,n(g). By (3.4), there is v <w" such that the number ¢:=/, 0y g —{yop g
is infinitesimal, with

il ()O )0
£w7]OUg:£wnoUg+Z (uﬂ? k;{j ud k‘
k>0

Note that for k € N~, we have (fll)(k) € L.,n C C. Moreover, we have
lyoy A(g) —Llyoy AN(g) =A(lyoy g —Lyoug) =A(e) < 1.
We deduce that

T
fwnovﬁ(g) = "OW +Z E 7] Owg O\/A(g) A(E)k
k>0

eT’Y (k) !/
— A(&moUg)—i—A(Z (6r) Z;U 1°U8 k
k>0

= A(lynoyg).
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We conclude by induction that C=1IL,x. O

Corollary 7.6. Let A:TU—V be a strongly linear function with
A(logm) = logA(m) for all me i, and
A(Lyr(a)) = Len(A(a))  forall 0<n<wv and a € Uym.

Then A\ is a right composition of force v.

Corollary 7.7. The notions of hyperserial embeddings of |8, Definition 3.4] and Defini-
tion 3.2 coincide.

7.2 Extending right compositions

Fix (U,oy), (V,oy), A and WA as in Theorem 7.1. As in Section 6.3, we inductively define
Ay along with the class D of series s € U ,,) at which A, is defined. For s € U ,) with
HHu(s) =:(v,m), we say that A, is defined at s if

i. s€U. Then we set
Ap(s) :=A(s). (7.1)

ii. s€(<p), n=1andlogseDa. Then we set
Ap(s) =exp(Ap(logs)) € Vi ). (7.2)

iii. s € p), m=t+1 for a certain ¢ >0 and s =tm where m € Dx, hsuppt C Dx and
the family (log(t,) oy (AR(EZ.)))pehsuppt is well-based. Then we set

A“(s) ‘= €xXp Z IOg(tcp) Oy (EwL(Au(‘P))) Au(m) € V(< INE (7.3)
p€hsuppt
A simple computation in the case when tm=L,(E?,) yields
Ap(Ly(EZ)) = Ly(Eu(Du(#)))- (7.4)
iv. s ¢ U< ), supps C D and the family (Au(m))mesupps is well-based. Then we set
Auls)i= > smOu(m). (7.5)
mesupps

This definition is warranted by induction on HHyj(s). The existence in Theorem 7.1 reduces
to the identity Da = U, ). From iii above, it follows that Da is a subgroup of Ui, )
which contains U. We first justify that Da is closed under various operations.

Proposition 7.8. Let n <v, set a:=w" and let me (U p)q or mell if a=1. We have
m e Dp <= Lo(m) €Da. Moreover, if me D then Ay(Lo(m)) = Lo(Au(m)).

Proof. We proceed by induction on HHyy(m). Let (v, n):=HHy(m). If (v, n) = (0,0),
then me U and Lo(m) € U and Ay (La(m)) = A(Lo(m)) = Lo(A(m)) = Lo(Ap(m)).

Assume that (0,0) <jex (7, n) and that the result holds for monomials with exponential
height <jex(y,n) over U. Since m is a monomial, we know that n=1:+ 1 is a successor.
Write 3:=w'. We have m = E7 where ¢ := Lg(m) € (U<p)»,p and HHy(p) <iex (7, 0)-
Note that a < Sw by Corollary 5.7. There will be many cases to consider.
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Assume first that a =1. If =1, then we have m € Da <= ¢ = Li(m) € Da by ii. By
(7.2) we have Ay (m)=E1(Au(p)), whence Ay (Li(m)) = Li(Ayu(m)), if applicable. Recall
that D is a group, so Da —1=Da. If f=w, then we have

MmeDaA<= DA<= ¢ —1€Dx

by iii. If Li(m)= E[f*l €U, then we have ¢ —1€ U, and m € Dx by ii. Moreover (7.2) yields
Ap(m) = E(A(L1(m))), so A(Li(m)) = Li(Apu(m)). We obtain Ay(Li(m)) =A(Li(m)) =
Li(Ap(m)) by (7.1). If Ef~' ¢ U, then Ef '€ Dp <= ¢ — 1€ Dp <= m € Dy by iii.
Moreover, we have A, (Li(m)) = Li(Au(m)) by (7.4) if applicable.

If 8> w, then we are in case iii and we have m € Dap <= p € DA <= 11 E[f € Da. We
conclude with (7.4) that Ay, (Li(m)) = Li(Ap(m)) if applicable.

This treats the case when o =1. Assume now that a =w and f=1. We have m €
DA<= p €Dp by ii. Since ¢ is log-atomic, the induction hypothesis yields m € Da <=
L,(p) € D, with Ap(Lu(p)) = Lu(Au(p)) if applicable. We have Ly,(¢) = Ly(m) — 1 so
meDp <= Ly,(m) €Dp, and Ay(Ly(m)) =Ly, (Ap(m)) if applicable.

In all other cases, the inequality avw < 8 implies that 3> 1, so we will only deal with
the cases i and iii. Moreover, we have m € DA <= ¢ € DA by iii.

If «=pw, then ¢ is L.,-atomic. The induction hypothesis yields ¢ € DA <= L, (¢) €
D, and if applicable. Since Lq(¢) = Lo(m) — 1, we obtain (Ay(La(m))) = Lo(Ap(m)) if
applicable.

If a=f, then L,(m)= ¢ so by iii, we have L,(m) € Da <= m ¢ Dx. If applicable, we
have Ap(La(m)) = Lo(Apu(m)) by (7.4).

If B=aw, then Lo(m)=Ef "' If Ef~' ¢ U, then by iii, we have

Lo(m)eDp<—= p—1€Dp<—=meDa.

If applicable, we have Ay(Lqy(m)) = Lo(Ap(m)) by (7.4). If Egil € U, then ¢ €U, so
@ €Dp, someDa. We have Ay (Lo(m)) = Lo(Ap(m)) by (7.1) and (7.4).

If 3> aw, then we have Lo(m) = Lo Ef. Since a > w, the series Lo(m) is as in iii, and we
have Lo(m) € Dao<= ¢ € Da<=meDa. If applicable, we have Ay (Lq(m)) = Lo(Au(m))
by (7.4). This concludes the inductive proof. O

Lemma 7.9. For s,t € Da with st €D, we have Ay(st)=Au(s) Ault).

Proof. We have supp s UsupptUsupp st C Da by iv, so by (7.5), it is enough to prove
the result for s5,t € Da N ). In that case we have log(s), log(t),log(s t) € Da and

Au(logs) = logAu(s),
Ap(logt) = log Ap(s), and
Ap(log(st)) = logAu(st),

by Proposition 7.8. Therefore

Ap(st) = exp

This concludes the proof. O
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By Proposition 4.7, we have:

Proposition 7.10. Let G be a transserial subgroup of U< ) with GCSDa. Then G<1)C
DA.

7.3 The relative near-support

Let Pa denote the subclass of series s € Da such that for all m € supp s, we have
supp Ap(m) Cop, (my - BF4#™ . 904,

So our hypothesis that 20 A is a relative near-support for A translates as the inclusion U C
Pn. We will prove that Da=Pa =T ).

Lemma 7.11. Letn€ (0, u), set a:=w" and let ¢ € PAN (U< p))-,a- There are a ao<n
and an ng<w such that Lyon(EY) € Pa whenever o € |09, 1) and n € [ng,w).

Proof. By (3.14), there are a 09 <7 and an nyg € N~ such that the series € := A, (¢) —
fa(Au(p)) satisfies € < (Lyoo(ny—1)(Ba(Lu(¢)))) ~h Let o <nand n € N with wn > wny.
We write 8:=wn, 87 :=w’ (n—1) and 0 :=f,(Au(p)). Write a:= Lg(E?). We have ¢ <
(La(Ea(Du(9)))) L By Proposition 7.8, we have a family (t3 x)ken as in (3.8, 3.9) with

tg.rov Eo
Apla)= Z %Ek_
kEN ’

In particular 94 ,(q) = Lp(Eg). Let m € supp Ay(a). We have m = qi oy EZ - n for certain
e

k €N, qi €suppts k and for a certain n € suppe¥. Set vy, = T5(5%)

, So that M=0A,,(a) OkN

In order to conclude, we must prove that vynée g <Lula) -

By Lemma 3.8, we have 1 < v, < Lg,1(Eq), so by € P=*2u(® We now turn to n. We
have supp e C supp Apu(y), so since ¢ € Pa, there are ny,...,n, € Dsupp A (p) With

ne(ng---ng) - YEM . PEMLQPR = (ny - ony)  YEM L GEML QP

Consider me {1,...,k}. We have n,, € 0gpp Au(p) Where @ is a-truncated. We deduce that

N> (Lea(EBa(Du(9)))) 7L 50 Ny = (Lo E) ™1 We also have n,, < Osupp A () K Lo(EY).
Thus in total

L (ES) ' <y, < Lp(EY).
In other words U< C P¥24(9) We deduce that vy - T<M ... P<m C %«A“(“)7 SO

ppn € PAu@ 93,

This concludes the proof. O
Lemma 7.12. Let ¢ € PAN (U< y))-,1. We have EY € Pa.

Proof. Write Ay () =Au(@)s + 7+ Apu(p)< where supp A (@) =1, 7€ R and Ay (@) <<
1. By Proposition 7.8, we have

Au(EY) =exp(Dpu(p)) = exp(r) exp(Du(p)-) ( > % (Au(w)<)k>- (7.6)
keN
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Note that exp(Ai(¢)s) =04, (gp)- Let v € supp Au(EY). So there is k € N such that
b=0p,(py)m for a certain m € supp (Dp(@) <)k, Let my,...,my €supp Ay(@) with my, ...,
my; <1 and m=my --- mg. By the induction hypothesis, for each i € {1,...,k}, there is
n; € supp ¢ with m; €04 ,(n,) - P*4u(m) . 99, Since supp ¢ = 1 we have n; < e? for all
i€{1,...,k}. We deduce that we have Dp ,(n,) - D) C =20 for all € {1,...,k}.
Thus medp ,(py) - P<AulED) W A. This concludes the proof. O

Corollary 7.13. Let < p and let ¢ € PAN (U< ) wn. We have Efy € Pa.
Proof. We prove the result by induction on 7. The case =0 is done in Lemma 7.12.

Let n < p with n > 0 such that the result holds for all o <7, set a:=w" and let ¢ €
PaN (U< )= a- By Lemma 7.11, there are o < pu and n € N with Lyen(EY) € Pa. Note

that for k€ {0,...,n}, the series L,ox(E?) is an infinite monomial, so it is w’-truncated.
By the induction hypothesis, we deduce that Eon(Lyook(EY)) = EY € Pa, hence the result
by induction. O

Proposition 7.14. Let n< p and let o € PAN (U< ), Fory<w”, we have L, (Ejy) €
Pn.

Proof. We prove this by induction on 7. The case n=0 is vacuously true by Lemma 7.12.
Let n < p with n > 0 such that the result holds for all o <7, set a:=w" and let ¢ €
PAN (U)o and v <a. Write f:=« if nis a limit, and 8:=w" if n=1+ 1. Considering
@ —m € Pp for a certain m with v= 3m +~’ with 7/ < 3, we may assume that yw < a.
Consider by Lemma 7.11 a 0 <7 and a n € N~ with ¢ := Lo, (E?) € Pa. Choosing o
large enough, we have v <w? by the previous argument. We have 1) € Pa N (U< )= wo,

SO Ewo(n,l) € PAN (U« w))»=,we by Corollary 7.13. So by the induction hypothesis, we have

w

EYs
L7<Ew;’ (”‘”) = L,(EZ) € Pa.

This concludes the proof. O

7.4 The extension theorem for right compositions

Proposition 7.15. We have E(Pa) C Pa.

