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Hyperexponentially closed fields

BY VINCENT BAGAYOKO
LIX, UMons
Email: vbagayoko@lix.polytechnique.fr

Abstract

We prove that the derivation and composition on the field IL of logarithmic hyperseries
of [15] extend to its closure under hyperexponentials. We study the properties of these
extensions.

Introduction

Hyperexponentially closed fields

One naturally obtains hyperseries when closing fields of formal power series under deriva-
tion, integration, and transfinite sums and products. The first known instance of a thus
closed structure is the field IL of logarithmic hyperseries [15]. This is an ordered field
containing R, equipped with a derivation

O:L—1,
and an operation

o LxL R ——1;(f,g)— fog

called the composition law. Logarithmic hyperseries are well-based series (i.e. Hahn series
as per [23]) built upon formal symbols ¢, called hyperlogarithms, where w* is the base
omega exponentiation of an arbitrary ordinal u € On. Those hyperlogarithms satisfy the
functional equations

VuEOn,fwu+10fwu:£wu+1—1. (1)

One of the purposes of fields of formal series with extra structure is to provide a formal
framework which retains certain features of analytic or geometric models but which is
rid of certain problems related to analytic convergence, the non-existence of canonical
solutions to functional or differential equations... A relevant example is the use of so-
called logarithmic-exponential transseries by Ecalle [18] as formal counterparts to certain
functions involved in Dulac’s conjecture, leading to a proof of that conjecture by Ecalle
(independently from the previous proof by Ilyashenko [29]).

In logarithmic hyperseries, ¢; acts as a logarithm whereas the terms ¢, for n € N>
correspond to extremely slowly increasing functions on IRZ. For instance £, is related to
Kneser’s real analytic solution L to Abel’s equation in [30]

Vr>0,L(logr)=L(r)—1,
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of which (1) is a formal generalization. The inclusion of terms ¢, for arbitrary infinite
(not all of which can correspond to real-valued functions for cardinality reasons) is partly
motivated by logic, where one would want to have at one’s disposal saturated models of
those types of structures.

The rich structure on L makes it an interesting object to act on other fields. In [7],
van der Hoeven, Kaplan and the author introduced the notion of a hyperserial field as
the action of I on a field of well-based series by differentiable functions. Fields of well-
based series enjoy a notion of transfinite sums which is described in Section 1. An IR-
linear function between fields of well-based series which commutes with those sums is said
strongly linear. A hyperserial field is a field of well-based series T over R equipped with
an external composition law op: L x T>® — I with the following properties (along with
a few additional details):

i. For all s€ T>R, the map L.— T; f— f oy s is a strongly linear morphism of ordered
rings.

ii. For all f,g€ L with ¢ >R and all s € T>R, we have fo(gors)=(fog)ors.
iii. For all s,t€T>R and 1€ 0On, we have s <t =l ,nops<lynort.

iv. For all s€ T>® and § € T with 6 <s, we have for(s+0)= Zke]N klo % sk,
The class IL itself is a hyperserial field which is closed under integration. However it is
not closed under functional inversion. In particular, for any p € On, the hyperlogarithm
function Lyw: >R — L>R; gis £ uo ¢ is not surjective. In other words, the functional
right inverse F,» of Lk, called the hyperexponential function of strength w#, is not totally
defined on >R, In order to obtain bijective hyperlogarithms, one must extend L, as a
hyperserial field, with a formal element e . for each p € On. This symbol ewu corresponds
as a function to E,u. It was shown [7, Theorem 1.4] that certain hyperserial fields called
confluent hyperserial fields admit a closure under those hyperexponential functions. More
precisely, we say that a hyperserial field (T, o) is hyperexponentially closed if each function
Lyw: TR — T>R for ;1 € On is surjective. Then any confluent hyperserial field T is
naturally included in a hyperexponentially closed confluent hyperserial field T with the
following initial property: if ®: T — U is an embedding into a hyperexponentially closed

hyperserial field U, then there is a unique embedding V: T — U which extends ®.

C ~

T «— T
o\ 13T

U

In particular, there is a minimal closure L of logarithmic hyperseries under hyperexpo-
nentials, where each hyperexponential function E,u: L>® — L>R is defined and bijective.
Each series f in L is obtained by combining hyperlogarithms, hyperexponentials, and
well-based sums with real coefficients. This suggests that f should admit a well-defined
derivative d(f) and should act on L>R through a left-composition g — f&g. The goal
of this paper is to prove that this is the case, and to show that the operations O:L—1L

and &: L x L>R — >R retain certain important properties of their respective restrictions
to L and L x >R
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Our overarching goal, as part of a research program laid out in [5], is to extend these
operations to Conway’s class No of surreal numbers [12]. Indeed we showed with van der
Hoeven [6] that No can be seen, in a natural way, as a hyperexponentially closed confluent
hyperserial field that properly contains L. We thus require more general theorems in
order to extend derivations and compositions on hyperserial fields to their closure under
hyperexponentials. In other words, we must extend Schmeling’s work [35] on fields of
transseries and their exponential closure to hyperserial fields and their hyperexponential
closure. The results of this paper consist in showing that certain properties of a given
configuration o: U x T>® — WV or 9: U — V between hyperserial fields, which are true in
the case when U=T=V =1L, extend through the closure under hyperexponentials. Their
respective statements involve technical conditions on U, T and V, so it is simpler for now
to introduce them in the specific case when U=T=V =1.

The properties of derivations and composition laws which we are looking for are inspired
by properties of germs in Hardy fields [10]. A Hardy field is a field H D R of germs at +o0
of real-valued functions, which is closed under derivation. Thus H comes equipped with a
structure of ordered valued differential field (H,+, x, <, <,0) as per [1]. As [2, 4] illustrate,
many properties of (H,+, x, <, <, d) follow from two simple axiomatic properties in the
language of ordered valued differential rings:

H1. For all f€H>? with f > 1, we have d(g) > 0.
H2. For all f € H with g <1, we have 9(f) < 1.

Ordered valued differential fields satisfying H1 and H2 are called H-fields with small
derivation. Given two germs f, g in a Hardy field H with g > R, i.e. lim o, g =400, the
germ fo g of r— f(g(r)) is well-defined. If fogeH for all such f, g, then we also have
a composition law o: H x H>R — H, with the following properties:

C1. For all feH and g,h € H>®, we have goh >R and fo(goh)=(fog)oh.

C2. For all g€ H>R, the function H — H; f + f o g is a strictly increasing morphism
of rings.

C3. For all f€H>R, the function H>R— H; g+ fo g is strictly increasing.

In certain cases, such as the field Han,exp Of germs definable in the o-minimal expansion
Ran,exp Of the real ordered field by the exponential and restricted analytic functions [16],
we have Taylor approximations for germs:

C4. Forall feH, ge H™R, § < g with 6 4%7 and for all n € N, we have

- 8k(f) °g ¢k n n
fola+a) 3 FII 5 < @an(f)og)om
k=0
One thus expects derivations and composition laws on hyperserial fields to satisfy formal,
strongly linear versions of H1, H2, C1, C2, C3 and C4 such as i, ii, iii and iv above. We
will see throughout the paper that straightforward definitions of derivations and composi-
tion laws on hyperexponentially closed fields do yield those properties.

Outline of the paper

Let us now describe our results. The main obstacle on our way is the difficult task of
dealing with the summability of transfinite families. Which is why we gather a rather large
set of tools to that effect in Sections 1 which also defines fields of well-based series over R.
Section 2 introduce the notion hyperserial fields. Section 3 focuses on transserial subfields
and subgroups, which are substructures of hyperserial fields that are only closd under the
logarithm, as opposed to the whole calculus of logartihmic hyperseries.
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In Section 5, we show that the derivation I —s IL extends into a derivation L —» L
with similar properties:

Result A (Corollary of Theorem 5.7 ). [Corollary 5.22| There is a unique extension
of 0:IL— IL into a derivation 0:IL — I with the following properties:

i. Ois strongly linear.

i. d(fog)=0(g) xd(f)og for all f €L and g L>E.
Moreover (IL,d) is an H-field with small derivation.

Relying on results from [4, 15], we give a more precise description of the model theory
of I as an ordered differential valued field.

Result B. [Theorem-5.23] The structure (1~L, +, X, <, 4,5) is an elementary extension of
Dahn-Goring’s [13] and Ecalle’s [18] field (Tvig, +, X, <, <,0) of logarithmic-exponential
transseries.

Section 6 regards composition laws. In particular, we prove that the composition law
o: L x LR — L extends uniquely into a composition law L x L>® — IL.

Result C (Corollary of Theorem 6.1). [Corollary 6.23] There is a unique extension
of o: L x LR — I into a function 5:L x L>® — I with the following properties:

i. For all ge L™, the function f— fog:L —1L is a strongly linear morphism of
ordered Tings.

i. For all feL and g,h e L>R, we have f&(g3h)=(f5g)5h.

Then we show in Section 7 that the Taylor expansions property iv of I, or C4 in the
context of Hardy fields, extends to LL:

Result D (Corollary of Theorem 7.13). [Corollary 8.3] For all f € L, geL”® and
0 € I with § < g, we have

~ ~k ~
Vm € §< 029 S(g+6)= Ma’f.
(m supp f a(m)59>:>f (g+9) kEZN 7

Section 8 is dedicated to the proof that elements of L act as monotonous functions:
Result E (Corollary of Theorem 8.16). [Corollary 8.20] For all f e L>R, the function
L>R —I1>R g fog

18 strictly increasing.

It should be noted that the results A through E are all obtained via the same method,
which we describe in section 4.3. Finally, we focus on the structure (L>%, 5, <). Adapting
arguments from [15, 21, 19], we prove the following:

Result F. [Proposition 8.23 and Theorem 9.16] The structure (LR, 8, <) is a bi-ordered
group where any two strictly positive elements are conjugate.

We also apply this in order to solve the inequation fo g> go f for positive elements
f, g in the group (Proposition 9.25).
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1 Strongly linear algebra

Convention. Before we start, we set a few conventions.

Set theory. We adopt the set-theoretic framework of [7]. In particular, the underlying
set theory of this paper is NBG set theory. This is a conservative extension of ZFC
which allows us to prove statements about proper classes.

Ordinals. We consider the class On of ordinals as a “generalized” ordinal. If v is a
class, then v < On means that v € On or v = On. For generalized ordinals, we use
bold font notations v, p, A to suggest that v, u, A may be equal to On, whereas
the notations «, 7y, 5, p and so on are only used for true ordinals «, v, 8, p € On.
We also extend the relations < and < on On by making On maximal, and we set

wO™ .= On.

Ordered monoids. If (M, <) is an ordered monoid such as N, R, one of our hyper-
serial fields T or groups of monomials 9%, then M~ denotes its subclass of strictly
positive elements in M, whereas M7 denotes the class of non-zero elements of M.

1.1 Fields of well-based series

Let (9, X, 1, <) be a linearly ordered abelian group, possibly class-sized. We write R[[91]]
for the class of functions s: 91 — R whose support

supp s:={meM:s(m)+#0}

is a well-based set, i.e. a set which is well-ordered in the reverse order (90, >). The elements
of 9 are called monomials, whereas those in R7 M are called terms.
We see elements s of $ as formal well-based series s=73 " smm where for m € 9, the
symbol sy denotes the value s(m) € R. If supp s # &, then we write
0; := maxsupp f €M and
T 1= sp,0s€ R7TM

respectively for the dominant monomial and dominant term of s. For m € 9, we set
Sem:— Z Snn,
n>-m

and s. :=s.1. For s,t €3, we say that ¢ is a truncation of s and we write t < s if
supp (s —t) >=supp s. The relation < is a well-founded partial order on $ with minimum 0.
By [23], the class $ is an ordered field under the pointwise sum

(s+1):=> (sm+tm)m,

m

st:zz < Z sutn)m,

m uvp=m

and the Cauchy product

Suty has finite support). The positive cone $~ ={s€$:5>0} is
$7:={s€B:s£0A s, >0}

We have an embedding of ordered groups

(M, x, <) — (%7, X, <):m+—> Z n

n=m

(where each sum 3~

and we identify 9 with its image in $~.
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The order on 9 extends into a strict quasi-order < on 5 defined by s <t if and only
if R” [s| < [t|. We write s 5t if t < s is false, i.e. if there is r € R~ with |s| <r [t]. We also
write s <t if st and t s, i.e. if there is r € R~ with r |s| > |t| and 7 [t| > s. Then < is a
dominance relation as per [4, Definition 3.1.1], and it corresponds to the natural valuation
on the ordered field (%, +, x, <). In particular (8, +, X, <, <) is an ordered valued field
with convex valuation ring S< ={seS%:s=x1}.

When s,t are non-zero, we have s <t (resp. s<t, resp. s<t) if and only if 05 < (resp.
05 < 0y, TESP. 05 =10y).

We write

$. = {s€P:suppsCM~}
$= = {seB:suppsCM}={se€B:s<1}, and
$77 = {s€B:s>R}={s€P:s>0As>1}.
Series in By, $= and $>" are respectively said purely large, infinitesimal, and positive
infinite. A subclass G of 91 is said infinitesimal if all its elements are infinitesimal. We say
that & is small if we have s <1 for all s € S.

Remark 1.1. On the notation s vs f. The reader will notice that we sometimes write
f, g and so on for well-based series, and sometimes rather s, ¢, and so on. The notation
f, g is used to suggest that we consider f and ¢ as functions acting on a field through a
composition law, whereas s,t are used to suggest that we are seeing s,t as objects on which
certain functions, e.g. right compositions and derivations, act. Sometimes both contexts
are relevant, and we have to make a choice.

1.2 Well-based families
Let I be a set. A family (s;)icr in $ is said well-based if
i U, c7Supp s; is well-based, and
ii. {iel:mesupps;} is finite for all me M.
Then we may define the sum )", crsiof (si)ier as the series

z&—z(z )m.

i€l el
We have the following consequence of |26, Proposition 3.1(e)]:

Lemma 1.2. Let I,J be sets and let (fi j) @, jyerx. be a well-based family. For each ip€ I
and for each jo € J, the families (f107])]ej, (fw())le[ are well-based. Moreover families

(Zjejfi,j)igj and (3 ,c; fij)jeq are well-based, with

z(z f) > fu—z(z f)

iel \ jeJ (i,§)eIxJ jedJ \iel

One of the main difficulties of our work here is to prove that certain families are
well-based. In some cases, the proof can be done using elementary arguments, but they
sometimes require more powerful tools. In particular, we will rely on results in [33, 26, 35].