Proof. Since each monomial in [E(Pa) is atomic, this follows from Lemma 1.16. O
Proposition 7.16. We have (G(Pa))(<1) < Pa.

Proof. By Proposition 7.15, we have E(Pa) C Pa, hence G(Pa) C Pa. We obtain
(G(Pa))(<1) € Da by Proposition 7.10. An easy induction using Proposition 7.14 shows
that (G(PA))K 1) EPa. O

Corollary 7.17. We have Pa=U(, ).
Proof. Apply Lemma 5.10. O

Corollary 7.18. The function AUy — Vi< is a right composition of force v and
W is a good relative near-support for Ag.
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Proof. We already know since Ui ,) C P that A, is strongly linear on Ui, ) with
relative near-support 20 . It is a ring morphism by Lemma 7.9. Finally, by Propositions 7.8
and 7.5, it is a hyperserial composition of force v. O

In order to complete our proof of Theorem 7.1, we must prove the unicity of A,.
Proposition 7.19. The extension of A to Ui, ) is unique.

Proof. Let V be a right composition U ;) — V() which extends A. We claim that
vV =/, and we prove the result by induction on the hyperexponential height (v, n) of
s over U. We have V=A, on U by definition. Now let s € U such that we have
V(t) = Apu(t) for all t € U, ) with HHy(g) <iex (7, 1). By RC1, we may assume that s
is a monomial. By RC2, it is enough to prove that V(m)=A,(m) for all m € supp log s.
Consider such a monomial m. If §=1 or n is a limit, then we have HHy(m) <jex (7, ),
whence V(m)=A,(m). Otherwise write §=:+ 1 for a certain ¢ >0. We have m=L,(E.)
for certain p <A with pw <w* and p € (U ) w With HHu(p) <iex (7, 7). The induction
hypothesis yields V() =Au(¢). We deduce with RC2 that V(m)=A,(m). By induction,
we deduce that vV and A, coincide. g

7.5 Hyperserial composition laws

Let (U, oy), (T, o) and (V, oy) be confluent hyperserial fields of force v. A (hyperserial
composition) law o: U x T~ — V of force v is a function such that for each s € T~
the function

0s: U—Vj fr fos

is a right composition of force v. The function oy is called the right composition with s.

Example 7.20. By HF1 and HF2, the law oy: Loy x U~ — U is a hyperserial com-
position of force v. If (U, oy) C(V,oy), then we have a trivial composition law

UXT>7>—)V;(f78)Hf7

all of whose right compositions are the inclusion U< V.

Remark 7.21. We do not ask that hyperserial composition laws be associative with
respect to an eventual internal composition law U x U~~ — U. Indeed, studying the right
context for that would take us beyond the scope of this paper. However we will see that such
an extended associativity follows immediately in the case when U = L. Some additional
properties of hyperserial compositions laws pertaining to the structure of hyperserial field
on T are considered in Section 8 and 9.

As immediate corollaries of Theorem 7.1, we have:

Corollary 7.22. Let u < On with 0 < p<wv. If each og for s €T~ has a good relative
near-support, then o extends uniquely into a composition law U< ) X T — Vi) of
force v.

Corollary 7.23. Let p<On with 0< p<wv and let (T,or) be a confluent hyperserial field
of forcev. There is a unique extension of oy into a composition law (L<x)(< ) x T=" —
T« ) of force v.
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Corollary 7.24. There is a umque extension of the standard composition law L x L™ —
L into a composition law o:IL x L>" — 1L of force On. Moreover, for all f €L and g,
hel>", we have fo(goh)=(fog)oh.

Proof. The existence and unicity of o follows from Corollary 7.23. Given £ € L™, let A¢
denote the right composition I — I with £. Let g, h€L>" be fixed. By RC2 for A, we
have Agop 1 L= (ApoAg)1L. So Agop and Ay o0 Ay are both right compositions of force On
which extend Agop, 1L, From the unicity in Theorem 7.1, we deduce that Ajop = Apo Ay,
ie. fo(goh)=(fog)ohforall fel. O

We next see that right compositions on subfields of L really are right compositions og¢
with certain positive infinite series &, with respect to a suited hyperserial composition law o.

Lemma 7.25. The atomic elements of IE:A are fo if v is a limit and the series £,n, and
w"n for allneN if v=n+1 is a successor.

Proof. By [8, Theorem 3.16 and 4.1], the atomic elements of L. are ¢y if v is a limit,
and and the series £, for all n € N if v =741 is a successor. If v is a limit, then by
Proposition 5.3, there is no atomic element in IE:A \ Lca.

Assume that v =n+1 is a successor. If (T, o) is a confluent hyperserial field of force v,
then by [8, Remark 8.23], the atomic elements of T, are those of the form a = F, %, where
b € T, is atomic. For ¢ <7, the atomic elements of T{,) are those of T. Tt follows by
induction according to Definition 5.1 that the atomic elements of IL< x are the series Ey
where b € L. is atomic and n € N. D

Proposition 7.26. Assume that (U, oy) be a confluent hyperserial subfield of IE:A of
force v and that (V,oy) is a confluent hyperserial field of force (v,v). Then there is a
composition law o: U x V=~ — 'V of force v such that each right composition /\: U —V
of force v is a right composition o¢ with a unique § € V="

Proof. By Corollary 7.23, the hyperserial composition oy: Loy X V77 — V extends
uniquely into a composition law (oy),: L_x x V> — V of force v which restricts to a
composition law o: U x V=" — V of force v. Consider a right composition A: U — V
of force v. Likewise A extends uniquely into a right composition Ap: Uicp) — Vicy).

We claim that U, = IE:)\ Indeed, we have U, C IIT:A since U C IE:A Now let ae U

be atomic. As a consequence of Lemma 7.25, there is a 7 < A with a=/, or a= ef;o

We deduce that £o € U<y, 50 Lex=Lcxoly C Uiy, so ]L<>\ C Ui<yp) as claimed. For
J €LcxC U<y, we have

Au(f)=AL(f oulo) = f oy A(fo)

by RC2. Thus A, 1L,y is the right composition L.y — V by A (60) We deduce by

the unicity in Theorem 7.1 that A is the right composition (A1 L<y)y Lox— V(<u) by
Ay (lo) restricted to U. O

In this setting, hyperserial embeddings U — V of force v are right compositions with
L v-atomic series. The converse is not true. Indeed, consider L2 as a hyperserial field
of force 1. So #; is atomic in 2. But the right composition L _ 2 — L2 with ¢; is not
a hyperserial embedding of force 2 since £, 0¢; =/{, — 1 is not a monomial.
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Remark 7.27. Consider in particular the case when U=V C II/J:A Proposition 7.26 shows
that there is a natural bijective correspondence between right compositions U — U and
series in U~>". There are two obstructions to generalizing this to any confluent hyperserial
field U.

The first one is that there might not be a way to define a hyperserial composition law
U x U>" — U if one wants this right composition to have additional properties such
as Taylor expansions with respect to a given hyperserial derivation (which the trivial
composition doesn’t have). Yet there always exists a right composition U — U which is
the identity. The second one is that there may be non-isomorphic (in the expected sense)
hyperserial composition laws o%: U x U>* — U for i € {0, 1}, each one yielding its own
“sheave” of right compositions o’, s € U>". We expect that this will be the case for surreal
numbers.

7.6 The chain rule

Let (U,oy), (T, or) and (V, oy) be confluent hyperserial fields of force v with (T, or) C (V,
oy). Let 0: U x T>"~ — V be a composition law of force v with UoT>~ CV. Let Oy:
V—V and ": U — U be derivations of force v. We say that a series f € U satisfies the
chain rule if for all s € T~~, we have

CR. Oy(fos)=0y(s) x flos.
Assume that each f*) k€ N satisfies the chain rule and let s € T>. For (n, k) € N, write
Xng:={v=_(vp},...,vpm) € (N7)": o[ =vpy+ - + v =k}

Then for k € N, we have Faa di Bruno’s formula

ot _ o 0 B
%\Tve;k ! U[l} ’U[n}' ) (77)

Theorem 7.28. Let (U,oy), (T, o) and (V,oy) be confluent hyperserial fields of force
v with (T, o) C(V,oy). Let 0: U ) x T — Vi<, be a composition law of force v
with UoT>" CV. Assume that there are derivations Oy and ' of force v on Vi<, and
U« ) respectively with Oy(V) CV and U’ CU. If each f € U satisfies the chain rule, then
each f € U« ) satisfies the chain rule.

Proof. We prove the result by induction on HHy( f). Write (v, n):=HHy(f) and assume
that the result holds for all g € U, with HHy(g) <iex (7, 7). We may assume that
(7, M) >1ex (0,0). Since ’is a derivation of force v > 0, it satisfies (exp(g))' = ¢’ exp(g) for all
g €log(U~), so it is enough to prove the result for log f. Since ’ is strongly linear, we may
assume that log f is a monomial. So 7=+ 1 for a certain ordinal « and log f = Lg11(EY.)
for certain ¢ € (Ui« u)s o with HHy (@) < (7, 1) and a 8 with w <w’. It follows that

Oy((log f)os) = Oy((€gr10eu:) oy (pos)) (by RC2 for o)
= Oy(pos)x (lgyioey) oy (pos) (by D4 for 0y)
= Oy(s) X ({g+10eu:) oy (pos)x ¢'os (by CR for o)
= Oy(s) X ((lg410ew) 0p)osx g'os (by RC2 for o)
= Oy(s) x (log f) os. (by D4 for /)

We conclude by induction that every f € U, satisfies the chain rule. O
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Corollary 7.29. Let (T, o) be a confluent hyperserial field of force v, let 0: T — T be
a hyperserial derivation of force v and assume that each f € L. satisfies the chain Tule.
Write o: (L<x)(<w) X T>" — T for the unique extension of o into a composition law of
force v. Then we have

I(fog)=0(g)x flog
for all f € (Lex)(<w) and g € (Lax) (27

7.7 Large supports and monomial values

Let U=R[[Y]], V=R[[V]] be confluent hyperserial fields of force v and let { € V. Let A:
U — V be a right composition of force v with a good relative near-support 20 and let
0: U — U be a hyperserial derivation of force v with a {1} as a good near-support.

Let me 4. In Section 8, we will see that in certain cases, Taylor expansions determine
how A(m) may decompose as a series. In the opposite direction, we now give a criterion
for A(m) to be a monomial.

Given £ € V, we consider the following condition on a subclass 20 C U:

Vo €20, dm €supp &, to KX m. (7.8)

So (7.8) states that supp £ has no strict <-upper bound in 2J. Note that (7.8) is preserved
under products as well as under the operation 20+ 20°°.

Theorem 7.30. Assume that A satisfies (7.8) with respect to §. Then for all me i, if

supp £ X A?an for all n€supplogm, then we have A(m) €Y.
Proof. Let m € 4 and write ¢ :=logm. Assume that supp & < % for all n € supp .

Let q €supp A(p). So
T INCE P*AM) Ly

for a certain n € supp ¢ and a certain o € Q0. Since {1} is a near-support for 9, we
have %(a(n) <K 0y(n)- We obtain 2 A(n) by Proposition 7.4 and RC1, whence

A(0(w)
supp £ < A(n). By (7.8), we have o < A(n). Corollary-1.10(c) gives q=A(n). It follows
that supp A(p) = 1. We deduce that A(m)=A(e?) =exp(A(p)) €V. O

Proposition 7.31. Let T =R[[9M]] be a confluent hyperserial field of force v and let
s€T>7. The right composition og: Lox — T with s has a good relative support W, s
which satisfies

a) (7.8) with respect to s,
b) (supp s<U Su;)ps) CW, s, and

o
C) mu,as - ?Zﬂws C QHV,DS . (supp 8<)°° . (Su;)ps)

Proof. We will construct such a relative support 20,, s for each m <v by induction. First
assume that ¥ =0 and let s € T[‘> ~. By [8, Lemma 5.1], we can set 20 := (supp £sU
supp s<)*° where g5:= (s — 75) 75 1< 1. For m € suppe,, there is n € supp s with m=-, so
m—=<<n or m <0 by Corollary 1.10(a). We deduce that 20 ¢ satisfies (7.8), whereas b and
¢ hold by definition.

Assume that the result holds for all for all n < v, for all confluent hyperserial fields U
of force n and s € U~ For all n <v and n <w, we will prove the following additional
statement by induction on w"n:

Vit € T>>7,Vn € supp Ly, (t), Im €suppt,n K m. (7.9)
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That is, (7.9) states that suppt has no strict <-upper bound in supp L,m,(t). Note that
if 7 is an ordinal such that (7.9) holds for w”, then it holds for w”n for all n € N~ by
transitivity of <. So considering 1 < v such that the result holds for all w*n for ¢ <n
and n € N7, it is enough to prove that (7.9) holds for w”. We first assume that 7=0. Let
teT> 7. In view of (3.3), we have

supp L1(t) C (supp £100) U (supp &)™,

- (suppe)®©. By HF1,
HF7 and Lemma 3.1, we have 1 < supp #1 00; < 0 so likewise supp ¢ has no strict <-
upper bound in supp ¢1 0 9;. This proves (7.9) in this case. Assume now that n >0 and

let t € T>>~. Recall that there are a « <n and an n € N~ such that setting f=w#n and
d:=Lg(d,n(t)) — Lg(t), we have § <1 and

Tﬁ *) o ”
Len(t) = Lon(0n(t +Z (L Lﬁ(bw (1)) 5k,
k>0

where g; = —=

We have supp Lyn(d,7(t)) = (L<wn(t))~! by HF7. In particular supp L,n(d,n(t)) has no
strict <-upper bound in suppt. For k € N~ we have

supp ((£,n) ™ o (L(0ur(1)))) S W o 0un(t)

where 20:= (Elg)(k) o/l is a well-based subset of £(g ) by [8, Lemma 5.9]. Since L (0,(t)) =<
L,(t) <t for all v€[3,w") and d,n(t) is L<,n-atomic, the set supp ¢ has no strict <-
upper bound in £g ) 0 yn(t). Finally, we have supp d C supp Lg(t) so the induction
hypothesis on 7 implies that supp ¢ has no strict <-upper bound in supp . This con-
cludes the proof of (7.9).

Now let s € T>>". As in [8, Proposition 5.11|, there are n < v, n <w with &, :=
Lynn(s) — Ly (0a(s)) < 1, such that

Wy s:= ( H QH?%%%(S)) - (suppe)™

k<n

contains the relative support for o; on IL.y. By our induction hypothesis on v each
supp Lynx(s) for k <n has no strict <-upper bound in 2, 1 n,(s)- Hence by (7.9), nei-
ther has supp s. By (7.9), the set supp s has no strict <-upper bound in (supp €)*>
We deduce that 20, , satisfies (7.8). Note that 20, ; €20, ,, so b holds for 20,, ;. It remains
to show that c holds for 20, ;. Note that the same 1, n and € can be chosen for 0, yielding

y 05 — < H mewnk Ds ) . (Supp{-j)oo

k<n
So
supp s \
W, s C ( W, 0, n()> <(supps ) < 5 ) ) (suppe) (by c at n)
S
supp s \ -
- ( Wy, nkd)'wv,as-(supp&)oo'(a—)
S
k<n
supp s \
< meka(Ds) +Wy o, - (supp s<)™ ( 3 ) (by ¢ at n)
k<n s
w (supps\
- QHMDS'(SUPP&) :
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Thus ¢ holds at v. This concludes the proof. O
We will call the class 20 := 20,  obtained in the proof the canonical relative support

for o;. We finally note the following property which is required in extending our results to

the case of surreal numbers.

Proposition 7.32. For s,0 € T~ with o <s, we have W, C Ws.

Proof. We have 9, =05 and supp o C supp s, so Proposition 7.31(c) for 20, gives

o0
W, C W, (supp o) <M>

< 2,
[e.9]
€ W, (uppsy (122
) Ds
w [supps\ ™~
C Wy,s- (supp s<)>-
0s
c wu,sa
as desired. n

8 Taylor expansions

Our goal in this section is to study the existence of Taylor expansions of hyperseries
around a series. We fix ¥ <On and p <v with 0 < p. Let (U, oy), (T, or) and (V,oy) be
confluent hyperserial fields of force v such that (T, op) C (V,oy) and (L<x,0) C (V,oy).
Let o: U x T~ — V be a composition law of force v. We also assume that there is a
hyperserial derivation

0:U—TU; fr f/

of force v which extends the standard derivation ’: L.y — L., and assume that d has
a near-support Wy =< ¢y. Finally, assume that (0, o) satisfies the chain rule. Given f € U,

s€T>" and § € T, we study conditions under which fo (s+ 4) is given by the Taylor

(k)
series ) eN%zk evaluated at z=4. That is, we want to find conditions under which

the family ((f* o s) %) is well-based, with
_ f(k)os k
fo(s+6)=> o

keN

The existence of such expansions is a crucial feature of the local behavior of transseries
and hyperseries. Our main result regarding these expansions, which for technical reasons
will be proved in the next section, is the following:

Theorem (Corollary 9.3). Consider the field L equipped with the derivation of Corol-
lary 6.22 and the composition law of Corollary 7.24. For all f,6 €L and g € L™ with
§<g and (mTog)d <1 for all me€supp f, the family ((f(k) 0 g) 0F)ren is well-based, with

*) o
fO(g—i—(S):Z / - J sk,
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This means that the function Ay: h+— foh is analytic on 1>, with .A](cn) = A for
all n€ N and

Conv(As), 2{d€L:d<gA(Vmesupp f,((miog)d<1))} (8.1)

for all g € L>. The convergence domain (8.1) is optimal in that if L<9 ¢ Conv(Ay),, then

for & 3= Conv(Ay)g, there is a monomial m € supp f for which the family ((m®* o g) 6%)ren
is not well-based. There are various known results about Taylor expansions in fields of
transseries. The history of these result is less linear than one might think, so we feel it is
appropriate to briefly discuss those results in chronological order:

e [Ecalle [20, 4.1.26bis| considered Taylor expansions of grid-based transseries or log-
arithmic-exponential transseries. His propositions for the domains of convergence
are sometimes too small to be used appropriately (see [19, (6.32)]).

e Van den Dries, Macintyre and Marker [19, (6.8)-(4)] showed that logarithmic-expo-
nential transseries in Tg have Taylor expansions of non-optimal radius.

e Schmeling [37, Section 6] showed that transseries in L., act on hyperserial fields
of force (1,1) and have Taylor expansions with optimal radius. Unfortunately, his
proof is incomplete.

e Van der Hoeven [29, Proposition 5.11(c)] showed that the theorem above is valid in
the field of grid-based transseries.

e Berarducci and Mantova defined a composition law o: IE:W x No”® — No on the
class No of surreal numbers [10, Theorem 6.3] and showed [10, Theorem 7.5] that
a transseries f € L., has a Taylor expansion

)
fole+o)=Y L8

keN

at every £ € No~~ for small enough (but undetermined) 6 € No depending on both
f and €.

e Van den Dries, van der Hoeven and Kaplan [17, Proposition 8.1] showed that the
theorem above is valid in logarithmic hyperseries, for which the condition (m'o
g) 6 <1 for all m €supp f is redundant with § < g whenever f ¢ IR.

e With van der Hoeven, we defined [7, Theorem 1.1] a composition law o: I x
No~"~ — No for which (No, o) is a hyperexponentially closed confluent hyper-
serial field. In particular the composition law o:IL x No~~ — No satisfies the
same Taylor expansion property as that of o:IL x "7 — IL.

8.1 Taylor series

We require a few results on Taylor series in the context of fields of well-based s(e)ries.
AUk
z

Generally speaking, we will call Taylor series power series of the form ), =

where A: U — V is a strongly linear morphism of ordered rings.

Lemma 8.1. Let me . We either have m =X £y and then suppm’ X4y, or m» {y and
then suppm’ X m.
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Proof. We have suppm’/ Cm - U=™. 0y. Assume that m < ;. Then =™ XK/, so

supp m’ < fo. Assume that m » ¢y. Then Wy < m so “PPT & m, whence in partic-
ular suppm’ = m. O

We next adapt Schmeling’s arguments in [37, Section 6.1.3] in order to prove that Taylor
series converge in certain cases.

Proposition 8.2. Let N\:U—V be a strongly linear morphism of ordered rings. Let
€U and e € V with e < A(ly) and A(m')e < /A(m) for all m €supp f. Set

X:={(m,m): meUAmeNAAm)e<A(m)}.
Consider the ordering on X given by
(m,m) <x (n,n) <= A(m) ™= A(n)e™
Then the function 9: X — P(U x N) given by
Y(m,m):={(n,m+1):necsuppd(m)}

18 a strictly extensive choice operator.

Proof. We first prove that ¢ is a choice operator. Let (m,m) € X and let n € supp m’.
If m </, then we have n <X ¢y by Lemma 8.1. It follows that @ < fy. We deduce since
e<A(y) that A(O(n))e < A(n), so (n,m~+1) € X. If m>» £y, then Lemma 8.1 yields n X m,
whence %x%/ We deduce since A(m’)e < A(m) that A(n')d < A(n), so (n,m+1)eX.

We next prove that ¢ is strictly extensive. Let (m,m+1) € X and let n € suppm’. We
have A(m')e < A(m) and nxm’ so A(n) e L < A(m)e™, ie. (n,m+1)<x(m,m). O

Corollary 8.3. If A, f and € are as in Proposition 8.2 above, then we have

A=A e A(f) 2.

Corollary 8.4. If A, f and ¢ are as in Proposition 8.2 above and if moreover the family
(A(FR) Ry e is well-based, then
3 AU®) o AUE™)

K ml

k>
for all m € N. "

Proof. This follows from Corollary 8.3 and from the elementary fact that for any well-
based family (s;);er, there is an ig € I with > icrSi= Sig: O

Theorem 8.5. Let A\:U—V be a strongly linear morphism of ordered rings. Let f € V
and e € V with e < A(fy) and A(m')e < A(m) for all mesupp f. Assume that /\ preserves
monomzials and that

A(m) = A(ly) A(m') (8.2)
for all mesupp f. Then the family (A(m(k)))m@uppﬁkem is well-based.

Proof. By Proposition 1.7, we may assume that € =0, is a monomial. Consider the strictly
extensive choice operator ¥ on (X, <x) as in Proposition 8.2. We will prove that ¥ is
Noetherian. So given a Noetherian subset Y C X, we want to prove that the set

Z:={z:Jy,(yeYANzxed(y)}CX
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is Noetherian. We have Z={(n,m+1):3me il (m,n) €Y Anesuppm’}. Let (n;,m;+1)ien
be a sequence in Z, and let (m;, m;);en be a sequence in Y with n; € supp m; for all
i € N. For each i € N, we have A(m;) € ¥, whence by Noetherianity of ¥, we may assume
that the family of monomials (A(m;) 9.");en is well-based. By strong linearity of 9, so
is ((A(m;) ') );en. By (8.2), the family (A(4y) (A(m}os)0');en) is the sum of the

£

families ((A(m;) 0™))jen and (=] m; A(m;) 9™ )ien, so it is well-based. Therefore the

£

family (A(m])0");en is also well-based. In particular, there are i, j € N with ¢ < j and

3
An) 00 = Ang) 007, whence A(ng) ™= A(ny) ™ that is, (i, m; + 1) >x (n;,
mj+1). This proves that Z is Noetherian.
By Theorem 1.21, we deduce that the family (2x) (s, ... 2,) 0+ (supp £ x {0}) I8 Noetherian.
Writing zr = (24,1, k) € U x N for all (z,...,zr) €9 (supp f x {0}), this means that the
family (A(xg,1) a’g)( z1) €0+ (supp f x {0}) 18 Well-based. For m€supp f and k € N, we have

o,

AmP)ot=3" > INETRI L

i<k (o, . ..,zk) €91 ({(m,0)})
We deduce that (A(m(k)) Ek)mesuppﬂkg]N is well-based. O
Theorem 8.6. Let N\:V —V be a strongly linear morphism of ordered rings. Let f € V
and e €V withe < A({y) and A(m')e < A(m) for all mesupp f. Assume that A is bijective

and that A(m)'=A(lg) A(w') for all mesupp f. Then the family (A(m™) ) mesupp £.keN
s well-based.