1.3 Neumann’s theorems
For & C9 we write 6":=6 --- S ={s;---5,,:51,...,5, €S} and

n mnws

= U S"={s1---5,:nENAs,...,5,€S}.

neN
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We have the following important results of B. Neumann:

Lemma 1.3. [33, Lemma 3.2 and Corollary 3.21| Let &,% C 9 be well-based. Then the
class & - T is well-based. Moreover, for all me & - T, the set {(u,0) €S XT:m=uv} is
finite.

Lemma 1.4. [33, Theorems 3.4 and 3.5| Let & CIN= be well-based. The class &> is well-
based. Moreover, for all me &>, the set {n€ N:me &"} is finite.

A consequence of Lemma 1.4 is that for all £ € $7, the set (suppe)® is well-based and
for all (rp)nen€ RN the family (rn Ek)ke]N is well-based.

Lemma 1.5. Let (s;)ier be a family in 8. Assume that there is a well-based and infini-
tesimal set T'CIN, a well-based set S TIM and a function N: I — N such that we have

supp s; C TN . § foralliel.

Assume that (sj)jeg is well-based whenever J C I and N(J) is finite. Then (s;)ier is well-
based.

Proof. Assume for contradiction that (s;);es is not well-based. So there is an injective
sequence (ig)ren € I™N and a sequence (my)gen € MY with mp<my < --- and my, € supp Siy,
for all k€ N. We have {my,: k€ N} CT .S where T°°- S is well-based by Lemmas 1.3
and 1.4. So {my: k€ N} is well-based and we may assume that (mg)ren is constant. Fix
teT> and s € S with m; = ts for all k€ N. We have te TNU*) for all k€ N. By Lemma 1.4,
this implies that {N(ix) : k € N} is finite, so (s;,)ken is well-based: a contradiction. O

Corollary 1.6. Let (Sn,m)n,m)en2 be a family in 3 such that each (snm)meN forn €N
1s well-based. Assume that there is a well-based and infinitesimal set T'CIM and a well-
based set S CIM with

Vn,m € N,supp s,,,m CT"-S.

Then (sn.k)n,k)en? s well-based.

We say that a subclass & Cilit is good if it is well-based, small and if moreover G C &.
If & is small and well-based, then by Lemma 1.4, the class &> 2 & is good.

Proposition 1.7. Let $=R][[MN]] be a field of well-based series. Let I be a set and let f:
I — N be an arbitrary function. Let (s;)ier be a well-based family in $ and let 6 1. The

family (s; 5f(i))z‘e] is well-based.
Proof. Let & :={J,.;supps;. So & is well-based. For (i, k) €l x N, write s;:=
S (f(l)> ,r.f(l)—k'gk SO
(2 k )
supp s; x C & - (suppe)*.
If JCN is finite, then (s k)icr ke is well-based as a finite union of well-based families.

We deduce with Lemma 1.5 that (s; 1)icr ken is well-based. In particular (Zi(:l)o si,k)

. iel —
(5365 D);c1 is well-based by [26, Proposition 3.1(e)].

1.4 Power series

Let 8, T, U be fixed fields of well-based series over R. We write $[[z]] for the ring of power
series

P= Z P2, (sk)ken €SN
keN
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over $. If P, @ € 3[[z]] with Qo=0, we have a composite power series

POQ::PO+Z < Z Panl"'an>Zk€$[[ZH'

keN \ mi+---+mn,=k

Consider the subdomain 2 D[[z]] of D[[z]] of power series P=73", _ P 2F with Py=0.
We have a composition law o: D[[z]] x 2z D[[z]] — D{[z]]. Indeed for P =37, P 2",
Q=2 1en@k 2P € $[[2]] with Qo =0, we have a composite power series

POQ::PO+Z ( Z Panlan>zk€$[[ZH

keN \ mi+---+m,=k
For PeD[[z]] and Q, R € zD][z]], we have Qo R € z D[[z]] and
Po(QoR)=(PoQ)oR.

1.5 Convergence of power series

Definition 1.8. Given a power series

P= Z P, zf“] e ZZ["] €B[[z1,. .., 2],
veN™

and s1,...,5, €%, we say that P converges at (si,...,sy,) if the family (P, 311)[” "'Sz[n])veNn

1s well-based. We then set

v v
P(s1,...,8p):= Z Pys s M,
veIN”

We write Conv(P) for the class of tuples (si,...,sy) €3™ at which P converges.
Example 1.9. Any real power series P=3", _\ 72" €R[[2]] converges on $~ by Lemma 1.4.

In fact, since the sequence (s*)reN is <-increasing whenever s 3= 1, we have Conv(P) =
$= unless P is a polynomial.

Proposition 1.10. [35, Corollary 1.5.8] For all P € $[[z]], and €,0 € $ with § € Conv(P),
we have € < 6 = ¢ € Conv(P).

Proof. Write P=3, _\ Pk zF and u:=¢/5< 1. By Proposition 1.7 for I =N and f=idy,
the family (P 6% u¥)pen= (Ppe®)ren is well-based. O

Lemma 1.11. Let P € 3[[z]] with Conv(P)+#{0}. Then Conv(P) is open.

Proof. Given ¢ € Conv(P), there is a § € Conv(P)\ {0}, and we have e+ <0 or e+ xe.
In any case, we obtain € + 0 € Conv(P) by Proposition 1.10. Therefore Conv(P) is open. [

Lemma 1.12. Let P=3", \ P.z" € $[[z]] be a power series. For all n € N, we have
Conv(P) = Conv(P™).

Proof. It suffices to prove the result for n=1. We have 0 € Conv(P) N Conv(P’). Recall

that

P'=3" (k+1) Py 2~
kelN
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For e € $7é, we have the following equivalences:
(Pre®)ren is well-based.
<= (Pr+1" )gen is well-based.
<= ((k+1) Pry1")ren is well-based.
We deduce that Conv(P) = Conv(P’). O

Proposition 1.13. Let P=3%", \ Pk 2# € 8[[z]] be a power series and let €,6 € Conv(P).

1;;)(5)

o 2k, We have 6§ € Conv(Py.) and

Write Pyc for the power series Py.:= ZkelN
Pi.(8) = P(e+0).

Proof. Note that Pyo= P and that P..(0) = P(e), so we may assume that ¢ and § are
non-zero. The power series P, is well-defined by Lemma 1.12. We have

U supp (Pyyi ) = U supp (P;e?),
i,keIN JEN

where the right hand set is well-based since (Pje’);en is well-based. For each monomial m €
M, the set In:={(i, k) € N?:m € supp(Pi1,0"+")} is contained in {(i,k) EN?:i+k € Ju}
where

Jm:={j € N:mesupp(P;8’)}.

Since (Pje’)jen is well-based, we deduce that Ji, and hence I, are finite. This shows that
(Pr+ie®); ken is well-based. Likewise, (Py1;68%); ren is well-based.
For k € N, we have

HE)(E) k k+i i sk

Therefore it suffices to show that the family (Pk-+i5i5k)l" renN is well-based in order to prove
that 0 € Conv(Py.). For i,k € N, write

ot §F — g itk ok

where (u,v)=(g,%.) if §<¢e and (u,v)=(d,%s) if € <. In any case, we have v < 1 and
the family (P;1 ui+k)i7k€1N is well-based. Applying Proposition 1.7 for I =N x N and
f=(a,b)—~a+b, we see that the family (P, ui+kvk)i7k€N: (Pyyic 5k)i7k€1N is well-based.

On the other hand we have § +& < ¢ or § +& =<9, 50 § +¢& € Conv(P) and (P (§ +¢)*)ren
is well-based. By Lemma 1.2, we have

pk) : 4
Y = R R () e

kelN keN ieN

= Z (kZi)PkHsiék

i, kEN

- R E e

JEN I

= Y Pi(e+6)
jEN

= P(e+9),
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as desired. O

Lemma 1.14. Let P=3%, \ Pk zF € $[[2]] be a power series with Conv(P)+# {0}. Then

the function P is infinitely differentiable on Conv(P) with P =pm) op Conv(P) for all
n € N.

Proof. Recall by Lemma 1.11 that Conv(P) is open. We first prove that P is differentiable
on Conv(P) with P'=P’. Let ¢ >0 and let s € Conv(P). For all h€$ with |h| <|s]|, we
have h < s, so Proposition 1.13 yields

i ) p(k)
Pls+h)—Bls) = Y
k>0 ’
= P/(s)h+h2u,

p(kt2)
where u::ZkeN%hk‘, If w=0, then we set §:=|s|. If u#0, then we set 5::€/|u‘.

h) — P(s) — P'(s) h| <& |h| whenever |h|<§. So P is
(

In both cases, we obtain |P(s
s) s). The result for all n follows by induction. O

+
differentiable at s with P’(s) = P’

1.6 Roots of power series

We next consider roots of power series functions. A root of a power series P € $[[z]] is an
element s € Conv(P) with P(s)=0.

Lemma 1.15. Let P=3}" P, 2" €%][[z]] be a power series and let R C Conv(P) be an
uncountable set of roots of P with pairwise distinct dominant terms. We have P =0.

Proof. Assume for contradiction that there is a non-zero term P, in the sequence and
consider s € R. Since the sum of (P, s")nenN is zero, for each number m with P, # 0, there

1/(m—n)
M)

Tsn

must exist at least one number n #m with 7p 7" =7p_ 7.'. Then 7, = ( , SO

we deduce that

q
RQ{(E> :n,mElN,qEQ,Pm,Pn#O}.

Tsp

Therefore R is countable: a contradiction. O

Lemma 1.16. Let P=3", P 2% € $[[2]] be a power series, and let k be an infinite
cardinal. Let R C$ be a set of roots of P with cardinal > k™ such that for each s € R, the
order type of (supps,>) is <k. Then P=0.

Proof. Assume for contradiction that P #0. We will call large the subsets X of R with
IR\ X|<k. For a <k and s €3, we let 5|, denote the <-maximal truncation of s such
that the order type of (supp sj,, =) is <a, and we write s,|:=s — 5| Let Z denote the set
of ordinals a <  such that there is a large subset X, C'R with tj53=wuz for all § <« and
t,u € X,. Notice that Z contains 0 trivially and 1 by Lemma 1.15. We prove that x € Z.
Let a <k with g €Z for all < a.

If o is limit, then for each 8 <, pick a large subset X3 C R satisfying the condition
and consider the set Xq:=(0;_, X3 This set is large since o < kT and kT is regular.

Moreover it satisfies the condition for « by definition. So a € Z.
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Assume now that o= 3+ 1 where S €Z and 8 >0. We fix a set Xj satisfying the
condition for 8. For t € X, since >0, we have {31, so t|g€ Conv(P) is defined. We
deduce with Lemma 1.14 that ¢z € Conv(P™) for all ke N. By Proposition 1.13 we have
P(t)= ]5(t|5 +ig) = 15;;3(%0' Assume for contradiction that Pi¢ ,=0. Then P(i)(t|5) =0
for all 1 €N, so ]5(75‘5 +¢)=0 for all ¢ €% with £ <¢|3. In particular, given v < 3, we have
P(t}y+10y,)=0for all r € R, which contradicts Lemma 1.15. We deduce that Py , is non-
zero. By Lemma 1.15, there is a co-countable subset of Xg, hence large subset X, of R
with (¢5));1= (ug|)|1, hence v, =v|, for all u,v € X,. This proves that a € Z. By induction,
we deduce that k € Z. For u,v € Xy, we have u = u,, = v|, =v, which contradicts the fact
that X, is large. O

We note two corollaries to this result.

Corollary 1.17. Let P € $[[z]] and let € € Conv(P) with ¢ #0. If P(6)=0 for all § ¢
then P=0.

Proof. Consider the set S of series s € $ with s < ¢ and such that the order type of
(supp s, =) is at most w. Fix an m € M~ with m < e. Each binary sequence u € 2N we
have a yields a single element ) _\u(n)m"€S, so S is uncountably infinite. It follows
by Lemma 1.16 for K =w that P=0. OJ

Corollary 1.18. Let P € $[[z]] with Conv(P) # {0} and let § € Conv(P). We have
Conv(Pys) = Conv(P) and P = (Pys)(—s)-

Proof. We may assume that § #0. Proposition 1.13 shows that Conv(P,s) D Conv(P).
By —<-initiality of Conv(P), we have —¢ € Conv(P). So —d € Conv(P4s), which means that
the power series (P,s)4(—s) is well-defined. Since Conv(P,s) is <-initial and contains d,
Proposition 1.13 yields

(Pyo)+(-s)(€) = Pys(z — ) = P(e)

for all e 5. We deduce by Corollary 1.17 that P = (Pys)4(—s). Applying Proposition 1.13,
this time to (Pys,—0), we get Conv(P,s5) C Conv(P), hence the equality. O

1.7 Analytic functions

Let $=R[M]], T and U be fixed fields of well-based series over R with 9t # 1 and
FCTCU. We also fix a non-empty open subclass O of $.

Definition 1.19. Let f: O — T be a function and let s € O. We say that f is analytic
at s if there is a power series fs€ T[[z]] with Conv(fs) #{0} and a 6 € Conv(fs)\ {0} such
that for all € <6, we have

(s+6€0):>f(s+€):fs(a).

We say that fs is a Taylor series of f at s. We say that f is analytic if it is analytic at
each s € O.

Lemma 1.20. Let f: O —$ be analytic at s€ O. Then fs is the unique Taylor series of
f ats.

Proof. Let P € 3[[z]] and ¢ € Conv(P)\ {0} with s+¢e€ O and f(s+¢)= P(e) for all
€< 9. Then the function f;— P is zero on the class of series s <, so we have fs=P by
Corollary 1.17. O
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If f:O— 3 is analytic at s € O where O is open, then we can define

Conv(f)s:={t€O:t—seConv(f) A f(t)=fs(t—s)}.

Proposition 1.21. Let P € T[[z]] with Conv(P)#{0}. Then P is analytic on Conv(P)
with Ps= P,5 and Conv(P)s= Conv(P) for all § € Conv(P).

Proof. Let § € Conv(P). The class Conv(P) is open by Lemma 1.11, with Conv(Pys) =
Conv(P). By Proposition 1.13, we have P(§ + &) = P,4(¢) for all € € Conv(P), so P is

indeed analytic on Conv(P) with Conv(P)s 2 Conv(P4s) = Conv(P). But we also have

Conv(P)s C Conv(Pys) =Conv(P) by definition, hence the result. O

Corollary 1.22. Let f: O — T be analytic at s € O. Then there is an open neighborhood
O; of s such that f 1Oy is analytic.