Proof. Note that the functional inverse A™ of A is an R-linear morphism or ordered
rings. So setting § := A™V(e), we have m’§ <m for all m € supp f. Applying Theorem 8.5

to (Idwy, f,0), we obtain that (m(k) 5k)m€Suppf,k.eN is well-based. By strong linearity of A,
S0 is (A(m(k)) €M) mesupp f,keN- O

8.2 Properties of Taylor series

We will use Taylor series in two ways: in order to define composition laws and to study the
local behavior of hyperseries as functions.

Proposition 8.7. Let v < On with v >0. Let U be a confluent hyperserial field of force
v, and let 0: U — U be a derivation of force v. Let W be a transserial subfield of U with
a total exponential and with Lyu(a) € W for all p<v and a € WN Uy, Assume that W
1s closed under 0. Let /A\: W — VWV be a transserial right composition with

A(Lyr(a)) = Lyn(A(a)) (8.3)

for all p<v and ae WNUyn.
Let p<v, ac WNiyr and e €V such that the family (/\(a®)eF)pen is well-based with

VEk >0, A(a) = A(al®) gk, (8.4)
Then the family (A((Loyra)®) e¥)en is well-based, with

A(a®) A((Lyn(a))®)
L“’”(Z G >€k>_z ((Lore)®) .

keN keN
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Proof. We may assume that € # 0. By Proposition 2.16, the function A: V¢ — V given
for § < e by

AQ) = Y A@) s

k!
keN
is analytic on V=S¢, Our goal is to show that Lu(A(g)) = P(e) where

A((Lyn(a ()
pi= Y AUEADT) ke,
keN
The function L, is analytic at A(a) with Conv(Lwr) A (a) = V=2, For ne N and k>0,

we set

Xpg = {’UG(IN>)n:"U|::’U[l}—i--'-—i-’l)[n]:k} and

)

v = 3 ARo0@ G A

n! Um! 'U[n}'

'UeXn,k

The monomial group of V is densely ordered. Furthermore we have A(0) — A(a) < A(a) by
(8.4), so may apply Proposition 2.19 and see that L,»o0 A is analytic on V=°. Moreover,
the family (cx » 5’“)n€1N’k>0 is well-based, with

Lowo A(e) = Lun(A(@) + Y cane” (8.5)
neN,k>0

So by Lemma 1.2, the family (Znechm €M) >0 is well-based, and

> z(z)

neN,k>0 k>0 \ neN
Since Lyr(A(a)) = A(Lyr(a)) and in view of (8.5), it suffices to show that >\ ckn=

(k)
% for all k> 0.

By iterating (8.3), we have A(L~(a)) = Ly(A(a)) for all v <w*. Note that each E( ") for
n >0 lies in L. Since A is a transserial right composition, we deduce that A(E(rﬁ) o a)

E(n) o A(a) for all n € N. Note that each ff,u), k € N satisfies the chain rule at a, so (7.7) yields

(v [1]) a(v[n])
o ..

E(oaa
B TR DD Bl i

Ul
nelN ’UEX" ke [n}
Therefore
A(L 6% °0(a) AL | Aa
2611:\1 ; T 2 o
n v n,k neN
This concludes the proof. O

8.3 Taylor expansions

Let v < On with v >0 and write A:=w". Let (U, oy), (T, o) and (V, oy) be confluent
hyperserial fields of force v with (T, o) C (V, oy) and (U, oy) C (V, oy). Let o: U X
T>~ — WV be a composition law of force v. Let 9: V—V; f+— f’ be a derivation of force
v with 9(U) C U, such that (U, 9) is an H-field, and which satisfies the chain rule

VieUVteT>, (fot) =t f'ot.
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Definition 8.8. Let s€ T~ and f € U. We say that f has a Taylor expansion at s
(with respect to (o,0)) if the following holds:

TE. If 6 € T satisfies § <s and (m'os)d<mos for all m€supp f, then the family
(f® o) 6% pen is well-based, with

)
fo(s+0)=3Y" / ! 5 5k,

k
keN

We say that f has Taylor expansions with respect to (9, 0) if it has a Taylor expansion
at each s € T~~ with respect to (9,0). We say that (o,d) has Taylor expansions if each
f € U has Taylor expansions with respect to (o, d).

Remark 8.9. Assume that f satisfies TE at s € T~ and that the set

{mos :mESUpr\{l}}

m/os

is not <-coinitial in V7. This is for instance the case in I or No. Then we have

f'os=1lim fo(s—l—(-:)—fos‘
e—0 13

So f’is determined by the composition law.
Lemma 8.10. Let n < p and v <w"=:B. Defining t, j as in (3.8,3.9), we have

ty, ko Ep(s) = (Lyo efao)('“) oS
for all keN and s€ T~
Proof. The result holds trivially for £ =0 and by the chain rule for 0 for k=1. Note that

0 is a hyperserial derivation of force v, that ¢, , € L.y, and (eéo)' =ty,10 eéo =ty10 eéo. We
deduce by induction that for all k> 1, we have

(fwoeéo)(kJrl)os = (t%10620 X t;7koeé°)os
= (t,y7k.+1oeéo)os
= t%k-f—l © Eﬁ(s)v
hence the result. O
Proposition 8.11. Let u <v, write a:=w* and let f <a. Let o € Uy o and s € T~
such that ¢ has Taylor expansions at s. Then LgE? has Taylor expansions at s.

Proof. We first assume that a=1, so §=0. Write n:=EY. Let 6 € T with § < s and

nos 1
5<,—: —
nos ('os

Let m € supp ¢. We have m < ¢ so m’ < ¢’ by Lemma 6.5(ii). Since supp ¢ 3= 1, we deduce

that < %% By TE, the function T~ — V;t+ @ ot is analytic at s

p'os Y m/os " mlos
and po(s+0d)—pos=<d (¢ os)=<1. Now the exponential is analytic at ¢ os with
Conv(exp)gos = V=. It follows with Proposition 2.19 and (3.6) that A:¢+—mnot is analytic

at s with

no(s—l—(S):exp((pos)—i—Z cr 0¥,
k>0
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where
(EY 0 s) (p(v[l]) o5 so(”[n]) s
Ck = DY .
7%\1 Ue;n,k n! vpy! V!
(B (k) k : .
Now by (7.7), we have ¢ =-—7— for all k€ N. So ((n'* o) ")ren is well-based with
(k)
n'%os
no (S + 5) = Z T

keN

Assume now that o > 0. Since 0 is a hyperserial derivation of force v, we have
(Le(EZ)) = ¢' (enop) (Loea) o ) = @' x lig.ay0 EF.

A‘DO
Let € < s with € < Ls(Eq)os

(Ls(E?)) o5 Let m € supp ¢. We have ({(3,4)0 EY)™' <m because ¢ is

truncated. So
m_m 1 Ls(E?)

R = :
m' """ (lgay 0 BY) 0" (La(ES))
::,ZSS for each m € supp ¢. So we have po(s+¢)=pos+4d where

(k)
L prros g
0:= E 7 er,
k>0

We deduce that € <

Corollary 8.4 yields d e (¢’ 05) < ({(3,0)0 EZ) 0 5. We deduce with (3.10) that the family

((€goeqa) ) oy (¢os)8%)en is well-based. We conclude again with Proposition 2.19, (7.7)
and Lemma 8.10. O

Lemma 8.12. Assume that (o,0) has Taylor expansions. For each f €U, the relation
st <= (Vmesupp f, (m'ot) (t —s) <mot)
is an equivalence relation on T~ .

Proof. If f=0 then the relation is trivial. We assume that f # 0. The relation ~y is
clearly reflexive. We next prove that it is symmetric. Let s,¢ € T>>", assume that s ~yt
and let m € supp f. We have

mot—mos = mo(t+(s—t))—mos
(k)
mot
=2 T et
k>0 '
~ (m'ot)(s—t) (by Corollary 8.4)
< mot.

So mot~mos. We have m’ <m so the same applies to m’, yielding m’ ot ~m’os. We
deduce that t ~¢s, so the relation is symmetric. Now consider sg, s1, sp € T=" with sg~fs1
and s ~yso. In particular, we have

mo Sg mo sy mo So
mosy mos; mosy

for all mesupp f\ {1}.

For mesupp f \ {1}, we have sy — so=(s2— $1) + (51 — s0) where s — 51,51 — S0 <
mo sg

mo sg

m’o S92 ?
We deduce that sg~fs2. Therefore ~¢ is an equivalence relation.  [J

S0 S2 —Sp < M osy”
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8.4 The extension theorem for Taylor expansions

We now prove the following result:

Theorem 8.13. Let v <On and p<v with 0< u. Let (U,oy), (T,op) and (V,oy) be
confluent hyperserial fields of force v with (T, or) C (V,o0y) and (Lcx,0) C (U, op) C(V,
oy). Let 01U« ) X T — V(< ) be a composition law of force v. Let 0: Vi< ) — Vi< uy;
[ f" be a derivation of force v with (U< ) € U<y, which extends the standard
derivation on L.y, and satisfies the chain rule

Vf €U, ¥t €T, 0(f o t) = (t) O f) 0w t.

Assume that O has a near-support gy with Wy =< Ly. Let s € T-7 such that oy satisfies
one of the two following conditions:

a) og preserves monomials, or
b) os extends into a strongly linear and bijective morphism or ordered rings V— V.

If (01 (UxT>"),01U) has Taylor expansions at s, then so does (o,d).

We fix v, p, (U,op), (T,or), (V,oy), 0, o and s as in the statement of Theorem 8.13.
For all f €Uy, and k€N, we write ) = O%(f). We consider the class Pyo s of
series [ € U, that have Taylor expansions at s with respect to (0,0). We will prove
that 7337075 = U(<“).

Proposition 8.14. For f € U, ), we have supp f CPy o s= f €Poos-

Proof. Let £ < s with ¢ < —— for all m€supp f \ {1}. By Theorem 8.5 if the condition

m/os

Theorem 8.13(a) holds, or Theorem 8.6 if the condition Theorem 8.13(b) holds, the family
((m(k) 0 5) €M) keNAmesupp £ 15 well-based. For m € supp f, our hypothesis that m C Py o

(k) o
implies that mo (s+¢)= ZkeN%sk. Moreover, we have
fo(s+6)= > famo(s+e) and  fPos= Y famPos
mesupp f méesupp f
*)
for all £k € N. We deduce with Lemma 1.2 that fo(s+¢)= ZkeN%sk. Thus f €
P87o75' |:|

Proposition 8.15. Let G C U.,) be a transserial subgroup with G C Py.. We
have G(<1) S Po,o,s-

Proof. By Proposition 8.14 and by induction on v in G(<1)=J G(,) it is enough to

v€On
prove that each monomial in G*P lies in Py o 5. This follows from Proposition 8.11. [

Proposition 8.16. Let n <wv with 1> 0 and set a:=w". Let 3 <o and let ¢ € Py o sMN
(U< )=, We have Lg(EZ)€Po.o,s-

Proof. This follows from Proposition 8.11. OJ
Proposition 8.17. We have E(Pso,s) C Pa.o,s-
Proof. This is a direct consequence of Propositions 8.14 and 8.16. O

Proposition 8.18. We have (G(Po,o,s))(<1) S Po,o,s-
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Proof. By Proposition 8.17, we have G(Pp,o,s) C Pa,o,s, whence (Gg,o,s)(<1) S Pa,o,s by
Proposition 8.15. OJ

Corollary 8.19. We have Py o s =Ul< p)-
Proof. Apply Lemma 5.10. O

This proves Theorem 8.13.

9 Finitely nested hyperseries as an ordered group

We now focus on the class L>" of positive infinite finitely nested hyperseries. We will
show that it is a group under composition, and then that it is a linearly ordered group for
the ordering < on L. This last result amounts to proving that each function L>" — L;
g— fog for fixed f el is either constant or strictly monotonous. We will proceed by
proving that this property is preserved under the hyperexponential closure in certain cases.
Throughout this section, we fix a ¥ < On with v > 0.

Definition 9.1. Let U and V be hyperserial fields of force v with U CV, let o: U x
V== —V be a composition law of force v and let f € U. We say that f acts as a strictly
increasing function on V>~ if we have

Vs, te V>, s<t= fos< fot.

9.1 Functional inverses

G_iven v € Ongyy,, write G(l/) =U,<, (1L<wu)(><’z). Note that G(v) is closed under o. We
will show that (G(v), 0, /) is a group.

Theorem 9.2. Let v be a non-zero limit ordinal. Then (G(v),o,4) is a group. As a
consequence (.77, 0,4g) is a group.

Proof. Fix an ordinal p € (0,v), an n € N~ and set 3:=w#. Consider the subgroup
N(p):={me (£<ﬁw)(< a1y m= lo}

of (£<pw)(<pu+1)- We also write $() :=R[[M(u)]]. Recall that Wy := {El: v€0n}* is a
good near-support for the derivation L — IL, with 205 < £;. So for m € MN(u), we have

supp d(m) Cm - £=X™. 95 < (.

It follows since O((IL< gw) (< u+1)) € (L<pw) (< ut1) that I(B(u)) SS(n). We also have $(j) o
U3, CB(p) since £gy, is L. g,-atomic.

Let € € $(p) with € <1 and write A,, . for the restriction to $(u) of the right composi-
tion I — IL with £3,,+¢. Let f €$(u) and m €supp f \ {1}. We have m < fo, so m¥ < 45!,

nff/oofgx . By Theorem 8.13(a), we have A\, .=V, o+ Hy, . where

whence € <1<

- k) oy .
Hpo:$(p) — L fHZ fTﬂgk’
k>0
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and V¥, o is the right-composition with ¢g, restricted to $(u). Write ®,, o for the right
composition with ef;on on L. The function H, . is strongly linear with H,, -(f) < Uy o(f)
for all fe$(u), so @y o0 Hy . is strongly linear with (®,, o0 Hy o)(f) < f for all feS(u).
Furthermore, the inclusion 9($(v)) C $(u) yields (Pr, 00 Hy o) (B(p)) TS (w).

By Corollary 1.26, the function

Inc: S(p) — S(p), g+— Z (_1)k ((I)n,a o Hn,e)Ok(g)
keN

is well-defined, with (idg() + ®n,a 0 Hn.c) 0 Inc(g) = g for all g € $(u). We deduce that

(Pn,a0lne)(g))o(Upnte)=g

for all g€ $(p). In particular, the number (®,, o0 Iy <) (4o) € $(p) is a left-inverse of g, +¢
in (>, 0).

Now let f € G(v). Considering a sufficiently large non-zero ordinal p < v, we claim
that feS(p)o ef?u. Indeed take p=mn+1 where f € (L<yn)(<y). Then supp f < ef?u, SO
since £~ is atomic in (L<wn)(<y), We get supp f o f,u X . This proves the claim. The
series ¢% has an inverse £, in G(v), so it suffices to show that g:= f ol € $(u) has an
inverse in G(v). Write again a=w#. We have g € (IL_,u+1) (< 41) S0 by Lemma 7.25, there
are m, p € N~ with £y, 0 g="{qp+¢ for a certain ¢ < 1. We have

supp € Csupp Lom © g C (Lapw) - £¥en . 91,

where 20, is the canonical relative near-support for the right composition with g. For all
o € W,, there is a m € supp g< with v <X m. In particular 20, C 9(u), so e € B(p). We
deduce that there is an h € $(u) with ho (lomo g) =w. We have (go (holym))o g=g so
go (holym) =1~y by injectivity of og. Thus holym € 3(p) C G(v) is the inverse of g. We
deduce since L™ = UueOnfim G(v) that (L7, 0, fy) is also a group. O
We will write f™ for the inverse of a series f in (L, o). We can now apply The-
orem 8.13(b) to each right composition I — L with a series s € L>*". We thus have

Corollary 9.3. The hyperserial derivation L—1L of Corollary 6.22 and the hyperserial
composition law IL x """ — 1L of Corollary 7.24 have Taylor expansions.

9.2 The approximate mean value inequality

We rely on the following weakened mean value inequality for differentiable real-valued
functions. The link between monotonicity and this sort of inequality was suggested to us
by Vincenzo Mantova who also gave us the proof of Lemma 9.8 below.

Definition 9.4. Let U and V be confluent hyperserial fields of force v with UCV and
let o: U x V>~ —V be a composition law of force v. Let 9:V — V be a derwation of
force v. Given s,t € V>~ with s <t, consider the following statement for a series f € U>>" :

amvi. (f'os)(t—s)<x fot— fos=<(f'ot)(t—s).

We say that f satisfies the asymptotic mean value inequality (or amvi) at (s,t) if
amvi holds for (f,s,t). We say that f satisfies the amvi if it satisfies the amuvi at all
(s,t) € (V>7)2 with s < t.

Lemma 9.5. Assume that each f €U satisfies the chain rule. Let s,t € V=" with s <t.
Let f,geU>" with fogeU>". If g satisfies the amvi at (s,t), ifgos<got and if f
satisfies the amvi at (gos,got), then fo g satisfies the amvi at (s,t).
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Proof. We have (f29)t=(fogos _ fo(got)=fo(gos) . got—gos

t—s got—gos +—,— Our hypotheses yield

(fog)ot—(fog)os

flo(got)x g'ot= — < flo(got)x g'ot.

The chain rule (fo g)' =g’ x f’'o g yields the result. O

Lemma 9.6. We consider the hyperserital composition law o: II/;/)\ x V= — Vi<w) of
force v given by Corollary 7.23. Let u <v and let v < X with v <w*. The monomial

a:=/{yo0 ef)% € L. satisfies the amvi.

Proof. We prove the result by induction on p. For y1=0, we have y=0, so a=e’. In view of
Proposition 3.7, the amvi for a is a consequence of the mean value theorem for exp and the
fact that exp is strictly increasing. Assume that p >0 and that the result holds for all n < u.
In particular, by Lemma 9.5, each £, 0 efj)nn for n< p, n <w and p <w" satisfies the amvi.

Let s,t € V>~ with s <t. We distinguish two cases. First assume that f,u(t) =f,x(s).
Thus there is a 8 <w# with t — s < (Lg(Ea(t))) L. We may choose 3> v with 3=w"n for
certain n < pu and n <w. Write b:=/go0 eff and ¢:=/,0 eéo, so a=cob. By our previous
arguments, the series ¢ satisfies the amvi at bos,bot. So Lemma 9.5 yields

(a’os)(t—s)<saot—aos=<(a’ot)(t—s).

Now assume that fi,u(s) # fwn(t). So uu(Ewn(s)) <dwn(Eyur(t)) whence in particular aos <
aot. Thus aot—aosx<aot=x(a’ot)(t—s). We have a’ot=aot>aos=a’os and
a'ot>t>t—s,s0a’0t>(a’os)(t—s),soaot—aosi=(a’os)(t—s).

Thus a satisfies the amvi. The result follows by induction. O

9.3 Monotonicity and exponential extensions

Let (U, oy) and (V, oy) be confluent hyperserial fields of force v with (U, oy) C (V, oy).
Let 0: U x V>~ — V be a composition law of force v. Let : U — U be a derivation of
force v such that

e (U,’) is an H-field with small derivation.
e {1} is a positive near-support for ’.
e (o0,’) has Taylor expansions.
e (o, ') satisfies the chain rule.
Given s,t € V>~ with s <t, write P;’;t for the class of positive infinite series f € U~
which satisfy the amvi at (s,t), as well as:

fot > fos and
fot—fos ~ Tpot—rTs0s5.

Write
P sp=P75,U(U\U>")
and
P = ﬂ P st
s<t

Proposition 9.7. Let s,t € V>~ with s <t. Let & be a subclass of W NP s 5. We have
]R[[GH g P/vsvt'
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Proof. Let f € R[[S]] with f >R. We claim that
fot—fos~Tpot—Ts0s5. (9.1

Assume for a moment that (9.1) holds. Since 77 >R and 74 €P ~ 5 4, we have fot— fos>0.
Moreover since (U, 9) is an H-field, we have [/~ Tf/, so the amvi for 77 yields

< Tfot< flot.

flos=tios< fot—fos Tfot—Tfos
s

t—s t—
Thus it suffices to prove our claim.

Assume first that there is a term 7 in f with 7 <7y and T/O t=1f0s. Then 7fot>=Tfos,
which implies since Tf has Taylor expansions that t —s > . Since {1} is a positive near

support for 0 and (U, ) is an H-field, we have m'x (m )Jr for all meU”~. So we also have
(supp f \ {0¢}), we have 7ot —71r0s %= (t —s) Tfos =70 s. Recall

that mEP /St, somot—mos<mot. We deduce since ~ is an equivalence relation that
Tfolt—TpoS=Trot = Tol=Tot—ToOs.
So fot— fos~Trot —Tf0s.
Assume now that 7/ ot<Tfosfor all terms 7 € term f with 7 < 7. Since

mot—m 70t —TfOS
o swot<rfos s

for all m e (supp f \ {9¢}), we deduce that foi:fos ~ Tfo:::fos, whence fot— fos~

TfOot —TfOS. O

The following proof is from Vincenzo Mantova.

Lemma 9.8. Let s,t € V>~ with s<t and let G CU be a transserial subgroup such that
each f € GZ satisfies fos< fot. Then for all f € (G<1))Z and s,t € V>~ with s <t, we
have

fot— fos~Tpot—Ts0s5.
In particular, each f € (G(<1))Z acts as a strictly increasing function on V>,

Proof. We prove this by induction on EHg(f). Consider s,t € T~~ with s <t and let
f €(G(<1))Z such that for all g € (G(<1))Z with EHg(g) < EHg(f), we have got — gos~
g0t —T140s and got > gos. If f € G, then also supp f CGZ. So for mesupp f \ {07} and
r€R”, we have (7 —rm)ot > (7 —rm)os. We deduce that (7ot —71f0s) > (mot—mos)
so fot— fos~Trot —1p0s. Thus we may assume that f ¢ G.

Consider m € supp f with m <0y, Write ¢ :=logm and ¢g:=1logdy, so ¢, po— ¢ €
(G(<1))Z. Our assumption that f ¢ G gives EHg(¢), EHg(vo — ¢) <EHa(f), so (po—
p)ot>(po—p)osand pot —pos>0 so

woot —@pos>pot—pos>0.
This yields exp(poot — ppos) —1>exp(pot —pos)—1>0, whence
exp(goot —@pos)—1l=exp(pot—pos)—1. (9.2)
We also have

efos>e¥os. (9.3)
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Multiplying (9.2) and (9.3), we obtain
eflot —efos>e¥ot —e¥os.

We deduce that fot— fos~7rot —7r05. Moreover since pgot > pgo s acts as a strictly
increasing function, we have 70t —7705>0, whence fot— fos>0. O

Proposition 9.9. Let s,t € V=~ with s <t. If & C4 is a subclass with & CP ,; and
log & CR[[S]] (that is, if R[[S]] is a transserial subgroup), then (R[[S]])(<1) S P ..