Proof. Define O, = {s+ $=°} where ¢ is any element of Conv(f;)\ {0}. Then Proposi-
tion 1.21 yields the result. O]

Proposition 1.23. Let f: O — $ be analytic at s € O and let U C Conv( f)s be a non-
empty open subclass containing 0. Then f is analytic on s+ U, with fsys=(fs)+s for all
0eU.

Proof. Let € U and set t:=s+ . Since U> 0 is open and non-empty, we find a p#0
with 6 + € U for all e < p. Thus f(t+¢)= fs(d +¢) whenever ¢ < p. But given such ¢,
we have f,(0 +¢) = (fs)1s(¢) by Proposition 1.13, whence

flt+e)=fi(0+e) = (f.)+o(e).
So f is analytic at ¢ with fi= (fs)—s)- O

Proposition 1.24. Let f: O —$ be analytic at s € O. Then f is infinitely differentiable at
s, and each f™ forneN is analytic at s with Conv(f("))SQ Conv(f)s. Moreover, we have

(k) (g
fs: Z f k!( ) Zk.

keN

Proof. Recall that f is infinitely differentiable on Conv( fs). By Lemma 1.14, each deriva-
tive fs(") for n € N is a power series function on Conv( f), and is thus analytic on Conv( f;)
by Proposition 1.21. It follows since Conv(f)s is a neighborhood of s that f is infinitely
differentiable at s. By Lemma 1.14, given & € Conv(f)s, we have f("(s+ )= f,(M(8) =

(£)™(8). Therefore £ is analytic at s with f;") = (f)™ and Conv(f™), D Conv(f)s.

—_—

Write f =3, ep sk 2% We have f®)(s) = (£)®)(0) = (f,)M(0) = k! s4. We deduce that
F5) (s
fs=>ken k:!( L 2. O

Corollary 1.25. Let O CS be open and non-empty and assume that O =| |, _; O; where
each O; is open and non-empty. Let (s;)ic1 be a family where s;€ O; for alli €1. Let (P;);ex
be a family of power series in $[[z]] with (s;+ Conv(F;)) 2 O;. The function f: O — %
such that for all i €1 and s € O;, we have f(s)= Pi(s —s;) is well-defined and analytic.

Proof. Let s€ O and let i €I with s € O;. We have s —s;€ O; — s; C Conv(F;) so Pi(s — 8i)
is defined. In particular f is well-defined. The class O; — s; is a neighborhood of 0, so there
is a § € Conv(F;) \ {0} such that s;+¢ € O; whenever € 4. Given € < J, we have

f(S +5) = B(S +e— Si) = (]Di)—i—(s—si)(g)
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by Proposition 1.13. Therefore f is analytic at s with fs= ()4 (s—s,)- O

We leave it to the reader to check that analyticity, at a point or on an open class, is
preserved by sums and products. The following result will be used extensively in the thesis
to show that a composition of analytic functions is analytic.

Proposition 1.26. Assume that 2N is densely ordered. Let UC'T be open. Let f: U — U,
9: 0 — U and let s € O such that g is analytic at s and f is analytic at g(s). Write

Jos)= Z an 2" and gs= Z by 2™,

neN neN

Let ey € Conv( f)y(s) and € € Conv(g)s with

Vm e N7, by, e™ <¢ey. (1.2)
The function fo g is analytic at s with € € Conv(fo g)s, and (fo g)s= fys)0 (95— g(s))-
Proof. For n€N and k€ N, set X, j:={ve(N”)":|v|=k}.

Cn,k = Z an bv[l] e bv[n]a

WEka

80 fos)© (95— 9(8)) = f(9(5)) + D en> nen Cnk) zF. Note that since £ € Conv(g)s C
Conv(gs), the set

Sy:= U supp (b e™)
meN

is well-based. We have &, <ef by (1.2). Let m € M with 6, <m < e¢. This exists since
(9M, <) is densely ordered. The set &f:={]J,, . supp (a, m") is well-based. For n € N and
k € N~, we have

Supp Cp, i gk C (&y- m~1)". Sy,

1

where &,-m™" is well-based and infinitesimal, and &y is well-based. Since each family

(cnk€¥)k>0 for n € N is well-based with sum (g(s +¢) — g(s))", we conclude with Corol-
lary 1.6 that (¢, k%) nen k>0 is well-based. We deduce by Lemma 1.2 that

fla(s+e)) = > an(g(s+e)—g(s)"

nelN

=y an( > bk5k>n

neN kelN>

Fa)+ 3 3 cunet

neN keN>

— Hen+ Y (z )

keIN> \ neN

= (fg(s) © (gs - 9(3)))(5)
By Proposition 1.10, we deduce that f o g is analytic at s, hence the result. O

Remark 1.27. Note that (1.2) is not optimal since one could expect that the inequality

Vm e N~ b, e < ey,
or even
g(s+e)—g(s)<ef
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would suffice. This will not be a problem in the sequel because in the case of hyperseries,
there will always be a dy = & with §r € Conv( f)g(s)-

Remark 1.28. Another well-known type of analytic functions is that of restricted real-
analytic functions of [14, 16]. If I is a non-empty interval of R and f:/ — R is an analytic
function, then f extends into a function f:I+$~— R+ 3= given by

_ (k)
Vrel,Ve<1, f(r+e):= Z fk—'(r)ak.
keN '

We say that f is a restricted real-analytic function on $. The function f is in fact analytic.

1.8 Flatness

Let $=R[[MM]] be a field of well-based series. For s € $>, we write s™:=max (s,s™!) and
s7:=(s7)71. SosT=s"1if s<1and s =s otherwise. As in [35, 28], it is useful to consider
the following orderings on $~:

Definition 1.29. Let s,t €%~. We say that s is flatter than t and we write
st if (sT)"<tt forallneN~, and
s=t if there are m,n € N~ with tT<(sT)m < (tT)".
We also write s Xt if s <t or s=t. We write
skt if s"<t forallneN~, and
s=t if there are m,n € N~ with t<s™<t".

We also write s Lt if st or s=t.

The relations < and < are partial orderings on $~. We sometimes extend them to &7
by writing s <t whenever |s| < |t|, and s <t whenever |s| < |t|. Note that s <t if and
only if v0s > v0; where v is the natural (or standard, or Archimedean) valuation on the
ordered group M. See [4, p 83-84], for more details.

Lemma 1.30. Let L: (37, x) — (3, +) be a strictly increasing morphism. Then for all
s, te SB*, we have

st <= L(s)<L(t),

skt < R~ L(s) <L(t),

st <= L(s)x L(¢),

s<t < IreR”,rL(s) < L(t),
s=t < L(s)=<L(t), and
s=t < IreR”,rL(s)~ L(t).

Proof. This follows from the relation L(s") =ns for all s € 3~ and n € N and the fact
that L is strictly increasing. O

We will frequently use the following consequences of Lemma 1.30, sometimes without
mention:

Corollary 1.31. Assume that there is a strictly increasing morphism L: (87, x) — ($,4).
Then for s,t,u € $”, we have

a) st=<<max (s, t1).
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b) s<t=sXt.
c) s<Kt=stxt.

Proof. The assertions a), ¢) follow from the classical valuation theoretic properties of <.
The assertion b) is an immediate consequence of Lemma 1.30. O

1.9 Strong linearity and operator supports

Let U=R[[¢]] and V =TR][[]] be fields of well-based series. Consider a function ®:$ — U
which is R-linear. Then ® is strongly linear if for every well-based family (s;);es in 8, the
family (®(s;))ier in U is well-based, with

@(Z sl-) =" d(si).

i€l i€l

By [26, Proposition 3.5], the function ® is strongly linear if and only if for each s € 8, the
family (®(m))mesupps is well-based with ®(s) =37 = smP(m).

A very convenient way to prove that certain family related to certain operators are well-
based is to rely on the notion of operator support of [15, p 10] and relative operator support
of |7, Definition 2.4]. We recall the definitions here, and then propose a generalization.

Let $=R[[M]] and T =R[[N]] be fields of well-based series. A very convenient way to
prove that certain family related to certain operators are well-based is to rely on the notion
of operator support of [15, p 10] and relative operator support of |7, Definition 2.4]. We
recall the definitions here, and then propose a generalization.

Definition 1.32. Let ®:9— T be a function. If M CN, then the support supp @ of
® is the class
supp ®(m)

supp ® := U -

meM

The relative support suppe ® of ® is the class

suppe @ := U
meMN

supp ®(m)
da(m)

If U:5 — T is a linear function, then we define its support and relative support as

suppV¥ := supp (¥ 19M) and
suppe ¥ = suppe (VU 19M) respectively.

We next include two useful results regarding supports and relative supports.

Proposition 1.33. [15, Lemma 2.9] Let ®: 91 — T have well-based support. Then ® is
well-based.

Proposition 1.34. |7, Proposition 2.5 Let ®: 91— T be relatively well-based. Assume
that 0 € ®(9M) and that 9o ®:IM — N is strictly increasing. Then ® is well-based and its
strongly linear extension ® is injective.

Let s€ T~. If s 1, then we write 9= for the subclass of 9t of monomials m with
m < s. If s<1, then we set M=%:={1}. We write M=$7 =M= NM7. We will
only consider this class in contexts where there exists a strictly increasing morphism log;:
(T, x) — (T,+). In that case Corollary 1.31(a) applies, so the class 9= (resp. M <57)
is a subgroup (resp. submonoid) of 9.
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Definition 1.35. Let ®: 91— T be a function and let 2T be a subclass of N. If MCN,
then we say that 2T is a near-support for @ if for all m €M, we have

supp ®(m) Cm - =" Q0.
We say that 20 is a positive near-support for @ if for all m € M, we have
supp ®(m) Cm - N=<™7=. 97,
We say that 20 is a relative near-support for ® if for all m € M, we have
supp ®(m) C g (m) S L) §

If U:8— T is a function, we say that S is a near-support (resp. relative near-support)
for W if it is a near-support (resp. relative near-support) for W1 9.

Note that the support (resp. relative support) of ® is a near-support (resp. relative
near-support) for ®. However since supp ® and suppe ® may not be well-based, it is
sometimes useful to consider other near-supports (resp. relative near-supports) for ®. As
a general rule, we will rely on near-supports when working with derivations, and relative
near-supports when working with composition laws.

Lemma 1.36. Assume that M CN. Let @: 91— T be a function, and let W be a well-
based near support for ®. If p is an ordinal and (m,), <, is a strictly <-decreasing sequence
in M, then the family (®(m,))y<, is well-based.

Proof. Assume for contradiction that this family is not well-based. So we may assume that
there is a nondecreasing sequence of monomials (n;);en and a strictly increasing sequence
of ordinals (7;)ien With n; € supp ®(m,,) for all i € N. For i € N, we fix a p; € W=
and a to; € 20 with n; =m,, p; ;. Since 2V is well-based, we may assume that (10;);enN is
nonincreasing, whence that (m.,p;);en is nondecreasing. Now for i € N, we have m, p;=m.,
by Corollary 1.31(c). But (m,);en is strictly <-decreasing, so (m,, p;)ien is strictly <-
decreasing, hence strictly <-decreasing: a contradiction. O

Lemma 1.37. Let ®:9 — T7 be a strictly <-increasing function and let 25 be a well-
based near support for ®. If X is an ordinal and (m,)~ <, is a strictly <-decreasing sequence
in M, then the family (®(m,))y<, is well-based.

Proof. Assume for contradiction that this family is not well-based. So we may assume that
there is a nondecreasing sequence of monomials (n;);en and a strictly increasing sequence
of ordinals (7;)ien with n; € supp ®(m,,) for all i € N. We write u;:=d¢(m, ) for all i € N.
For i € N, we fix a p; € N<™i and a ; € W with n; =u; p; ;. Since 2T is well-based, we
may assume that (u;p;);en is nondecreasing. For i € N, we have u; p; =u; Corollary 1.31(c),
But (u;)ien is strictly <-decreasing, so (u;p;)ienN is strictly <-decreasing, hence strictly
<-decreasing: a contradiction. O

1.10 Van der Hoeven’s theorem and applications

One of the main technical difficulties of the this paper will be to prove that certain families
related to hyperseries are well-based. In a number of cases, the arguments in the previous
sections will suffice, but we will often require more powerful tools pertaining to the notion
of Noetherian ordering, which we next introduce. Most of the results can be found in [25,
Appendix A], [35, Chapter 1], [24] and [26]. See [25, Appendix A] for a detailed discussion
of their strength and history.
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Definition 1.38. Let (X, <) be a partially ordered class. A chain in X is a linearly ordered
subclass of X. A decreasing chain in X is chain Y C X without minimal element, i.e.
with

VyeY,3ze€Y,(z<vy).

An antichain in X is a subclass Y C X, no two distinct elements of which are comparable,
i.e. with

Vy,zeY,y<z=—=y==.

We say that (X, <) is Noetherian if there are no infinite decreasing chains and no infinite
antichains in (X, <).

Noetherianity is a strengthening of well-foundedness, and a weakening of well-ordered-
ness, the latter being equivalent to the conjunction of linearity and Noetherianity. In order
to derive results on Noetherian classes, it is convenient to rely on the notion of bad sequence
and minimal bad sequence of [32]. If (X, <x) is an ordered class, then a bad sequence in
X is a sequence u: N — X such that there are no ¢, j € N with ¢ < j and u; <xu;. Given
a function f: X — NN, a bad sequence u in X is said minimal for f if for all ¢ € N, there
are no bad sequences v in X with (v, ...,v;—1) = (ug,...,ui—1) and f(v;) < f(u;).

Lemma 1.39. [35, Theorem 3.5.1] Let (X, <) be a partially ordered set and let f: X — N
be a function. If there is a bad sequence in X, then there is bad sequence in X which is
minimal for f.

Lemma 1.40. [24, Theorem 2.1] Let (X, <x) be a partially ordered class. The following
statements are equivalent

a) (X, <x) ts Noetherian.
b) There is no bad sequence in (X, <x).

¢) Every sequence in X has an increasing subsequence.

Lemma 1.41. [35, Criterion 1.5.4] Let I be a set and let S = (s;)ic; € 3! be a family.
Consider the set

Ng:={(i,m) el x M:mesupps;},

ordered by (i,m) <g (j,n) <= m=<n. Then S is well-based if and only if (Ng,<g) is
Noetherian.

Proof. Assume that S is well-based. Consider a non-empty chain C' for (Ng, <g). Given
(i,m)€C, e have m€ | J,;$i, and (i,m) is <g minimal in C' if and only if m is <-maximal
in (J;¢;8i- Consider an antichain A in (Ng, <s). Since (9, <) is linearly ordered, we must
have A C T x {m} for a certain m € M. But then A C (I x {m}) N Ng= Iy x {m} where
Im={ieI:mesupps;}.

In view of the definition of well-based families, we see that (Ng, <g) is Noetherian if
and only if S is well-based. O

Let (X, <) be a partially ordered set. We write
X* = U X"={(z1,...,xn):nENAzy, ..., 2, € X}
nelN

for the set of so-called finite words on X, including the empty word @ € X°. For any non-
empty word w = (wp, ..., wg) € X*\ {D}, we write we :=wy € X for the last “letter” of w,
and we write |w|:=k+1 for its length.
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We next state a weaker and simplified version of van der Hoeven’s theorem [25, Appendix
A.4] on so-called Noetherian choice operators. Let (X, <) be a partially ordered class.
A function ¥ sending each x € X to a subset ¥(z) of X is called a choice operator on X.

The choice operator ¥ is said Noetherian if for all Noetherian subsets Y C X, the set

Yy:={z:3y,(yeY Az ed(y)}CX
is Noetherian. It is said strictly extensive if for all x € X, we have
x <V(x).

Let Y C X be a subset. Let 97(Y) denote the set of non-empty finite words (zo, ...,
x) € X*\ {@} where for each i < k, we have x;41 € ¥(x;). We endow 97 (Y) with the
ordering <y defined by

W <YW <= We < WL

Proposition 1.42. (van der Hoeven’s theorem) [25, Theorem A.4| Let (X, <) be a
partially ordered class and let ¥ be a Noetherian and strictly extensive choice operator on
X. Then for all Noetherian subsets Y of X, the set 97(Y) is Noetherian for <y.

Proof. This version follows from an application of [25, Theorem A.4] to a simple case.
Nonetheless, let us adapt van der Hoeven’s proof to the present simplified setting.

Assume for contradiction that 97 (Y') is not Noetherian. So there is a minimal bad
sequence sequence (w;);en € 97 (Y)N for the length function w s |w|. Assume that there
is an infinite set  CIN with |w;| <2 for all i€ I. Then YV:={x; 9:i€ 1} CY is Noetherian.
Since ¥ is a Noetherian choice operator, the set

YVo:={y:Fiel,yecd(zio)}

is Noetherian. But then {w;:i € I'} is Noetherian for <y: a contradiction.

So there is a k€ N with |wj| >2 for all j > k. For j >k, we write zj:= (zj0,...,
Tj jw;|-1) €VT(Y). We claim that the set Z:={z;:j >k}, is Noetherian for <y. Indeed,
assume for contradiction that (z;,)ien is a bad sequence in Z with jo < j1 <---. We show that

Z = (’wo, <oy Who—1,5 Zjgy ey - - )
is a bad sequence, contradicting the minimality of (w;);eN. Indeed assume for contradiction

that z isn’t bad. Since (2;,)ien is bad, there must exist i < jo and p € N with w; <y zj,,.
Since ¢ is strictly extensive, we have

(wj,)e € 9((25,)e) > (2),)e;

so w; <gwg: a contradiction. Therefore Z is Noetherian. It follows since 1 is Noetherian
that {w;:7 >k} is Noetherian: a contradiction. O

Corollary 1.43. Assume that X is linearly ordered. Let ¢ be a strictly extensive and
Noetherian choice operator on X, and let Y CX be a well-ordered subset. Define Y, to be
the union of sets Y,,n € N, where

Yo ;=Y and
Y11 = YU U Y(y) for allneN.
yeYn
Then Yo is well-based.

Proof. By definition, we have ¥, C {we:w €91 (Y)} for alln € N, so Yoo C{we:w e (Y)}.
Recall that X is linearly ordered. By van der Hoeven’s theorem, the set {we:w €97 (Y)}
is Noetherian, hence well-ordered. So Y, is well-ordered. O
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Lemma 1.44. Let S=R[[M]] be a field of well-based series and let :$ —$ be strongly
linear with ®(m) <m for all m € M. Define a choice operator Jo on the reverse order
(9, ) by

Vm e M, Ig(m) :=supp ®(m).

Then V¢ is strictly extensive and Noetherian.

Proof. The relation Vm € 9, &(m) < m implies that ¥¢ is strictly extensive. Given a
Noetherian subset 2) C9, i.e. a well-based subset in (9, <), the set

Yoy ={m:Iy,(neYAmesupp®(n))} C | J supp@(n)
ney
is well-based, hence Noetherian in (91,>~). So Yo is Noetherian. g

Notation 1.45. Given a function V: X — X on a class X and a k € N, we will frequently
write Wk for the k-fold iterate of W. So Ul s the function X — X with gl = g
and WEH .= @lk o ¢ = g o wlkl for all k€ N. We will sometimes extend this notation to
fractional and real iterates (see Section 9.3) of functions.

Proposition 1.46. (corollary of [26, Theorem 6.2]) Let $=R[[9N]] be a field of well-based
series and let ®:$ — S be strongly linear with ®(m) <m for all m€ M. Let (ry)ren € RY.
Then for all s € $, the family (r, ®¥(s))ren is well-based, and the function

Z Tk@[k}2$—>$;SH Z rkq)[k}(s)

. . keN kelN
18 strongly linear.

Proof. We may assume that ry=1 for all £ € N. Consider the Noetherian, strictly extensive
choice operator Y¥¢ of Lemma 1.44 Let s € $, write & :=supp s, and write I’ for the family

F= (U")weﬁg(e) MU+ (S), By van der Hoeven’s theorem, the ordered set (93(8), <g,) is

Noetherian. But (93(8), <g,) = (Nr, <r), so F is well-based by Lemma 1.41. For m€ &
and k € N, we have

supp ®Fl(m) C U We.
weIL(S)

We deduce that (®F/(m))mesnren is a subfamily of a well-based family, hence it is well-
based as well. O

Corollary 1.47. |26, Corollary 1.4| Let & and ® be as in Proposition 1.46. The function
Idg+®: 3 — 8; s~ s+ D(s)

is bijective, with functional inverse ), (—1)k @l¥,

Proof. Let s€$, and write t:=3%", (=1)* ®l*l(s). We have

(ds+®)(1) = 3 (~1)Fal() +@<Z <_1>kq>m<s>>

kelN keN
= Z (—1)klFl(s) — Z (=D)k+1olk+1(s)  (by strong linearity of )

keN keN
= 3 (ka5 — 3T (~1)kak(s)
kEN keEN>

= S.
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Conversely
Z (~1)F o (s + d(s)) = Z (—1)* (s +®(s))  (by strong linearity of @)
kEN kEN
= 3 (-DFel(s) + (-1t el
keN
= Z( Dk olkl(s Z DFolE+1(s)
kEN kEN
= s
as above. g

This last results, and generalizations thereof can be used to define integrals in differ-
ential fields of well-based series (see [3]) strongly linear fixed points operators (see [26,
Theorem 6.3]), and solve various functional equations on fields of transseries or hyperseries
(see [26, Example 6.7] or Section 9.2).

2 Hyperserial fields

The eponymous hyperexponentially closed fields are particular cases of hyperserial fields.
Those in turn are fields of well-based series T equipped with an action

op: Lx T>" — T

of the field of IL logarighmic hyperseries on T. In this section, we define those notions,
starting with logarithmic hyperseries.

2.1 Logarithmic hyperseries

The field IL of logarithmic hyperseries of [15] is a field of well-based series R[[£]] whose
group of monomials £ is obtained using formal transfinite products of hyperlogarithms.
It equipped with its natural derivation 9: L. — I and composition law o:IL x I.”>" — IL.
Here, we recall the definition of I and some of its properties.

Logarithmic hyperseries Let a € On. Let £., denote the group of functions « — R
ordered lexicographically. In other words £, is the Hahn product group Hw <a (R, +).
Monomials [ € £, are written as formal products [=1I, <, Eﬁ where for v < «, the real
term [, € R is the value of . « — R at . Thus ¢, denotes the monomial such that for
L <, we have

(¢y),=1 if t=~ and (¢,),=0 otherwise.

L, is defined as the ordered field of well-based series L., :=R|[[£<4]]. If a, § are ordinals
with 3 < a, then we let £5 ,) denote the subgroup of £, of monomials [ with [, =0
whenever v < 3. As in [15], we write

Lig,o) = R[£3,0)l

U £<a

acOn
L = R[[g]

We have natural inclusions £(5 ) C £<o C £, hence natural inclusions Ljg o) C L<q C L.
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Derivation on L., The field L., is equipped with a derivation 0: L., — IL., which
satisfies the Leibniz rule and which is strongly linear. Write éi =11, < 76:1 € Loy for
all v < a. The derivative of a logarithmic hypermonomial [ € £, is defined by

A1) := <Z r@) L (2.1)

<o

1
HL<’YZL

So 0(4y) = for all v <. In view of (2.1), the derivation 0 has well-based support

supp 0 = {ﬁi :v€0n}.
For f €L,y and k € N, we sometimes write f*):= o°k(f).

Composition on L., Assume that o =w" for a certain ordinal v. Then the field L.,
is equipped with a function o: L., X IL?;; — Lo where in particular, for all p € On
with 41 <wv, we have £ u+10lyp =L put1—1 [15, Lemma 5.6]. For v <a, the map oy :
Lcq— Ly defined for f €<y by o (f):= folyis onto L, o) [15, Lemma 5.11]. Given

g €Ly o), we write g17 for the unique series in L., with 77 o ly=g.

2.2 Hyperserial fields

Let v < On and set A:=w". Informally, a hyperserial field of force v is the action of L. v
on a field of well-based series by monotonous and analytic functions.

More precisely, let T=R[[?1]] be an ordered field of well-based series and let o: L v X
T~ — T be a function. For r € R and m € M, we define m” as follows: set

=1,

r

m" = fpom ifm>1, and

m’ = fp"om™ ! ifm<1.

For p < On, we define 9,4 to be the class of series s € T~ with £y 0s €™ for all v <wh.
The elements of 9, are said L w-atomic, and L.,-atomic series are said log-atomic.
Finally the elements of 9ty are said atomic.

We say that (T, o) is a hyperserial field of force v if the following axioms are satisfied:

HF1. L.,»—T; f+ fosisastrongly R-linear ordered field embedding for all s€T>>".
HF2. fo(gos)=(fog)osforall f€Loy, gL, and s€T>".

(k) o .
HF3. fo(t+90) :ZkeN%ék for all fe€L,v, teT>", and § € T with § <t.

HF4. EZX os< ot for all ordinals uw<v,all y<wh, and all s,t €T~ with s <t.

wh
HF5. The map R x 9M— M; (r,m) —m" is a law of ordered R-vector field on 1.
HF6. flo (St) :Elos—f-flot for all S,t€T>’>.

HF7. supp/1om =1 for all m € M~ and supp fyroa > ((yoa)~! for all 1 < p<v, all
v <w* and all a € M,nu.

The axioms HF6 and HF7 are assumed to hold trivially when v =0. In most cases we
will assume that v > 0. A consequence of the axioms is that £y acts as the identity function:
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Lemma 2.1. Let T be a hyperserial field of force v. For all s € T~", we have fyos=s.

Proof. Let me M~ and r € R>. We have fpom=m! and (m!)! =m!*!=m! by HF5. The
function 99T — M; n— n'! is strictly increasing by HF5, hence injective. Thus m! =m. We
obtain (rfy) om=rm by HF1. In IL, we have {yo (r{y) =r{y, so HF2 yields {yo (rm)=rm.
Now let s € T~ and write s =704+ ¢ where r € R~ and § <0,. By HF3, we have
(k)
foos:z %Ok—(!rbs)ékzrbs—i—ézs. O
keN

Definition 2.2. Let (T, o) and (U, oy) be hyperserial fields of force v. We say that a
strongly linear morphism of ordered rings ®: T — U is a hyperserial embedding of
force v if we have

o(M) C N, and
VfEL Vs €T, &(fors) = foud(s).

We say that (T, or) is a hyperserial subfield of (U, oy) of force v and we write (T,
op) C(U,op) if TCU and idm: T — U is a hyperserial embedding of force v.

The hyperserial field (T, o) is said confluent if 9+ 1 and if for all € On with p<v
and all s € T>>~, there are an a € M r and a v <wH with

lyos=/lyoa. (2.2)

In the sequel, we will mostly work with confluent hyperserial fields.

Example 2.3. Consider the internal composition law o: L v X ]Lz;; — L of Sec-

tion 2.1. Then [7, Theorems 3.16 and 1.1] the structure (L<,v,0) is a confluent hyperserial
field of force v.

2.3 Hyperlogarithm functions

Let T =IR[[2M]] be a confluent hyperserial field of force v > 0. Given v <A, we write L,
for the function T=~ — T~7; s+ {05, called the hyperlogarithm function of strength ~.

For each s € T~" and p € On with u<v, the L. #atomic element a in (2.2) is unique,
and we write d,x(s) :=a. In this section, we show how the value of /o0 s is determined
by Lm0 dy,nu(s).

Let s € T~ and write s =175 0s (1 + &) where 7, € R™ and &5:= (s — 75 05) (rs05) 7! is
infinitesimal. Let ¢ € {—1,1} with 955 1. We set ¢101:=0. Then by [7, Proposition 4.3],
the function log: T~ — T defined by
(=D k1

k+1gs )

logs=1tf1005+logrs+ Z
keN

is a strictly increasing morphism (T, x) — (T, +) which extends L;. We call it the
logarithm on T. For any decomposition s =t7u where t >0, r € R~ and u~ 1, we have

P _1\k
log s =logt +log(ru)=1logt+logr+ Z % (u— 1)+ (2.3)
keIN
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where log is the restricted analytic logarithm of Remark 1.28.

Proposition 2.4. The function log: T~ — T is analytic with
Conv(log)s=T=*={6€T:6<s}

and
log®)(s) = (=1)F~1(k—1)ls7k
for all s > 0.

Proof. Let s€ T, For k€N, set aj s:=(—1)¥"1(k—1)!s7*. For § <s and k >0, we have

ar,s 0 (=1)k! (g)’f

k! k s

k ~
Since %, <1, the family (ay s 6%)ren> is well-based with Y keN> %: L(g). We have

log(s 4+ ) —log<s <1+g)> —logs—i—E(g).