Proof. Write G:=R[[&NU7]], s0 GCP /s by Proposition 9.7. Note that (R[[S]])<1)=
G(<1). We first prove that (G(<1))~ € P ~, by induction on the exponential height. Let
f €(G(<1))~ \ G such that any g € (G(<1))» with EHg(g) <EHg(f) lies in P~ , and let
s,t € V>~ with s <t. We may assume that f>0. By Lemma 9.8, we have fot— fos~
Tpot —7pos. Now EHg(logdr) <EHg(f), so by the induction hypothesis, the series log d;
satisfies the amvi. We deduce with Lemmas 9.5 and 9.6 that 9; satisfies the amvi, so
(0fos) (t—s)x0pot —dros =< (0fot) (t —s). Therefore (f'os)(t—s)< fot— fos<
(f'ot)(t—s),ie. f satisfies the amvi. The result for all f € (G(<1))- follows by induction.

Now let f &€ G<yy and write f= fo 47+ f< where f. € (G(<1))-, 7€ R and f< is
infinitesimal. We may assume that » =0 and that f. >0. Let m €supp f<. We claim that
mos—mot=(mos)(t—s).

By our previous arguments, we have m~! € P ', 80 mos>mot. Assume first that
t—s=< :/ZZ So by TE and Corollary 8.4, we have mot —mo s~ (m’os) (t — s), hence
the result. Assume now that ¢t — s = ::/_ZZ Assume for contradiction that mot~mos.
Som lot~m™los, that is, m ot —mlos<m™los. Now the amvi for m™! yields
mlot—m losi=((m™ 1) 0s)(t—s). We deduce that (m~1)"0s) (t—s)<m~los, ie.

mlos _ mos

— - = a contradiction.
(m~1)os” ml/os

t—s<

Therefore mot=mos. We have mos>mot>0somot—mos=xmos=< (m'os)(t—s)
by our assumption on t — s.

Since m <1 and (U, /) is an H-field with small derivation, we have m’ <1, so mot —
mos<t—s. On the other hand, we have f. ot — foos%=(f'0s)(t —s) where f/'=f>1
as a consequence of Lemma 9.15. In particular fiot— fios<t—s< foot— foos, so
fot—fos~ f.ot— f.os. Since f. €P »,, we deduce that f € P »,. This concludes
the proof. O

9.4 The extension theorem for monotonicity
We now prove the following theorem:
Theorem 9.10. Let (U,oy) and (V,oy) be confluent hyperserial fields of forces v and

(v,v) respectively, with (U, oy) C (V,oy). Let 0: U x V> — 'V be a composition law of
force v. Let " U—TU be a derivation of force v such that

o (U,') is an H-field with small derivation.
o {1} is a positive near-support for '.

e (o,') has Taylor expansions.

e (o,') satisfies the chain rule.

Let s, t e V=~ with s <t and UCTP s s where P 7 s 1 is as in Section 9.3. Then @QP/75¢.
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We fix (U, oy), (V,oy), /, o and s,t as in the statement of Theorem 9.10.
Lemma 9.11. We have E(P 7 5:) CP 7 s

Proof. By Proposition 9.7 and since E(P - 5 ;) CU,., it is enough to show that (P 5 ;)N
UCP sr Let a:=Lg(EY) be such a monomial, with ¢ € Uy N P st and fw <.
Lemmas 9.6 and 9.5 imply that a satisfies the amvi at (s,¢). We have aot > ao s since
Lgo E, is strictly increasing. So a€P » s ¢. O

Proposition 9.12. We have (G(P/s4))(<1) S P 7s,1t-

Proof. By Proposition 9.9, it is enough to prove that G(P ) CP ~ s+ But this follows
from Proposition 9.9 and Lemma 9.11. OJ

Proposition 9.13. We have TEJ:P/,SJ.
Proof. Apply Lemma 5.10. OJ

This proves Theorem 9.10.

9.5 Monotonicity and right compositions with atomic elements
Let (U, oy) and (V, oy) be confluent hyperserial fields of force On and (On, On) respec-
tively with

(]La O) g (Ua OU) g (Va OW)-
Let 0: U x V> — V be a composition law of force On. Let : U — U be a derivation of
force On extending the standard derivation on L, and such that (U, /) is an H-field with
small derivation. Assume that (o, /) has Taylor expansions and satisfies the chain rule.

We fix an increasing union (Uy,)p<,<on Where each U, is a hyperserial subfield of U of
force v, and a sequence (a,)o<y<on € V such that

e cacha, for 0<v <Onis Lo,atomic and the right composition U—V; f+— foa,
preserves monomials,

e for each ¥ < On with v >0, the function V>~ — V~"; s+ a, 0 s is a strictly
increasing bijection,

e for each 0<v < On, each f €U, " oa, satisfies the amvi
e the set {1} is a positive near-support for / on U, o a,.

Moreover, we assume that

U= |J W) (9.4)

0<r<On

We write $,:=U,o0a, for all v € On. So I, is a confluent hyperserial subfield of U, of
force v.

Lemma 9.14. For v € On with v >0, we have (Uy,)(<,) 0t = ($0)(<w)-

Proof. On the one hand, the right composition oq : U, — $, preserves monomials, so it
is a hyperserial embedding of force v. Furthermore this function is bijective by definition.
Thus by the initial property of the closure under hyperexponentials, it extends uniquely
into a bijective hyperserial embedding ®: (U,)(<,) — ($y) (<) of force v.
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On the other hand, by Theorem 7.1, there is a unique right composition og,: (U,) (<) —
(3,) (<) of force v which extends og,. Since og, is a hyperserial embedding, we have
supp oq, = {1}. Theorem 7.1 also yields supp oq, = {1}, which trivially satisfies (7.8) with
respect to any series. By Theorem 7.30, the function oy, preserves monomials. In other
words o4, is a hyperserial embedding (U, )(<,) — ($,)(<,) of force v which extends og,.
We deduce that (U,) (<)o a, =2((Uy)(<1)) = (30) (<1)- O

Lemma 9.15. The set {1} is a near-support for ' on (3,)<,).-

Proof. Note that {1} is good. By Theorem 6.7, it follows that 91 3%, extends uniquely
into a hyperserial derivation of force v on ($,)(<,) with near support {1}. Thus 0 itself
has near-support {1}. O

Theorem 9.16. For all f € U and s,t € V>~ with s <t we have

fos < fot and
fot—fos ~ Tpot—rTs0s5.

Proof. Thereis a v >0 with f € (U,)(<,) by (9.4),s0 g:= foa, €(3,)(<,) by Lemma 9.14.
We have g €P ~,, by Proposition 9.13. In particular, the series g acts as a strictly increasing
function on V=>~. Since V-~ — V~>"; s+ a, 0 s is bijective and strictly increasing, there
are u,v € V>~ with u <v and (ayou,a,0v)=(s,t). So

fos=gou<gov=fot
and

fot—fos=gov—gou~T40v—T4j0Uu=Tf0t —TfOS.

This concludes the proof. O

Corollary 9.17. For f €U, the function F: V> —V;s— fos is strictly increasing if
and only if f'>0, strictly decreasing if and only if f' <0, constant if and only if f'=0

Proof. We first treat the case when f = 1. If f >R then f'>0 by H1, and F is strictly
increasing by Theorem 9.16. It follows that if f <IR, then f’<0 and F' is strictly decreasing.
Assume now that f=<1,so f=r+¢ for ar€R and a ¢ € UX. We have f'=¢’ and the
monotony of F is that of the function s+ eo0s. Assume that € #0. The function s+—¢cos
is strictly increasing (resp. decreasing) if and only if s+ ~!o s is strictly decreasing (resp.
increasing), we obtain the result by applying the previous arguments to ¢ ~! = 1. We have
f'=0if and only if e =0, in which case F' is constant with constant value r. O

9.6 The case of finitely nested hyperseries

Lemma 9.18. Write \:=w". The set {1} is a near-support for ' on IL<,\oe§°.

Proof. Consider a monomlal hin L.yo e)\ There is an [€ £ with h=1o e , and we
have 9(h) =0(e é") a(l) oe)\ We have suppd(I) C[- {ET Y0 <y <A} where 79 < A is minimal
with [,,#0. Note that [=/,,. Therefore

supp ()  A(ef?) (1o efd) - {£T 0 ef0: 70 <y < A}
For v < A, we have
1< oe)\ 09(ef0) = €W+1oei°<<€%oef\oz[oe§°
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s0 O(e%) - {Eio X v9 <y <A} < b. This proves that {1} is a near-support for  on Lo
Lo
€y - O

Corollary 9.19. Let V be a confluent hyperserial field of force (On,On), and assume that
each f €L has Taylor expansions with respect to ' L—1L and the law o: L x V" —
gwen by Corollary 7.22. For f €IL”>" and s,t € V>~ with s <t we have

fos < fot and
fot—fos ~ 1ot —Tp0s5.

Proof. We need only justify that IL satisfies the conditions imposed on U in Section 9.5.
We know by Corollary 7.29 and [17, Proposition 7.8] that each f € L satisfies the chain
rule. We know by Corollary 6.22 that (IL, /) is an H-field with small derivations. For each
v € On with v >0, we set L, : =L, and a,:= ef?u. Since a, is L. v-atomic, the right
composition with a, preserves monomials, so it is a hyperserial embedding of force v. Note
that V>~ — V~"; s+ a, 0 s is strictly increasing. Fix v € On with v > 0. The same
arguments as in Lemma 9.11 using Lemma 9.6 yield (log £<,v) o eff’y CP .. We deduce

with Proposition 9.9 that L., »o ef}o,, CP .. Finally, we have L= U0<l/<0n (:[L<w1/)(<y)’
so Theorem 9.16 applies. OJ

Corollary 9.20. Fach f € L™ acts as a strictly increasing function on L>".

Since (I, d) is an H-field, we have the following equivalences for f € LL:

f/>0 < fel> or feR—(L>")"1,
f'<0 < fe-L>" or feR+(L>")"! and
f'ed < feR.

It is then easy to deduce the following result.

Corollary 9.21. Let V be a confluent hyperserial field of force (On,On), and assume that
each f €L has Taylor expansions with respect to : L — 1L and the law o: L x V>~ — V
gwen by Corollary 7.22. Then for f €IL”" and s,t € V>~ with s <t we have

fot>fos < f'>0,
fot< fos < f'<0, and
fos=fot < f'=0.

Corollary 9.22. Let WQTLNbe a confluent hyperserial field of force (On, On), equipped
with the composition law o: 1L x V>~ — 'V of Corollary 7.22. Assume that (’,0) has
Taylor expansions where ": 1L — 1L, and that (0, 0) satisfies the chain rule. Then each
function

V> — V> ses fos

for f €L>" is bijective.

Proof. This function is strictly increasing by Theorem 9.16, hence injective. We have a
el ” with f"™o f=/{y. So by Lemma 3.1 and Corollary 7.24, the function s+ f™Vos
is the functional inverse of s+ fos. O

Proposition 9.23. The structure (]~L>7>7 0,<) is a linearly ordered group.
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Proof. We know that (IL>>", <) is a linearly ordered class and that (>, o, £) is a group,
so it is enough to prove the following statement

Vf, g, h,o€L>", g>p=(fog>fopAgoh>poh).