That is, the function log is analytic at s with logs=1log(s)+ Lo (s~!z) and Conv(log)s D
{6€T:0<s}. Note that 1¢ Conv(L) so s ¢ Conv(logs). It follows since Conv(log)s is <-
initial that Conv(log)s={d€T: ¢ < s} By Proposition 1.24, for each k € N, the series

8 is the (k+1)- - S0 log®(s) =ay, = (—1)F1 (k— 1)1 s~ O

Proposition 2.5. Let (U,log) be a hyperserial field of force 1 and let ¥: T — U be a
strongly linear and strictly increasing morphism of rings with W(logm)=1log ¥(m) for all
meIM. Then we have

U(log s) =log ¥(s)
for all s T~.

Proof. Let s € T~ and write s =705 (14 ¢) where r € R~ and € < 1. Since V¥ is R-linear
and strictly increasing, we have W(r (1+¢)) < 1. Since W is strongly linear and preserves
products, we have ¥(log(r (1+¢))) =log ¥(r (1 +¢)), whence

U(log(r (1+¢))) = (log(r (1 +¢))) =log U(r (1 +¢)) =log U (r (1 +¢)).
It follows that

U(log s) = ¥(log 0s) + ¥ (log(r (1 +¢))) =log ¥(0s) +log ¥(r (1 +¢))=log ¥(s). O

Now let s € T>>~ and n < v. There is an ordinal v < w” such that 0 := L.(s) —
L,(d,n(s)) < L(s). As a consequence of HF2 and HF3, for any such v, we have

Len(8) = Ln(dn(s +Z ) DW”( ) k. (2.4)
k>0

We will often pay close attention the partial functions Ln ] 9 ,n: M — T~ for all n <
v. The family (T, (Lon 1 Mun)y<y) is called the skeleton of (T, o), and its properties
sometimes reflect those of the whole structure (T, o). See for instance |7, Theorem 1.1,
Corollary 7.24| and Propositions 5.3 and 6.4.

In view of HF3, Propositions 1.23 and 1.24 together imply the following:
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Lemma 2.6. Fach f € L.y induces an analytic function

Apg T27 — T
s —> fos, with
Conv(Af)s 2 T and

AP = A

for all s€ T~ and k € N.

2.4 Hyperexponentiation

For the end of Section 2, we fix a p <v. Given v <A, the function L,: T~ — T>7 is
strictly increasing, so it has a partially defined left inverse E., defined by E,(L(s))=s for
all s € T>". The partial function E, is called the hyperezponential function of strength ~.
The hyperexponential function of force 1, i.e. the partial inverse of log, is denoted exp and
called the exponential function.

We say that T is a confluent hyperserial field of force (v, p) if each E, for v <w#
(or equivalently each E,n for n < p) is totally defined on T>>~. Note that the relation
lv10l =2 41— 1 for all © with ¢ +1 < p yields the functional equations

VseT>", L+1(Ly(s)) = Ly+1(s)—1 and
VseT> ", E +1(s+1) = Ey(E,+1(s)). (2.5)

In the sequel of this subsection, we assume that T is a confluent hyperserial field of force
(v, p). We will briefly describe how exp and each E,» for n < p act on T=".
Let ¢ €T. For all e <1 and r € R, we have

exp(p+7+¢) = exp(r) exp(@)( %k) (2.6)
kelN

where exp(r) € R~ is the standard exponential of r € R as a real number, and thus
exp(r) (Zk eN%a’“) is the value at r 4 ¢ of the restricted analytic function exp. More-
over, the axioms HF7 and HF1 imply that we have

exp(Ty.) =M. (2.7)

Proposition 2.7. Let U be a confluent hyperserial field of force (1,1). Then (U, +, X,
exp, <) is an elementary extension of (R, +, x,exp, <).

Proof. By applying (2.6) for o =0, we see that exp extends the real exponential function.
We have ¢} < ¢y in L.y which implies by Lemma 2.1, HF1 and [7, Proposition 4.4] that
log s < s for all s €U~ and that log(s) <s—1 for all s€U~. We claim that exp(s) > s"
for all n € N and s >n?2. Indeed let s € U and n € N with s >n?. First assume that s<1. So
s=1+ s for a certain r € R*Y and a s € U~. We have 7 >n? so exp(r) > 7" so exp(s) ~

exp(r) > 1"~ s"™ so exp(s) > s". Assume now that s> 1. We have eXp(%ﬂ s) )

exp(s) > s™. This proves that exp satisfies Ressayre’s axioms of [34]. By [16, Corollary 4.6],
we deduce that (U, +, X, exp, <) can be expanded into a structure Uy exp With so-called
restricted analytic functions in such a way that Uapexp is an elementary extension the
structure Ran,exp Of real numbers with restricted analytic functions and the exponential. In
particular (U, +, X, exp, <) is a model of (R, +, X, exp, <), hence an elementary extension
by Wilkie’s theorem [36]. O
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Now let n < p with >0, write 8:=w", let ¢ € T=~ such that Es(y) is defined, and
let v < B. For k € N, we define series ¢, ;, € L., inductively by

tyo = £y, and (2.8)
by ksl 1= (H €p>t;7k. (2.9)
p<pB

We write Ej for the function T~ — T>"; s t,1 0 Eg(s), that is

Vs e T, Ej(s) exp(ZLpH )

p<pB

Then [7, Lemma 7.8] for all € € T with € < BEQP; the family ((,.x0 Es()) ¥)ren is well-
based, with

Ly (Es() = Y Lo Do) o (2.10)

keN

Lemma 2.8. For k€N~ and tlEsupptW k, there are an €N, a P N[X},..., X,)] and
Moo Y€ (7, B) with n=L1y ) Pl ), - Ll )

Proof. We prove this by induction on k € N~. We obtain the result for k=1 by setting P =
1. Assume the result holds for k and let n € supp ¢, x+1. So there is ng € supp ¢, 5 and
m € supp nj, with n = {10,3m. The inductive assumption yields ng= €[, g) - P({[y, ), - - -,
{5, p)) for certain n € N, P € N[Xj,..., Xi] and v1,..., 7 € (7, B). Recall that for all p < f3,

we have
= " sl = <Z €0+175> 8) (2.11)

p<o<f p<o<pB

Yo,6) 10 = 0,800y, PUipys - L) 0.8 L0,8) - (P gy -5 L))

= L1y, <Z lot1,p) )'P(f[w)a--%m,ﬁ))Hh,ﬁ)f[o,ﬁ)'(P(f[w)a---a

y<o<p

e[’Ynyﬁ)))l'

By (2.11), the support of g 3)- (P(£[y,,8)s--+,L[y,,5)))" consists of polynomial combinations
of terms £, 41 g) for v € (v, B) for certain i € {1,...,n}. The result follows. O

Following [7, Definition 7.10 and Lemma 7.14|, we define:

Definition 2.9. A series ¢ € T~ is said 1-truncated if we have supp ¢ =1, i.e. if p
is positive and purely large. For 0<n< w, a series o € T~ is said S-truncated if we have

Vv < 3,supp ¢ = (LV(Eg(ap)))_l.

We write T g for the class of S-truncated series in T. We sometimes write Eg(¢) =: Ef
when o € T, 3. We have T, 3+ R> C T, g |7, Lemma 7.13]. Thus the axiom HF7 for
n states that Lg(Mg) C T, 5. In fact [7, Corollaries 7.21 and 7.24], we have the converse
inclusion

Eg~" = 9Mg, with (2.12)

Vs€T>7, Lp(ds(s)) = #s(Lg(s)). (2.13)
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By |7, Proposition 7.18], for each s € T, there is a <-maximal truncation fz(s) of s
which is S-truncated, and there is a v < 8 with

) Blta(s)
() = o Bs(s(s)) (2.14)

So (2.10) applies to ¢ :=13(s) and e:=5— .
Lemma 2.10. Let n<v and v <X with yw < . For all a €, we have dg(L,(a))=a.

Proof. Set p:=~yw. We have {,0/¢,=<{, so L,(L(a)) =< L,(a). Since p< 8 and a is Lg-
atomic, we deduce that d5(L~(a)) =a. O

2.5 Hyperexponential closure

Definition 2.11. Let p <v < On. A confluent hyperserial field of force (v, p) is a
confluent hyperserial field (T, o) of force v such that each function Lyu: T~ — T is
surjective. If T has force (v,v), then we say that T is hyperexponentially closed.

As in the case of transseries [25, 35|, a confluent hyperserial field can be embedded into
a hyperexponentially closed one. More precisely:

Definition 2.12. Let T be a confluent hyperserial skeleton of force v < On and let pu < v.
A hyperexponential closure of T of force u is a confluent extension T,y of T
of force (v, u) with the following initial property: if U is another confluent hyperserial
skeleton of force (v, u) and if ®: T — U is an embedding of force v, then there is a unique
embedding V: T ,) — U of force v that extends ®.

-
T — T(<[L)

o\ | 3A
U

A hyperexponential closure of T is a hyperexponential closure of T of force v.

Note that a hyperexponential closure of force p if it exists is unique up to unique
isomorphism. We will write T, for the hyperexponential closure of T of force p if it
exists, and we set T:="T(.,).

Theorem 2.13. |7, Theorem 7.4] Let T be a confluent hyperserial skeleton of force v < On
and let p<v. Then T has a hyperexponential closure of force .

In particular, we have the hyperexponential closure L of IL, which we call the class of
finitely nested hyperseries.

3 Transserial subfields and subgroups

3.1 Transserial subgroups and subfields

It will frequently be convenient to define derivations and compositions on subgroups R[[S]]
of a given hyperserial field U=R][[{]], for & C4l, before we extend them to transserial fields
containing R[[S]]. This is the purpose of transserial subgroups which we next introduce.
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Definition 3.1. Let v < On with v >0. Let U=RJ[[U]] be a confluent hyperserial field
of force v. Let & C Al be a subset with log(&) CR[[S]]. Then we say that R[[S]] is a
transserial subgroup of T. If moreover & is a subgroup of i, then we say that R[[S]]
1s a transserial subfield of T.

Since (U, log) is a transserial field, transserial subfields are simply transserial fields
contained in (U, log). The following notion of exponential extension is also similar to that
of [35, Section 2.3.1].

Lemma 3.2. Let v < On with v >0. Let U=R|[[U]] be a confluent hyperserial field of
force (v,1). And let G=TR][[S]] be a transserial subgroup. Then the class

ex R[[&™
Gexp:=R[[EFICT]
s a transserial subfield of U with G C G*P.

Proof. The class R[[G7]] is a subgroup of Uy so EiRHG}H is a subgroup of 4. Let me &.
We have supplogm C &~ so logm € GNU,. = R[[67]], so m= E[%®™ ¢ E]lRHGW. We deduce
that G C G®*P, i.e. that log E]lR ISy C G**P, Thus G®*P is a transserial subfield of U. O

As in [35, Section 2.3.4], we may define an increasing tower (G,))ycon of extensions
of G which, except possibly for G(g) =G, are transserial subfields of U, and where

CGiny:= |J G

v€On
is a transserial subfield of U with a total exponential. Indeed, set G(,):=R[[&,)]] where
e 5(:=6,

[l

—
e St ::E]lR Sl for all v € On, and

o G(y:= Up<76(p) if v is a non-zero limit.

We define the exponential height EHg(f) of f € Gy over G as the least ordinal ~
with f € G).

3.2 Extending transserial derivations

Let U =R[[U]] be a confluent hyperserial field of force v and let G C U be a transserial
subgroup. A transserial derivation G — V is a strongly linear function 9: G — V with

Vs,g€G,sge G = I(sg)=0(s) g+s09(g), and
Yme GN,d(logm) _G(mm)

Let 9: G — V be a transserial derivation and assume that 9 has a well-based and positive
near-support 2Qs. We extend 0 into a transserial derivation 9: G(.1)— G by induction
on the exponential height as follows:

Let s € G(<1), set v:=EHg(s) and assume that O(t) is defined for all ¢ € G(. ) with
EHg(t) <~. If y=0, i.e. s€ G, then J(s) is already defined. Assume that v>0. If 0 is
defined at each logm for m € supp s and the family (O(logm) m)mesupps is well-based, then
0 is defined at s, and we set

d(s):= > sm0(logm)m,

mesupps
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By induction on EHg(s), we see that the definition is warranted.

Lemma 3.3. If me G)N and 9 is defined at m, then

supp d(m) Cm - LB=M7 . 2y,

Proof. We prove this by induction on EHg(m). This is immediate for m € G. So let
m € G(<1) N4 such that the result holds for all n € G(<1)N 4 with EHg(n) < EHg(m).
Write ¢ :=logm. So EHg(n) < EHg(m) for all n € supp . We have d(m) =0(¢) m. Let
g €suppd(m). So q=m-u for a certain u € supp d(n). By the induction hypothesis, we
have u€n-U="7 .95 where n-U<™% =n, whence n-U="7 C Y™~ It follows that
gem-YX™=. 9, as desired. 0O

We will see that 9 is well-defined. It is easy to see then by induction that it is the
unique extension of d into a transserial derivation G<1)— G.

Proposition 3.4. The function 0 is well-defined on G<y).

Proof. We prove the result by induction on EHg(s) for s € G<1)- So let s € G(<y), write
(v,m) :=EHg(s) and assume that we have g€ Dy for all g € G(<1) with EHg(g) <~. We
may assume that s ¢ G. Note that for all m € supp s, we have EHg(logm) < v so logm € Dy
by the induction hypothesis. So 0 is defined at m. Thus it is enough by to prove that the
family (O(m))mesupps is well-based.

Assume for contradiction that (O(m))mesupps is not well-based. So there is a strictly
decreasing family (m;);en in supp s such that (9(m;));en is not well-based. Write m; =e%:
for each i € N. There is a family of monomials (n;);en with n; <n;4+1 and n; € supp 9(m;)
for all i € N. For all i € N, there are a b; € supp ¢; and a q; € supp 9(b;) with n;=q; m;. By
Lemma 3.3, we may write q; = b; p; to; for a certain p; € {4=bi= and r; € Wo.

Since Wy is well-based, we may assume that tog =101 % ---. Let ¢, 7 € N with ¢ < j. Write
4, j for the <-maximal common <-lower bound or ¢; and ¢;, and write (J;,5;) = (@i — ¥i,;,
©;j — ¢i,j). Assume for contradiction that b; € suppd;. The inequalities n; < n; and w; = to;
9i—9; bip; < b;p;. Recall that p; =1 so %0 b; <b;pj, so %% b; <'b;. But
since ¢; ; is <-maximal with ¢; ; < ¢4, ¢, we have §; — 6; = 6; whence %% > p; and
%% » 1. Tt follows that %% b; = e 3 supp (¢4,7) > b;: a contradiction. This proves that
b; € supp ; ;. In particular b; € supp ¢;. Therefore, we may assume that b; »=b; 1% ---.

We have EHg(i) < 7y so the family (0(b))pesuppy; is well-based. Since q; < qi41< -+,
we deduce that there is a j > such that b; = by for all k> j. But then (qk)k>j witnesses
that supp 0(b;) is not well-based: a contradiction. We deduce that (O(m))mesupps is well-
based. O

imply that e

We next give a strengthening of [35, Proposition 4.1.5]:

Proposition 3.5. Let 0: T — T be a strongly linear function with

Jd(logm) = @ for all me M.
Then we have

(0(st)=0(s)t+s0(t)) and

Yu e T>, (6(log u) = O(u) )

u
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for all s,t €T and u€T~.

Proof. We first prove that 0 satisfies the Leibniz rule. Consider m,n € 9. We have

J(mn)
mn m n

I(m)

=0(logmn)=09(logm) + d(logn) = +

We deduce that d(mn)=0(m)n+md(n). Now let s,t € T. We have

Jd(st)

= 8(2 smtnmn>

mn
= Z SmtnO(mn)
mn
mn )

m

= 0(s)t+s0(t).

m

o)

- (T ) (S () (5 00)

29

So the Leibniz rule holds for 9. We deduce that we have O(t*+1) =k d(t) t¥ for all t € T
and k€ N. Now let u € T~ and write u =710, (1+¢) where r € R~ and € < 1. Note that

o) _ @) (1+6)+72,0() _0(u) , 0(e)

u rou(1+¢) 0y (14+¢)

(=D* k41
k1

Recall that logu:logbu—i—logr—i—zkeN—E , SO

as desired.

_ (=" ki1
d(logu) J(logd,) +0 Z T

= 8(0U)+Z (_1)k 8(5k+1)
+1

0y k
keN
= o) Y (-t
“ keEN
o), 00e)
N Du +(1+€)
_ o

3.3 Schmeling’s axiom T4

Definition 3.6. Let T=R[[9M]] be a transserial subfield. Then T is a transseries sub-
field if it satisfies the following axiom

T4. If (r;m;)ieN€ R* M7 is a sequence of terms with r;41m;+1 € termlogm; for all
1 €N, then there is an i € N with

m;11 = minsupplogm; and
Ti+1 € {_171}
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for all j>1.

Note that the axiom T4 is preserved under taking transserial subgroups. We claim that
L satisfies T4. Indeed, consider (r;m;);eN as in Definition 3.6 for L. Writing mp=1[¢€ £,
we have my =/, for a certain ordinal -y, whence r14;m;4;=/¢4; for all i € N. In particular
rji+1=1€{—1,1} and m; 1 =minsupp - for all j >i. This shows that in fact L satisfies
the stronger axiom TEL4 of [31, Section 5. It is known [8, Theorem 8.4] that the field
No of surreal numbers with its natural logarithm satisfies T4 (see also [22, Theorem 8.1]
for a different proof).

3.4 Extending transserial right compositions

Let U =R[[U]] be a confluent hyperserial field of force v and let G C U be a transserial
subgroup. A transserial right composition G — V is a strongly linear function A: G — WV
with
Vs,g€G,sgeG = A(sg)=A(s) A(g), and
Vte GNUL AR >0AAlogt) = log A(t).

Consider a transserial right composition A on G. We wish to extend A into a transserial
right composition A1 on G y). The definition of A; is already done in [35, Section 5.3
and will coincide with the definition of A, on G(< 1) in Proposition 3.7. In order to adapt
Schmeling’s arguments to this setting our case, we note the following facts:

e Schmeling’s proof does not rely on the fact that the transserial field be closed under
products, so it works for transserial subgroups,

e any partial right composition of force v > 1 is a right composition as per [35, Defi-
nition 5.1.1],

e by [35, Theorem 5.3.2], any such right composition extends uniquely into a right
composition Ay: G<1) — V(<q).

We thus have:

Proposition 3.7. Assume that U satisfies T4. Let G be a transserial subgroup of U
and let N: G— 'V be a transserial right composition. Then /A extends uniquely into a
transserial right composition G(<1)— V(<.

See also 9, Section 9| for a similar extension result in the case of surreal numbers.

4 A proof method

In L, the existence of a well-based support for the derivation and a well-based relative
support for the right composition with s allowed van den Dries, Kaplan, van der Hoeven
[15] and then those authors and myself [7] to circumvent this problem. Unfortunately,
this approach fails in the case of (hyper)exponential extensions, as Schmeling’s work [35,
Chapters 4 and 5] on the difficult case of exponential extensions already illustrates. Indeed,
any monomial

m=e¥

for ¢ € Ly gives rise to a derivative

m’=09(p)m, (4.1)
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So the operator support suppé of & already contains supp 5(@) for all purely large series in
L, hence it cannot be well-based. As for the composition law, the fact that the definition
of exp(p o s) involves the Taylor expansion of m implies that the relative support of J
involves the support of each iterate ok,

However, a more careful study of those phenomena will show that d and S, have a
well-based near-support and a well-based relative near-support respectively (see Defini-
tion 1.35). This fact is not sufficient to justify that those operations are strongly linear, but
what it lacks is made for by Schmeling’s work. More precisely, it is possible to construe

the hyperezponential closure L of I as the exponential closure of a subgroup
G=E+LCL

where E=R[[&]] is a subclass I whose monomials a € & are all log-atomic. Any two
distinct log-atomic series a, b are more than sufficiently far apart from one another that
the notion of near-support and relative near-support are conducive to proofs of strong
linearity for functions on [E. We will combine this with Schmeling’s results for extending
derivations and compositions through exponential extensions, in order to show strong
linearity. Using this trick requires a precise description of (hyper)exponential extensions
which is the purpose of this section.

4.1 Internal hyperexponential closure

We fix generalized ordinals g <v < On with v >0, a confluent hyperserial field U= R[[¢]]
of force (v,v). If T is a confluent subfield of U of force v, then by Theorem 2.13, the
inclusion T < U extends uniquely into an embedding T( ;) — U< ). But since U itself
has force (v, p), we have U= U/ ). So T, is naturally included into U. Taking from
[7, Section 8], we will show how T ,,) can be described as a subclass of U.

Consider the lexicographical order <jex on the class of ordered pairs (v, 1) where v € On
and 1 < p, that is

(7, M) <tex (p,0) = ((7<p) or (y=p and n<o)).

Note that this is a well-ordering.
Let G = R[[S]] be a transserial subgroup of U. We will define increasing tower
(&(y,m))ve0on,n<p of extensions of &. We first define an extension &, of & for all n <

v. Note that R[[67]] is a transserial subgroup of T. So we may set &g = EiRHG?H as
in Section 3. Now let 0 <7 <wv and set §:=w". We write &, for the direct internal
product &,y =& - &) where &y, is the class of exponentials

t= exp( Z log(t,) o Eg), where

PET s\ Lg(T>")

e cach t, for p € (GNUy g)\ Lg(GNTU>") lies in £,
o hsuppt:={pe(GNU. g)\ Lg(GNU>"):t,#1} is a well-based set,
e the set {¢p+Z: ¢ € hsuppt} is finite.
In other words, &, is the group generated by & and the subgroups
’S<ﬁ ° Eg g ﬂa

for all ¢ € (GNUy )\ Lg(GNTU~"). Note that for each ¢ € (GNUy )\ Lg(GNTU~7),
we have
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The definition of 6(%”) is then by induction on <je, as follows:

Definition 4.1. Let G=R[[S]] CU be a transserial subgroup. For v€ On and n< p, we
define

o 6(070) =0G.
o &y n):i=(6(,))w fn=1t+1 is a successor.
° 6(%,,7) = Ua<n6(%0) if n is a limat.
o S0 =Uyc,Srp if v>0.
We set Gy p):=R[[S(,n)ll, 50 G(o,0)=G. We have an inclusion Gy o)< G(y,yq) when-
ever (v,m) <iex(p,0). We set
Sem= U q0  Gew= U Snoy

v€O0n v€O0n

Note that &gy =6 and G.g) = G. Moreover, we have G )= R[[& ]| by [7,
Lemma 2.1]. The following shows that our notation does not conflict with that in [7,
Section 8], which it in fact extends.

Proposition 4.2. Assume that T=IR[[9MN]] is a confluent subfield of U of force v. Then for
each (v, m) where n< p and v € On, the class Ty, y) is a confluent subfield of U of force
v. Moreover T ,,) is the smallest confluent subfield of U of force (v, u) which contains T.

Proof. This follows from the more general construction of T, of [7, Section §|. O
An important feature of the construction is the following:

Proposition 4.3. [7, p 66] Assume that T =IR[[9M]] is a confluent subfield of U of force
v. For v€On and n< p with n <v we have

(m(%n))wn =M.

Proposition 4.4. Let v < On with v >0 and let T=R[[9M]] be a hyperserial field of force
v that satisfies T4. Then for all u<wv, the field T, satisfies T4.

Proof. Since each member of the tower extension (T(w,n))VGOH/\n< u is a transserial field,
it suffices to show the that T, satisfies T4 for all n < p. Let 7 < p and let (r;m;);en be a
sequence as in Definition 3.6. If n=0, then r1 m; € T so we can conclude using the validity of
T4 in T. Assume that > 0. If m; € T, then we conclude as previously. Otherwise, we must
have m; =L, 11 E?y for a certain w”-truncated series ¢ and a certain ordinal ywith yw < w.
Since 1 >0, the series E7y is log-atomic, so ri4; M4 = Lyt14; EZy for all ¢ € N. This
sequence is as specified in T4, so T4 holds in that case. This concludes the proof. O

In particular, the field L and all its (transserial subfields) satisfies T4, and even
Kuhlmann-Mantova’s axiom TELA4.

4.2 Hyperexponential height

Let v < On, let u<v and let U be a hyperserial field of force v. We define the hyperez-
ponential height HHy(f) over U of a series f € Ui, as the <jex-least ordered pair (v, n)
with f €U, 5. So we have HHy(f) =(0,0) <= feU.
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Lemma 4.5. If me )\ U, then n in HHy(m)= (v, n) must be a successor ordinal.

Proof. New monomials are only added at successor stages of the inductive definition of
U(< ) as per Definition 4.1, hence the result. OJ

4

0
®n” appears

Example 4.6. Consider the extension IL < I 9). For each n €N, the series e~
oo
first in £(;,,1). So the hyperseries £+ 2¢ o4 3e_e£0+46_e + -+ first appears in £, o),

4
Z()Jr2e740+3e_e£0+4e_ee ’

» ' first appears in £(w,2)- Therefore we have

hence e

_ _bo _ eto
lo+2e 043¢ "4 4e " ...
HH ) =(,2).

As a corollary of Proposition 4.3, we obtain:

Corollary 4.7. Let m €.,y and o <v with m € (U ))we \ U and write HHy(m) =: (7,
n). Then o <n.

4.3 Decomposition lemmas

We will rely on transserial subgroups G and their exponential closure G(<q) in order
to extend derivations, compositions and their properties. Here, we explain our recurring
method to prove the main results of this paper.

Fix p<v. Let P C U ) be a subclass with P —1CP. We write IE(P) for the class
of well-based sums g € U ) of the form

9= Z Ty LBW(ES;Y)
v<p
where p is an ordinal, (LBW(E;OJ))WQJ is strictly <-decreasing, and
e (ay)y<pis a sequence of infinite additively indecomposable ordinals,
® (By)y<p is a sequence of ordinals.
o (ry)y<pER?,
such that for all v < p, we have
oy <A,
Byw < oy,
vy € (PN(Ucm)ay) \ La,(U77).
Note that each LBW(E(Z:) for v < p is log-atomic. We write G(P):=E(P) + U...

Lemma 4.8. The class G(P) is a transserial subgroup of Ui ,).

Proof. We have E(P) C (U< ,))» by definition so G(P) C (U ). Consider a monomial
m e U<y NE(P) and fix a, §, ¢ as above with m= Lg(EY). If a=w, then f=0 and
logm=FE¥f "' € E(P) since P —1CP. If a>w, then we have logm= Lg, 1(E?) € E(P). So
[E(P) is a transserial subgroup of U ). We deduce that G(P) is a transserial subgroup
of U(< IHE O

Lemma 4.9. Let a € E(P) N,y and n€ . We have aEn.
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Proof. Write a = Lg(E?) where a =w" for a certain n€ (0, ), a f with fw < «, and
a p€(PN(Uxp)sa)\ La(U>7). We have EY =04(a) by Lemma 2.10. Since U is 7-
confluent and EY ¢ U, we have d,(n) #0,(a), whence in particular log(d,(a)) #*log(04(n)).
By Lemma 1.30, we deduce that a % n. O

Lemma 4.10. Assume that (G(P))(<1) CP. Then (G(P))(<1) =Uc =P

Proof. Set K:= (G(P))<1)- It is enough to prove that U ,) C K. The result then
follows from the inclusions IK C P C U ). We will prove by induction on HHy( f) that
each f €U, lies in K. Let f € Ui, such that we have g € K for all g € U, with
HHy(g) <iex HHy(f). Note that K is a field of well-based series so it is enough to prove
that supp f CIK. This is true if f € U by definition of IK and Lemma 3.2. Assume that
f¢U. Since K is closed under exponentiation, it is enough to prove the inclusion

G:= U supp logm C K.
mesupp f
Let me &. If HHy(m) <jex HHy(f), then we have m € K by the induction hypothesis.
Otherwise we can write m = Lg;1(E7 ) where n€ (0, u), fw <w” and ¢ € (U< p))s,wm \
L,(U>7) satisfies HHy (@) < HHy(f). If n>1, then the induction hypothesis directly
yields ¢ €K, so p € P, whence m= Lg1(E7») € E(P). Assume now that n=1,so 3=0
and m=E7, ! The induction hypothesis and the inclusion P —1C P yields ¢ —1€P. If
p—1€ L,n(U>"), then we have m € U so m € K. Otherwise, we have m € E(P) so me€ K.
We deduce that f €IK. It follows by induction that U ,)C K. O

Schmeling showed [35] how to extend derivations, compositions and how to preserve
Taylor expansions to exponential closures of transseries fields. We will extend his results
to the hyperexponential closure as follows:

e Considering the class P of series for which a given operation or property is extended,
we show that

G(P)CP. (4.2)

Monomials in IE(P) are log-atomic, so they satisfy a > b<= a>>b. Combining this
with properties of near-supports and relative near-supports, it is often possible to
prove (4.2) in an easier fashion than by directly proving that U ) CP.

e Applying or extending Schmeling’s results, we show that if G CU(. ) is a transserial
subgroup, then we have

GCP= Gy CP.

e Using Lemma 4.10, we conclude that P =T, ).