Let f,g,heL>" with g > ¢. Since f acts as a strictly increasing function on L>"", we
have fog> fo . The right composition by A is strictly increasing, so goh > poh. [

10 Conjugacy

In [21], Ecalle studies what he calls the natural growth scale. This is a (somewhat informally
defined) group G, under composition, of germs at +oo of real quasi-analytic functions.
The elements in G involve transexponential and sublogarithmic functions exp,x, log,x,

k € N which satisfy the same conjugation equations as ¢ and eiok, ie.

exp k+1(r+1) = exp,r(exp r+1(r)) and
log k+1(log k(r)) = log k+1(r)

for large enough r € R (see also [37, Appendix A] for a construction of those functions).
Thus the group (IL>>7,0) and (G, o) can be regarded respectively as formal and geo-

metric substantiations of the same idea. Ecalle gives formulas for conjugacy relations

within (G, 0). In order to make sense of those formulas in our formal setting, we rely on G.

A. Edgar’s work [23]. In [23, Section 4], Edgar shows that each transseries f € Ty~ C L of
exponentiality 0 (i.e. with 9,(f)=~o) with f >/p is a conjugate of o+ 1 [23, Theorem 4.4].
Edgar’s proofs apply in our case with a few adjustments that will be made below.

We will prove that any two f, g€ L>" with f, g > {y are conjugate in the group
(L>",0), i.e. that there is a V € L>" with Vo f=go V. It is enough to prove that each
fel>” with f >/, is a conjugate of a fixed series >¢y. We choose £y + 1, which we see
as the simplest one. So for f eI with f > £y, we are looking for a V € L~ with

Vof=V+1.

10.1 Edgar’s method

Besides the properties of Trg as a differential field (in particular, that it is an H-field),
Edgar relies on properties of an integral operator [ on Tig. So we must introduce it in our
setting. Recall that A(IL) = L and Ker(d) =R, so for each f €L, there is a unique F € L
with 1 ¢ supp F' and F'= f. We write [ f:=F. For s,t e >, we also write

([

Lemma 10.1. For s,t L™, the functions f:fL—>I~L and f;fLHfL are strongly linear.

Proof. Recall that (I, d) is an H-field, so given m € £, there is a unique n € £ and a unique
reR* with m~7n’. We then write Z(m) :=rn. Note that 7: £ — £ is strictly <-increasing
so it extends uniquely into a strongly linear function Z: I, — IL. Now the strongly linear
function

UL — L
f— f=(9I)(f)
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is contracting, i.e. satisfies ¥(m) <m for all m e £. So by Corollary 1.26, the function
0oZ=idj — ¥ has a strongly linear functional inverse

(aoz)inv: Z ‘lf[k]

keN

We have (Zo (00Z)™)(1)=Z(0)=0. We deduce that [=Zo(doZ)™ is strongly linear,
whence also f; is strongly linear. O

We next prove elementary properties of the integral operator. The reader can see [22,
Corollary 3.17 and Proposition 3.18] for similar results in the case of transseries.

Lemma 10.2. Let f,geL and s,t e L>" with s<t. If 0< f < g then ng;fgf;g.

Proof. By linearity, it is enough to show that fst f>=0. Since ([ f)' >0, the function
L>" - Liu— (J f) ou is non-decreasing by Corollary 9.20. Therefore fstf =([f)ot—
([f)os=0. O

Corollary 10.3. For f,geL and s,t € L™ with s#t, we have f < g=— f;f =< f;g.

Proof. Write sp:=min (s,t) and tg:=max (s,t). For all »r € R”, we have |f| <r|f|.

Therefore
t to to to t
[al= [ i< [Crial=r [Tal=| [0
s S0 S0 S0 S

by Lemmas 10.2 and 10.1. Note that g0, so [ g¢R. Since s#¢, we have ([ g)os#([g)ot
by Corollary 9.20, whence \f;g\ > (0. We deduce that |fstf| < \f;g\, whence f;f < f;g O

Corollary 10.4. For f,geL? and s,t € > with s #t, we have f~ g=—> fstfw fstg

An important step in Edgar’s proof of [23, Theorem 4.4] is to conjugate an f € Ty g~

of exponentiality 0 to a series x 4+ where € <1 is a so-called log-free transseries. We thus
need to define a field T which plays the same role in IL as the field of log-free transseries

does in TEE’>. We write 9 for the group generated by 5 and all groups Szu o ef?y for
v € 0n~. We set T :=R[[M]]. We have d(£5) CL.jow. For v € On”, we have

D(Ecrocls) C b/ x (L) oclh
C (Lewroe) (Loproel)
C (Lewv)oe.

We deduce with the Leibniz rule that O(T) C T.

Lemma 10.5. For all v1,...,v,€0n with 0 <11 < --- <vp and all (mg,...,my,) €
EIOR><£<wuoef)°u1><---><£<wuoeffup, we have mq - - - my, =m; where i =max{j €{0,...,p}:
mﬁél}.

Proof. By Corollary 1.10(c), it is enough to note that Lopn? o effu < (Szuﬁé 0e'0, when-
ever 0 < p<v € On and that e?}* < 2:;;5& o eﬁ?u. O

Lemma 10.6. For all meIMM~, we have suppm’=m.
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Proof. Write m=mg ---m, for (mp,...,m,) €/ x E;;ﬁé o efj)ul X - X £<wvzﬂé o efj’up
where pe N and vy <--- <vp. We have m’'=m " m] where m=m, by Lemma 10.5. By
Lemmas 9.18 and 9.15, the set {1} is a near-support for d on each R[[9(v)]] 0 ¢’%.. Moreover
(L, d) is an H-field, so @ 7é511ppm;-r << m; for all i€ {1,...,p}. If p#0, then we also have

supp m(T] C{1,45'} <m. So we have suppm/=m in that case. If p=0 then m=mg, and
since m is infinitesimal, we have mj=my. O

We require some technical lemmas whose proof in [23] relies on the specific inductive
definition of T, and must therefore be proved in a different way. The results which are
relevant to our case are [23, Lemmas 3.11(g), 3.14(a,b), 3.20, 3.21 3.23, Theorems 3.8
and 4.1, and Propositions 4.2 and 4.3|. Using the adapted versions of those results, we will
prove an adapted version of [23, Theorem 4.4]|.

Lemma 10.7. (adapted from [23, Lemma 3.11(g)]) If b €M7 and nesupp (fob)’, then nf~
bf.

Proof. We have (¢pb)'=b+ £y b’ so we may assume that n€ {y-suppb’. If b€ £.1, then

since b # 1, we have b’ € R7 b /5! so n< b, whence nf ~ bf. Otherwise b » £5. We have
log ((supp b’) - £y) C (log (supp b)) + log £y where log (supp b’) <log b 1og ¢y by Lemma 10.6,
whence (log (supp b’)) = log £o. In particular logn ~1logb so nf~ b, O

Lemma 10.8. (adapted from [23, Lemma 3.14(a,b)]) Let me £ and set
B:={necl:nf<m} and B:={nel:nfgm}
Then B and B are subgroups of £. Moreover, if geM=, then we have

geB = supp (log)' CB and g€B = supp (log) CB.

Proof. The fact that B and B are subgroups follows from the inequality

(nony)t= ng +n] g max (ug, nl) for all ng,n; € £.

4

The last two statements follow from Lemma 10.7. O

Lemma 10.9. (adapted from [23, Lemma 3.20]) Let B C £ be well-based. Let g€B. There
are finitely many pairs g1, g2 € B with g € supp (Lo g1)’ ga.

Proof. The family (¢p m)meo is well-based. Since 0 is strongly linear, it follows that
((lom))mess is well-based. So ((fopm)'n)m new is well-based by Lemma 1.3. O

Lemma 10.10. (adapted from [23, Lemma 3.21]) Let e € £, and set

A:={gel:ggengt<(lhe) !} and  A:={geL:g=<engi<(loe)'}.

Then R[[A]] and R[[A]] are closed under the operations

g0, 91 — @od1,
90,01 — (Logo) g1, and
g — loeg’.
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Proof. Apply Edgar’s proof of [23, Lemma 3.21], using Lemma 10.8 instead of [23,
Lemma 3.14(a,b)]. O

Lemma 10.11. (adapted from [23, Lemma 3.23]) Let B C9N be non-empty, well-based and

infinitesimal. Write e = max B and assume that g' < (foe)™" for all g€B. Let B denote
the smallest set of monomials such that

i. BB,
. if g1,02€ B, then g1g2€B, and
ii. if g1,092€ B, then supp (fog1) g2 C*B.
Then B is well-based.

Proof. We need to prove that the least set %7 of monomials with B; DB U {¢?} with
Vg € By, supp (lpeg’) C B is well-based. To that end, write

G:={meM:ml < (loe)'} and  S:={meM:mi<x (lhe)~L}.

Consider the derivation 9,:=£ped on L. We claim that

9:(R[[6]]) C R[[S]] and 0:(R[[8]]) C R[[S]].
Given m € G, we have suppm’=m by Lemma 10.6. We deduce that (suppm’)f <mf <
(bge)~" with a strict inequality if m € &. Thus (supp de(m))t C {¢5, e} U (supp m’) <
(€oe) ™1, with strict inequality if m € &. So 0, restricts to strongly linear maps R[[&]] —

R[[S]] and R[[&]] — R[[S]]. Moreover we have 9,(m) <m for all m € &. So we have a
strictly extensive and Noetherian choice operator

Vm € &, 9(m) :=supp de(m)
on R[[B]]. Given X CIM, we write C1(X) for the union of classes Cl,(X),n € N where

Clp(%X) := X and
Clp+1(X) == Cly(X)U U supp O(m) for all n € N.
meCl, (%)
By Corollary 1.22, for each well-based subset 20 of &, the set C1(20) is well-based.

Let €:=(BU{e?})NG and D := (BU{e?})\&={meBU{e?}:mlx(loe)~}. Since
0:(6) CR[[6]], writing €=, c55uppde(m) \ {m}, we have € C & and C1(D) =D UCI(€&).
So

B =CI(B) CCLE)UCHD) CClC)UDUCI(€)

is well-based.
Now apply Edgar’s proof of [23, Lemma 3.23|, using Lemma 10.10 instead of [23,
Lemma 3.21(c)]. O

10.2 Solving conjugacy equations

Proposition 10.12. (adapted from [23, Theorems 3.8 and 4.1|) Let f € T>7 of the form
f=lo(1+re+d) where rc R>, § <e~<1, (suppd) < (bpe)™! and gt < (bye)~! for a
gesuppd. Then there is a V € L™ with V'~ (rfye)~" and

Vof=V+1.
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Proof. Note that e¢,0 € T. By the arguments in the proof of |23, Theorems 3.8], using
Lemma 10.11 instead of |23, Lemma 3.23| and Lemma 10.9 instead of [23, Lemma 3.20],
we obtain a series ®1(0, {y) ~ 7 {ye with

f! _ 1
®1(0,4o) o f ®1(0,40)
So setting V := fm, we have f'xV'o f=V’ whence (Vo f)'=V’ by the chain rule.
So Vo f=V +rqfor a certain ro € R. It is enough in order to conclude to prove that ro=1.
Set A= [ %02 and write 7 for the dominant term of A. So

Fo 1
|4 -V = ~ and by Corollary 10.4
Of /ZO @1(0,[0) /réoe n ( y r Y )
/ L Aof—A~T0f—T. (by Corollary 9.20)
Tfoe

We have %oe 05! = (loglp)’ so A>1. Tt follows that f —£o=elo -< —. Thus by TE and

Corollary 8.4, we have 7o f —7~7'(f —ly) ~ A" (f —{p) ~ MO ~1. So ro~1. But rpis a
real number, so ro=1. fos O

Proposition 10.13. (adapted from [23, Theorem 4.2|) Let f € T>>" of the form f={y+e
where e <1 and € >0. There are a V€L>" and a § € L= with 6t =1 and

VofoV™W=/fy+14+3.

Proof. The proof is the same as in [23, Proposition 4.2|, using Proposition 10.12 instead
of [23, Theorem 4.1]. O

Proposition 10.14. (adapted from [23, Proposition 4.3|) Let f € L™ of the form f=
lo+1+06 where 6 <1 and 6t =1. There is a V € L>" with

Vof=V+1. (10.1)

Proof. Write U for the operator L — I defined by
U(g):=(lo+g)of—Lo—1=gof+§

It suffices to show that W has a fixed point go; then V :=/y+ go satisfies (10.1).