5 Extending derivations

In this section, we fix g, v < On with 0 < g <v, and we write A :=w”. We will see how
to extend derivations when taking the hyperexponential closure of a given field.

5.1 Hyperserial derivations

Definition 5.1. Let (U, o), (V,0) be confluent hyperserial fields of force v with (U,
0) C(V,0). A hyperserial derivation of force v on T is a function 0: U —V with

D1. 0:U—V s strongly linear.
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D2. 0(st)=0(s)t+s0(t) for all s,t € U.

D3. d(logt) =22 for all t e U™,

D4. 9(fos)=9(s) x (f'os) for all f €Ly and s € U>>".

Note that hyperserial derivations of force ¥ on U are in particular derivations in the

sense of [35, Definition 4.1.1]. If U, 9 are as above, then for all s € U7, we write

d(s)

S

STiz

for the logarithmic derivative of s. Indeed, we have s' =9 (log s) whenever s > 0. Notice
that (rs)'=st and that (st)T=st+¢f for all s,¢ € U7 and r e R7.

Remark 5.2. On the notation 9(f) vs f’. We sometimes use the notation f’ instead
of 9(s) and and f*) instead of &(s). In general, this reflects the distinction of Remark 1.1:
the notation f”is favored when we are considering f as a function (through a composition
law) acting on a hyperserial field, whereas J(s) is favored when we are considering s as an
object on which our derivation acts, regardless of how s might be construed as a function.

Consider fixed confluent hyperserial fields (U, oy;) and (V, oy) of force v. The axioms
of hyperserial derivations can be checked on the skeleton of (U, oy), as the following shows.

Proposition 5.3. Let 0: U —V be a strongly linear function with
J(logm) :@ for all me i, and

O(Lyra)=0(a) (luoya) forall 0< u<X and a€ Uy,np.

Then 0 is a hyperserial derivation of force v.

Proof. By Proposition 3.5, the conditions D2 and D3 hold for 9. We prove by induction
on u < X that we have d(fos)=09(s) f'os for all f€Lcynand s€U~>". Let u <A such
that the result holds strictly below p and write o :=w*. We claim, and we will prove in a
moment, that for fe{0}U{w”:n< p} and s € U™, we have 9(¢0s) =0(s){;0s. Notice
that this is immediate for 4 =0. For p=1, it follows from D3. Assume that the claim is
true. The chain rule is preserved by composition so we have 9({,0s)=09(s) ;0 s for all

y<whtland s e U>. Now let [€ £__u+1 and s € U>~. We have

d(los) = O exp Z [ylyt10s
y<whtl
= 6( Z [Vﬂwﬂos)exp( Z [7€7+1os> (by D3)

y<whtl y<whtl
= J(s) g 0105 |los
’Y<UJ”+1

= 6(3)(( Z [WE’WJA)[)OS

= J(s)l'os.
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We conclude by strong linearity that d(fos)=0(s) f'os for all feL_ u+1 and s€U>".
So we may assume that g >0 and it is enough to prove the claim. Let s € U~ and
write a:=04(s) There is f < a such that e :=/{gos —{goa is infinitesimal. We have
s=FEg(Lg(a) +¢) so d(s) = (d(a) lzoa+d(e)) l<gos by the induction hypothesis. We
deduce that

I(s) Ly 0s=(d(a) %oa—i—a(&t))%os. (5.1)

Note that £}, ¢~ € £(3,a) S0 We may consider f:= (Lt € Lo,. By the chain rule in
1
L, we have (Elﬁ)’o@g:%(fwoég) é/ ,s0 f= (flﬁ). By HF 3, we have

A ! 16y (k+1)
i?os—f (fgoa—f-s)zi_/oa_i_iz (") k'ofgoask.
/8 .
Recall that keEN
18\ (k)
laos=Llaoa+ Wsk,

k>0

by (2.4). For k€ N~ we have (625 )(k) € L., so we may apply the induction hypothesis at
i, ¢goa, and obtain

ALY W) olgoa)=0(tsoa) (€37)* o lsoa.

Therefore
Ew ))olgoa) (fTﬁ)(k)ofgoa
O(lyos) = Ilgon +Z B 6k+3(6)2 O‘—,Ekfl
k>0 = k-
16y (k+1) T8y(k+1)
_ / £y )" Volgoa 4 (£ )" olgoa 4
= 6(a)£aoa+6(€50a)z N 5 +8(6)Z o 5
k>0 k=0
A f’ 2,
= 9(a)lpoa+0(a)lsoa os——roa |+0(e)—Fos
50Tt 5
el
= (O(a)lhoa+d(e ))€ os
B
= 9(s) ¥, 0s. (by (5.1))
By induction, this proves D4 for 0. (]
5.2 H-fields

We are particularly interested in derivations which behave similarly to the derivation of
germs in Hardy fields (see [5]). Thus we rely on the notion of H-field with small derivation
of [1, 4].

Definition 5.4. Let 0: U — U be a hyperserial derivation of force v. We say that (U, )
1s an H-field if we have
H1. 0(s)>0 for all se U7,
We say that the derivation 0 is small if it satisfies
H2. 0(g) <1 for allec U™,
If both H1 and H2 hold, then we say that (U, ) is an H-field with small derivation.
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Lemma 5.5. Assume that (U,0) is an H-field. Then we have
i. Ker(0)=R.
ii. For all m,neyU” we have m>n=d(m) > d(n).

ii. For all m,ne U7, we have m»=n=—>m' =n.

Proof. The assertion ii follows as in the proof of [8, Proposition 64(1)]. We next prove i.
We have 9(1) = 9(1)2=209(1) by the Leibniz rule, so d(1) =0. So for r € R, we have
d(r)=r9d(1) =0, whence R C Ker(9). Conversely, let z € Ker(9) and write z =z + 7+ 24
where supp z. > 1, r € R and z4 < 1. Assume for contradiction that z. # 0. Then by i,
we have 0(z) ~ 0(7;). We have 9(|7;|) >0 by H1, so we deduce that |0(z)| =9(|z]) #0: a
contradiction. So z. =0, whence 9(z) = 9(z<). Assume for contradiction that z#0. By

H1, we have 9((|z<])71) >0 and |0(2<)| = 9(|2<]) = Az<D" . 4 contradiction. So 24=0,

|2<]2
whence z=r € R. We now prove iii. Let m,n €U~ with m>» n. By Lemma 1.30, we have
logm 3=logn. Since supplogmUsupplogn = 1, we have m! = 9(logm) 3= d(logn) =nf. O

In particular, if (U, 0) is an H-field according to Definition 5.4, then it is an H-field
according to [1, Definition, p 3].

Example 5.6. The standard derivation ’: L.y — L.y of [15] is a hyperserial derivation
of force v and (Lcy, /) is an H-field with small derivation [15, Theorem 1.2].

Our goal in this section is to prove the following theorem:

Theorem 5.7. Let v <On and p<v with p>0. Let (U,0), (V,0) be hyperserial fields
of force v with (U,0) C(V,0). Let 09: U —V be a hyperserial derivation of force v.
Assume that 0 has a good near-support Wy. Then O extends uniquely into a hyperserial
derivation Op: U< ) — U< ) of force v, and Wy is a near-support for d,,. Moreover, if
(U, 0) is an H-field with small derivation, then so is (U< ), Op)-

5.3 Defining the derivation

Fix (U, o), (V,0), 0 and 20 as in Theorem 5.7. We inductively define J,, along with the
class Dy of series s € U, at which it is defined. The induction is on the exponential
height (v, n) of s over U. We say that 0, is defined at s € Ui, if

i. s€U. We then set
Ou(s):=0(s). (5.2)
ii. s€<py), n=1 and logseDy. We then set
Ou(s) :=0u(logs) s. (5.3)

ii. s€<p)y, n=t+1fora:t>0and s=tm where m € Dy and hsupp t C Dy, and the
family (9 (¢) EL:(¢)log(ty) o (Ew(¢)))pehsuppt is well-based. Then we set

Ou(s) = ( Z () EL(p)log(ty) o (EWL(ap))> sm+s0dy(m). (5.4)
p€hsuppt

In the case when tm=L.(E},) (e m=1 and hsuppt={¢}), we have

w

Ou(Lry(E5)) = Oul ) Eu() £y 0 Eur (). (5.5)
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iv. s€U(<p)\ U< ) and supp s C Dy, and the family (9,,(m))mesupps is well-based. We
then set

Ou(s) = Z SmOu(m). (5.6)

mesupps

Proposition 5.8. Let n <v with, set a:=w" and let m e (Ucp)a. We have m € Dy <=
Lo(m) € Dy. Moreover, if m € Dy then dp(La(m)) =0y (m) £, 0m.

Proof. We prove this by induction on EHy(m). Let (v, n) :=EHy(m). If (v, n)=(0,0),
then me U and Lq(m) € U and 9,(La(m)) =9 (La(m)) = (m) £, 0 m = 9 (m) £, 0m.

Assume that (v, 1) >1ex(0,0). Then since m is a monomial, we know that n=:+11is a
successor. Write 3:=w’. We have m = Ef where ¢:= Lg(m) € (U<p)s 5 and EHy () < (7,
1) . Note that a < fw by Corollary 4.7.

Assume first that a=1. If =1, then we have m € Dy <= ¢ = L1(m) € Dy by ii. By
(5.3) we have 9y,(m)=0,(p)m, whence 9y, (L1(m)) =09, () {1 om, if applicable. Recall that
Dy is a group, so Dy — 1 =Dy. If f=w, then we have m € Dg<= p €Dy« p — 1€ Dy
by iii. If L1(m)=E¥ '€ U, then we have ¢ — 1 €U, and m € Dy by ii. Moreover (6.2) yields

Au(L1(m)) = (o — 1) EL(p — 1) = () Eﬁg(f) = a“,im)

=0 (m) f1om.

If Egil ¢ U, then Egil €Dy p—1€Dyg<=meDy by iii. We conclude as above
that 9y,(L1(m)) = 0y(m) 1 om.

If B> w, then we are in case iii and we have m € Dy <= ¢ € Dy <= Ll(Eg) €Dy. We
conclude with (6.4) that 9y,(L1(m)) =9, (m) 1 om if applicable.

This treats the case when a=1. Assume now that o =w and f=1. We have m € Dg<—>
p €Dy by ii. Since ¢ is log-atomic, the induction hypothesis yields m € Dy<=> L, () € D,
with 9(Lu(¢)) = Ou(e) £, 0 ¢ if applicable. We have Ly(p) = L,(m) — 1 so m € Dy <
L,(m) € Dy. Moreover, we have

Ou(Lw(m)) = Ou(Lu(p)) =u(p) t,0 ¢
Ou(m) = Ou(e)m if m, p € Dy, whence

Ou(Lufm)) = (m) 22 = 5, (m) L2201

- 7 oy m=39,(m)l,om

if applicable.

In all other cases, the inequality avw < 8 implies that 8> 1, so we will only deal with
the cases i and iii. Moreover, we have m € Dy <= ¢ € Dy by iii.

If a=pw, then ¢ is L.,-atomic. The induction hypothesis yields ¢ € Dy<= L,(¢) €
Dy, and if applicable. If ¢ € Dy, then we have du(m) =09, () Ej(p) by (5.5). Since La(¢) =
L(m) — 1, we obtain

E(’loﬂg

7 om=239,,(m) {,om,

Iu(La(m)) = 0u(La()) = O0u(p) la o = 0u(m)
if applicable.
If a=p, then L,(m)= ¢ so by iii, we have L,(m) € Dy<=m € Dy. If applicable, we

have dj,(m) = du(¢) EL(9) = Ou(La(m)) i" m by (5.5), 50 Op(La(m)) =y (m) £y om.

If B=aw, then Lo(m)=Ef " If Ef~' ¢ U, then by iii, we have Lo(m) € Dy <=
¢ —1€Dy<=meDy. If applicable, we have 9, (La(m)) =0u(@ — 1)ﬁom:8”(cp)ﬁ—?om
BOta B

and 9y,(m) = 9,u(p) - om by (5.5). Therefore dyu(La(m)) =pu(m) lhom. If £~ €U, then
B

p€eU, so 9 €Dy, some Dy. We obtain 9,(La(m)) =0y (m) ¢, om by the same arguments.
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If 3> aw, then we have Lqo(m) = Lo(E). Since a > w, the series Lq(m) occurs in iii, and
we have Lq(m) € Dy <= ¢ € Dy<= me Dy. If applicable, we have d,,(m) =0, (¢) Ej(¢) =
Oul) Zi’ om and

G

!/

Ou(La(m)) = 8u(m) E4(¢) E;om—ﬁu(@)i—zom—au(m) ¢ om.

This concludes the proof. O

Lemma 5.9. For s,t € Dy with st € Dy, we have Ou(st) =0u(s)t+ s0u(t).

Proof. We have supp sUsupptUsupp st C Dy by iv. So as in the proof of Proposition 5.3,
by (6.5), it is enough to prove the result for s,t€ DyNik< ). By Proposition 5.8, we have
Ou(logm) = 9™ for all m e Dy N k(< . Thus

m

Ou(st) =0 (log(st))st=(Op(logs)+ Ou(logt)) st= (8“7(5)+8”T(t))5t—3“(5) t+s50,(t). O

Proposition 5.10. Let G =R[[6]] C (U p)) be a transserial subgroup with G C Dp.
Then G(< 1)< Da.

Proof. This follows from Proposition 3.4. OJ

5.4 The near-support

We write Py for the subclass of Dy of series s such that for all n € supp s, we have
supp Op(n) Cn- Y-y, For s € Dy, we have s € Py<=supps C Py.

Lemma 5.11. For ¢ € (U< )~ N Pa, we have EY € Po.

Proof. We have 9,(EY) =0u(p) EY by Proposition 5.8. Let m € supp d,(EY). So there
is a n€supp du(p) with m=nEY. We have ne€p-U=P. 2, for a certain p € supp ¢. We
have EY > supp ¢ > 1, so p-U=PC P*E some EY- BXET .91, as desired. O

Proposition 5.12. We have Dg="P;.

Proof. We prove by induction on EHy(s) that Vs € U ), s € Dpg = s € Py. This is
immediate if EHy(s) = (0,0) by our hypothesis that 205 is a near-support for 0. Let
s€ U< ), set EHy(s) =:(v,n) and assume that we have g € Py for all g € Dy with EHy(g) <
(7v,m). It is enough to prove that supp s C Py, so we may assume that s is a monomial.

If n=1, then s = EY where ¢ € (U(4,0))~, and EHy(¢) < (v, n). We conclude with
Lemma 5.11 that s € Py.