To that end, we will show that there is a subclass & of £ such that ¥(R[[S]]) CR[[&]]
and that mo f <m for all m € &. Consider the class & of monomials m with m <1
and mf = 1. We have § € R[[&]] since 0} = 1 and the logarithmic derivative is strictly <-
decreasing on £=!. Fix an m € &. We have

mof

log = log(mo f) —logm
f
Lo
f
- / 1. (by Corollary 10.3)
Lo
So log— > f—Ly~1. Since f > /£y, and m is posmve and infinitesimal, we have mo f <m.

We deduce that log =L ! <0 whence logT <R, so mo f <m. In particular, we have
mo f e R[[&]]. By Proposmon 1.25, the family §,00 f,00 fo f,... is well-based. The series

goi=8+80f+80fo f+--:
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satisfies gpo f = go—d, whence ¥(go) = go as desired. O

Lemma 10.15. Let f € L>". For sufficiently large v € On there is an infinitesimal € €
Lo oe wi
<wv O ey With

lowo foel =ly+e.

Proof. Fix a sufficiently large limit ordinal v € On with f € IL:ZV. We deduce with
Lemma 7.25 that 0,v(f) =£p. So there are a u<v and a 0 € L, with 6 < £, and

byno f=L,n+ 6. By TE, we have

(01" ®) 6 4,

k
A 0.

b0 = Lyn=L12" 0 (b4 8) = b=
k>0

(ZL“J‘L)(]E) o/
k!

52:(2 Wak)%
k>0 ’

satisfies the conditions. O

Now each (fo“)(k) €Lcyvforall k>0s0 3, < ke L. The series

Theorem 10.16. Any two f, g e L>" with f,g> ly are conjugate.

Proof. It suffices to prove that each f > /{; is a conjugate of £p+ 1. By Lemma 10.15, the
series f is a conjugate of £y+ & where e € T~ and ¢ > 0. By Proposition 10.13, the series f
is a conjugate of £o+ 1+ 6 where § <1 and (supp )’ = 1. By Proposition 10.14, the series
f is a conjugate of o+ 1. O

We see by taking inverses that any two series f, g€ L>" with f, g </ are conjugate.
Since (IL>7, 0, <) is an ordered group, no two series f, g€ L>" with f <y < g can be
conjugate. This shows that there are exactly three conjugacy classes in (ITP*, o) including
{o}. In particular, the group (>~ 0) is simple. Note furthermore that the positive

cone L>% (hence the ordering on IL>>") is first-order definable with parameters in (IL>"", o)
as the class of series that are conjugates of fp+ 1.

Remark 10.17. Conversely, let (G, -, 1) be a group with exactly three conjugacy classes
{1}, C; and Cy with C; :C2_1 and C1-C; CCy. Then the class C; is a positive cone for G
and for the resulting order, the group G is linearly bi-ordered. As far as we know, the
existence of such a linearly bi-ordered group is an open problem (see [13, Problem 3.31]). In
order to obtain a set-sized solution G to this problem, it is enough to consider the closure
under solutions V of Vo f=V +1 for f > {y, composition and inverses, of {{y+ 1}. So set
Go:={lo+ R}, and for n € N, define G,, 41 as the subgroup of >" generated by

G U{V el :3f Gy, (f>lAVof=V+1)}.

For any fixed f > £y, the class of series V with Vo f=V 41 is a set (see (10.3) below), so
each G, is a set. Thus G := Un GNQn is a set-sized solution.

10.3 Real iterates

Let us consider and solve the simple inequation

fog=fog, (10.2)
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for f,ge ™" with f,g> (.

Consider for a moment the idea that hyperseries are akin to very regularly monotonous
differentiable functions, like germs in Hardy fields with composition. Then one expects
that when f is large, a slight increment of its argument, from ¢y to g, should result in a
relatively sharp increment in its value, which ought to exceed the increment from f to
go f. In other words, the series g being fixed, the inequality (10.2) ought to hold for large
enough f. In order to understand how large f should be with respect to g, we are first
led to consider the case when f and g commute, i.e. when fog=go f. Indeed this case
should be elucidated first. As in [23], it turns out that the class of series which commute
with g can be described using fractional and real iterates of g. Starting with the simpler
case when g=/y+ 1, we will show how those real iterates allow us to solve (10.2).

Lemma 10.18. Let f € L>". We have

Follo+1) > f+1 if f>l+R.
fo(fo-f—l) < f+1 if f<ly+R.

Proof. Assume that f>/{y+ R, and fix an f € R”. The inequality f —fo> R implies by
H1 that f'>1. If f'~1, then f=/{y+ 4 for §:= f — oy >R. We have

follo+1)— f=ly+1—Llo+do(lop+1)—d=14+d0(lp+1)—19

By Corollary 9.20, we have do (fg+ 1) — 0 >0, whence fo({p+1)> f+1. If f/<1 and
f'>1, then f=r/fy+¢ for a certain r € R with » > 1 and a certain ¢ < 3. By Corollary 9.19,
we have

follo+1)— fr~rro(lo+1) —Tp~r.

We deduce that fo(¢yp+1)— f>1, hence the result.
Assume now that f/> 1. By Corollary 9.19, we have

2 2
f0<€0+7—f,>—f’\/7'fo(€0+?;> — Tf.

We have 2/Tf/ =< Df/a} so TE and Corollary 8.4 yield

Tfo(ﬁo—l—z,) —TfNTfIz,ZQ.
Tf Tf

In particular, fo(ﬁo—i—i/) — f>1. Since Tf/>1R7 we have fo(lp+1)— f> fo (604_2/#) —f
i

by Corollary 9.20, hence fo (¢p+1) — f>1. The statement when f </¢y+ R follows from
symmetric arguments. O

Lemma 10.19. Let f € > with f £ o+ R and f % lo+ R. Then there is a unique
re €R such that 6 := f — Lo+ ry is infinitesimal, and for all r € R~, we have

fo(f+r) < f+r ifdé>0
fo(f+r) > f+r ifé<O0.

Proof. We must have f —{y=<1so f —{y=rs+¢ for unique 7y €R and € < 1. Let r€ R~. So

follo+r)—f4+g=ro(lo+r)—ec.
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If £ >0, then 71 >0 so e~ ! acts as a strictly increasing function on IL>" by Corollary 9.20.
We deduce that eo (ly+1r) —e <0, s0 fo(lp+7r)< f+r. The case when £ <0 is sym-
metric. OJ

For g eIL>", we write C(g):={he€L>":hog=goh}. The class C(g) is a subgroup
of (IL”>", o) which contains g.

Corollary 10.20. We have C(¢p+1)=/lo+ R.

Proof. We have C(¢p+ 1) C¢p+ R by Lemmas 10.18 and 10.19, whereas the converse
inclusion C(¢p+ 1) 2 ¢p+ R is immediate. O

Let h e L™ with h > ¢y and let U,V € L™ with

Voh = V+1 and
Uoh = U-+1.

The existence of V and U follows from Theorem 10.16. We have Voho V™ =/y+ 1=
UohoU™, so (UoV™)o (fg+1)=(lo+1)o (Uo V™). Thus by Corollary 10.20, there
exists an s € R with

V=U-+s. (10.3)

It follows that for all r € R, the series V™ o (V + 1) does not depend on the choice of V.
We write

A= vive (V 47)  for any V e L™ with Voh=V +1.
We also write (A™)[":= pl="] and Eg] =/ for all r € R, so the operation
IR x L™= — L>"; (r, h) — hl"]

is well-defined. This can be interpreted as a law of ordered IR-vector space on the non-
commutative linearly ordered group (IL=°", 0, <).

Remark 10.21. Another consequence of (10.3) is that V — U € R. So V/=U", and there

[—w]

is a unique finitely nested hyperseries denoted h with constant term 0 and hl=“Jo h =
Lo

h=“l 1+ 1. For instance (63)[_@ = Tog2 and (ef)%)[_w] =/{_u+1 for all € On.
Proposition 10.22. For all h e L>7\ {o}, the function r— hl"! is an isomorphism of
ordered groups (R, +, <) — (C(h), 0, <) with hY = h.

Proof. Fix a V with Voh=V +1. So h=V™o (V +1) =l by definition. For all
p € IL>>" we have

po(lp+1)=({p+1)op < V™opo(V+1)=V™o(fy+1)opoV
— (VinvoQOOV)OVinVO(V-f-l):VinVO(V—f—l)O(VinVOQOOV)
< (V™WoypoV)oh=ho(V™opoV).

Therefore C(h) =V™oC(ly+1) oV =V"™o ({+R) oV = {hl':r € R}. For all r, s € R,
we have (fg+71) o (lo+5) =Lo+7+s so Al' Tl = hlT o pl*l. Furthermore, we have r < s =

V4+r<V+s= hl"l<nl* by Corollary 9.20. So h+— hl"l is an isomorphism of ordered
groups. O



82 SECTION 10

For each n € N, the series A" is the n-fold compositional iterate of h, whereas Rl s
the n-fold compositional iterate of h™". Thus for g € @}, the series hld is a fractional iterate
. . 1 . . .
of h. For instance, we have a solution A7) to the formal Schréder equation in y:

yoy=h. (10.4)

Proposition 10.23 below shows that 272! is in fact the unique solution of (10.4) in L>.
As for the values of hl"! for r € R\ Q, one can consider them as “real iterates” of h. The
existence and properties of real iterates of so-called grid-based transseries of exponentiality

0 were studied in detail by Edgar [23]. Our results in the case of hyperseries are similar to
his.

Proposition 10.23. For he L>" and r,s € R. We have (Rl =plrsl,

Proof. We treat the case when h > ¢y and r,s > 0. The other cases follow from the identities
7= (o) = (L) for all pe L™ and t € R. Let V € L™~ with Voh=V +1 and
set U:=(r~14y)oV. We have (r~14p) o (bp+7)= (bo+1) o (r~14p), so
Uohll = (r—Yy)oVoV™o (ly+1)oV
= (r~Y)o(lo+r)oV
= U+1

So (Wl = o (U +8) =V ™o (rfg) o (bg+5) o (r~ o) oV =V™o (ly+rs)oV=hI"l O

Proposition 10.24. For all he L>", the function r— Rl s the unique non-decreasing
group morphism (R, +) — (C(h), o) with W) =h.

Proof. By Proposition 10.22, it is enough to prove the unicity. Let ¥:IR — C(h) be a
non-decreasing morphism of ordered groups with ¥(1) = h. Let ¥/, € Q where n € N~ and

k € Z. We have W (¥,)" = p/¥l swhence w(¥/,) = R/ by Proposition 10.23. We deduce that
¥ and 7 — Al coincide on @. Since ¥ is non-decreasing and @ is a dense subset of R, it
follows that W(r) = hl"l for all » € R. O

We now solve (10.2).

Proposition 10.25. For f, g > {y, the solution to the inequation fog> go f is as follows:
a) If f>C(g), then fog>go f.
b) If f <C(g), then fog<go f.
c) If f #C(g) and f £C(g), then for gr:=sup{h€C(g):h< f}, we have
fog < gof i f>ys
fog > gof if f<gs and
fog = gof f f=yr.
Proof. Let V eL>" with Vog=V +1 and write h:=V o fo V™. Note that
fog=gof<=ho(ly+1)=h+1.

So we may assume that g=/¢y+ 1 and f=~h. Then the statements a) and b) follow from
Lemma 10.18 and Proposition 10.22. As for c), note that the number r; in Lemma 10.19
is the supremum of {r e R: ¢y +r < f}. So ¢) follows from Lemma 10.19 and Proposi-
tion 10.22. O
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