If n=1¢+1 where ¢+ >0, then s =tm where in particular hsupp tC Py. By Lemma 5.11,
it is enough to prove that supplogs CPy. So it is enough to show that for ¢ € hsuppt and
v <A with yw <w*, we have L,(E}.) € Py. Given such a monomial a:=L(E_.), we have

Ou(a) =0u(p) ELi(p) th o En(p) by (5.5). Let m e supp du(a). So there is n € supp du(¢)
with m=nE[.(¢) £} 0 E(p). Write

q:=EL(p) x ()0 (),

so m=nagq. Note that 1 < q < Ly41(E}) < a, so € U= The induction hypothesis at
¢ yields n€p - BP0 for a certain p € supp p. We have supp ¢ = (L<(E%)) ™! since ¢
is w-truncated. In particular supp ¢ > (L, (EZ.))"'=a~!. Moreover ¢ < a, so qp € T
We deduce that m € a-U=*. 20y, so m € Py. This concludes the proof. O
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Lemma 5.13. Assume that O has a good near-support Wy with O(Wa) C R[[Wp]]. Then
20y is a near-support for OF for all k€ N.

Proof. We prove this by induction on k. For k <1, this is immediate. Let £ € N such
that the result holds at k, let s € U and let m € supp sk Thereisne supp s) with me

supp d(n). Now the induction hypothesis yields a pj € U with pi << 05 with n € (05px) - Qs
We deduce by the Leibniz rule that
m € (suppd(2s))-pr- Wy or
m € - (suppd(px))-Ws or
m € 05-pg- U supp d(1v) |.
eMy

Recall that 205 is a near-support for 0. Thus, in the first case, we have
m € (s py) - V¥ 3 C 0, - V.90,

In the second case, we have m € (05 py,) - B¥PE- 203, We have Y¥Pk C U= so me (dspgi1) -
Wy as desired. In the third case, we have (¢, supp d(w)) €Wy so we can conclude

directly. This proves that 205 is a near-support for oF. O

Proposition 5.14. The standard derivation 9:IL.x — L<x has a good near-support Wy
with 0(Ws) C R[[Wy]].

Proof. Set 2y:= (supp 9)>* = {fi: v <A}, For m € Wy, we have supp d(m) Cm-Wy C
Wy, so I(Wa) C R[[Wy]]. O
5.5 Extending hyperserial derivations

Proposition 5.15. We have E(Py) C Pp.

Proof. Since any monomial in E(Pp) is atomic, this follows from Lemma 1.36. O
Proposition 5.16. We have (G(Pa))(<1) < Po.

Proof. The class Pj is closed under sums so by Proposition 5.15, we have G(Pjs) C
Ps. Lemma 5.9 and Proposition 5.8 imply that d,, 1 G(P5) is a transserial derivation on
G(Ps). We deduce by Proposition 5.10 that 9, 1 G(Pp) extends uniquely into a transserial
derivation on the field (G(Ps))(<1). An easy mductlon using Proposition 5.8 shows that
this extension coincides with 9, on (G(Pg))(<1)- Therefore (G(Ps))(<1) S Do. We conclude
with Proposition 5.12. OJ

Corollary 5.17. We have Py=U ).
Proof. Apply Lemma 4.10. O

Corollary 5.18. The function 0,: U< ) — V(< is a hyperserial derivation of force v
and Wp is a good near-support for Oy,.

Proof. We already know since U ,) € Py that 9y, is strongly linear on U ,) with near-
support Wy. It satisfies the Leibniz rule by Lemma 5.9. Finally, by Propositions 5.8
and 5.3, it is a hyperserial derivation of force v. O
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Assume that U is an H-field. Let Py denote the subclass of Ui, of series s with

Vm,nesupps \{l},m>=nAm>1 = 0Ou(m)>0Jdu(n), and (5.7)
s>R = 0Ou(s) >0. (5.8)

Note that Py contains U by H1 and Lemma 5.5.

Proposition 5.19. Let G =R[[S]] be a transserial subgroup of U<,y with & =&~
and G CPy. We have G*P C Pyg.

Proof. Let s€ G*P and m,n€supp s \ {1} with m > 1,n. Note that logm,logne G C Py.
We have supp logmUsupplogn =1 so (5.7) for logm and logn yields

Ou(m) ~ Ou(TMogm)m and

Ou(n) ~ Ou(nogn) n.
Assume that n>1. Then logm =logn, so (5.7) for diogm+ Dlogn Yields Op(Nogm) = Ou(Tiogn)-
Therefore 0y,(m) = Op(n). Assume now that n<1. Set v:= L We have v € S by our

logn

hypothesis on &. We claim that 9, (v) > 0u(n). Indeed, by (5.7) for logn, we have 9, (logn) =
Ou(Vogn) 80 Ou(b) < %l We have {1 <ty in Lcy, so Lemma 2.1 and HF1 yield

" n(logn)?’
logn < n. We deduce \Evitgh)Corollary 1.31(c) that n (logn)?=n. So n(logn)? <1, whence
Ou(0) = Op(n). Set u:=01ogm. We have Op(m) = 0u(u) m> 0u(u). By (5.7) for u+v and
since u > 1> v, we have d,(u) > 9u(v), whence dy(m) > dy(n). This proves that s sat-
isfies (5.7). We also deduce that 0, (s) ~ Opu(7s) = Ou(log 75) 75. Since 75 >0 and G > log 7, >
R, we deduce by (5.8) at log 75 that d(s) >0. So s € Py. O

5.6 Properties of H-field

Theorem 5.20. Assume that (U,0) is an H-field. Then (U< ), 0pu) is an H-field with
small derivation.

Proof. Since Wy is small, we have 9y, (m) < m for all m € 4. ,). In particular H2 holds.

We prove by induction on the lexicographic order <oy that for all v € On and 1 < p,
we have U, ) € Ppu. Let (7, 7n) such that the result holds for all (p, o) <iex (v, n). For
s € U< ), we have s € Py if and only if m +n &€ Py for all m,n €supps. So Py contains
R[[U, < M,]] whenever av€ On and (90)),<q is an increasing sequence of subsets of £« ;)
with Vp <a,9,C Py. So we may assume that 1 is the successor of some ordinal ¢. Write
o :=w" and set

G4 = U supp logm,
me (Hey, )
G = U (supplogm)~!, and
me (Hey, )1
G = 6,UG6G_.

So R[[S]] is a transserial subgroup of U ) with &=&"1. By Proposition 5.19, we may
assume that ¢ >0 and it is enough to prove that R[[S]] C Py. So let s € R[[S]].

Let m,n € supp s with m,n > 1 and m#n. By the induction hypothesis, we may assume
that m ¢ 8k, ). So m = Lg(EY) for a certain ¢ € (Upy,))s,a \ LQ(U(Z’:)) and a S <A
with fw < a.
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We distinguish two cases. First assume that n¢ ., . So n= L,,(E:f ) for a certain
Y € (Up,)=a \ La(U, m)) and a p <X with pw < . We may assume that m >=n. By

Lemma 2.10, we have ¢ > or ¢ =1 and p> 3. So we have 7, > 7, in general. Note that
T, Ty € Py by the induction hypothesis so 0, (7y) = Ou(7y). Moreover, we have

Ou(m) ~ 0Ou(1,) X Lig,a)0 B and (5.9)
Ou(n) ~ Ou(ry) X €0 0 Ey.

If =1, then B< p 50 Ju(m) = Ou(Ty) X £g.0)0 BE = (1) X fp )0 B = Ou(n). If o>
then £[g o) 0 B >0, q)© EY by Lemma 2.10, so likewise Op(m) > Op(n).
Now assume that ne€ i, ). Set

a = Da( )=EZ, (by Lemma 2.10)
b = 0.,(n) €Uy, (since Uy
and ¢ = Ly(b).

Note that p=La(a) €U )\ (L (TU(7 L))) whereas ¢ € L (TU(W L)) so p#1). For sufficiently

large p < v, we have L,(m) — L,(a) <1 and L,(n) — L,(b) <1. We deduce by H2 and D4
that

+,0) is confluent)

Ou(Lp(m)) ~ Ou(Lp(a) =0u() X Lpmyoa and
Ou(Ly(1)) ~ Ou(Lp(6)) = () X £p.0) 0 b

Assume that m >n. Lemma 2.10 implies that ¢ >, so as above we have J,(L,(m)) ~
Ou(1p) X Ly 0y 0 = Op(Ty) X £ 0y 0 b~ Op(Lp(n)). We have £,0m < £,0n so D4 yields

Ou(1p) X Lppayoa o Ou(Ty) X L1p,0)0 b
{,om lyon

Op(m) ~ ~ Ou(n).

Ou(10) X £ ob O (1) X £ oa
u( w) ’ [p,a) o u( w), [p,a) Na“(u).
Lyon Lyom

Now let n€supp s and m€supp s with m>1>n. We need only prove that 9, (m) > dp(n)
to conclude that s satisfies (5.7). Set a:=0,(m), b:=0,(n"1), and

¢ = ta(La(m))=Ly(a) and
Y o= ﬁa(La(n_l)):La(b)' (by (2'13»

If me U, ,,), then we have 0,(m) € U, ,) by confluence, so ¢ € Uy, ). If m¢ U, ,), then
we have m = Lg(EY) for an ordinal § with fw <«, and a g € (U(y,,))-,a \ La (TU(7 L)) and
then =o€ Uy, ). So in any case ¢ € U(,,). Likewise, we have ) € U, ). Let p <a be
large enough, so that L,(m) — L,(a) <1 and L,(n~1) — L,(b) < 1. By H2 and D4, we have

If n>>m, then symmetric arguments yield 9y, (n) ~

)—
( (m)) (Lp(a)) = 6“(@) X e[p,a) oa and
Ou(Lp(n™1)) ~ Ou(Ly(b)) = 0u(¥) X £fp,a) 0 b.

Applying D4 and D2 yields

Ou(Lp(m)) bpa)o@
Op(m) = —H7L Oulp) x —=7—— and
K f;om K f;om
Ou(Lp(n~1)) n? n’ (l(p,0)0b)

Ou(n) = ——"F—— X Ou(V) X —7 22—,
E;)on 1 f;)on 1
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- 1 1Y L 9u(®p) _ Ou(¥)
By (5.7) at Dw—i-a € Uy, and ¢ € Uy, ), we have d,(p) ~ 6“<a> A“D—JA’;—Q. We
have f,on~'=nand ¢, ,yo b~ Ly(n"1) <n~1, so Corollary 1.31(c) yields
n2 (E( a)© b) 1
quéma)obzu«W.

It follows that Ju(y) > Ou(n), whence Op(m) > Ou(n). This concludes the proof that s
satisfies (5.7).

Assume furthermore that s >IR. Note that dy(s) ~ 9yu(7s) by (5.7). If 9,€ Uy, ,,), then
75 € P 50 9u(7s) > 0. Otherwise we have 0,(0s) ~ Ou(7,) X £i,q) 0 Ef as in (5.9) for a
certain ¢ € Py OU(><’;) and a certain 3 € (0,a). We deduce that d,,(7,) >0, so 0u(0s) >0,
50 Ou(7s) > 0. Therefore dy(s) > 0. This proves that s € Py. So R[[S]] C Py. By Propo-
sition 5.19, we have (R[[S]])*P C Py where U, ) C (R[[S]])*P. So this concludes our
inductive proof that U ,,) € Pg. In particular H1 holds for (U ), du) by (5.8). O

In order to complete our proof of Theorem 5.7, we must prove the unicity of 9.

Proposition 5.21. The function 0y, is the only extension of 0 into a hyperserial derivation
Uicp) — Vicp) of force v.

Proof. Let d be a right composition U< p) — V(<) which extends 9. We claim that
0 = Oy, and we prove the result by induction on the exponential height (v, n) of s over U.
We have § =8, on U by definition. Now let s € U(< ) such that we have d(9) = u(g)
for all g € Ui,y with HHy(g) < HHy(s). By D1, we may assume that s is a monomial.
By D3 and D1, it is enough to prove that d(m) = d,(m) for all m € supp log s. Consider
such a monomial m. If p=1 or n is a limit, then we have HHy(m) < HHy(s), whence
d(m) = dy(m). Otherwise write =+ 1 for a certain ¢ > 0. We have m = L,(EY,) for
certain p <A with pw <w* and ¢ € (Ui« y))» o+ with HHy () <HHy(s). The induction
hypothesis yields 9() =0u(p). We deduce with D4 that d(m) = Ou(m). By induction, we
deduce that 9 and Oy coincide. O

This concludes the proof of Theorem 5.7.

Corollary 5.22. There is a unique extension of the standard derivation I — 1L into a
hyperserial derivation I — 1L of force On. Moreover, (L, +, X, <, <, 0) is an H-field.

Proof. This follows from Theorem 5.7 and [4, Theorem 1.2]. O

5.7 Model theory of (I~L, +, X, <, <, )

The field Ty of logarithmic-exponential transseries of [13, 18] can be realized [9, The-
orem 4.11] as a subfield of (L)1), hence Trg C L. The elementary first order theory
of (Tyg, +, X, <, =, 0) is studied in [4]. It is in particular model-complete. Consider the
hyperserial derivation d of Corollary 5.22 on L. We conclude this section by proving that
L is an elementary extension of Ty .

Theorem 5.23. The inclusion Tig— L is an elementary embedding for the structures
of ordered differential valued fields.
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Proof. By [5, Theorems 15.0.1 and 16.0.1] it suffices to show that INL is the union of an
increasing family (IF,)o<y,<on of subfields of well-based series F, =: R[[§,]], where

i. each IF, is closed under 9, and

ii. each ¥, admits an element m, with §,>m, and m ¢ 5(]~L)
For v € On with 0> v, we set o, :=w®“” and

Svi= (£<Ocl,)(<wy) “£<a,0 eg?u C L.

We claim that IF, := R[[J,]] satisfies the conditions. First note that for f € IL, there is
v € On with v >0 and f € (L<a,)(<w), Whence f€F,. So L=J,_,.onFv

Moreover we have £, o0 ef;oy C (£<ay)(<wsp) Whenever ¢ >v so the family (IF,)o<y<on
is increasing for the inclusion. Let v € On with v > 0. By D4, we have

O(Lca, 06 ) C(R) X O(Lca,) 0 C(Lecq,0e) x (Lea, 0l ) CLeg,0e.

We deduce that 9(L.4, 0 e 0 ) CTF,. We also have 0((£<a,)(<wr)) € (L<a,)(<wr) by The-
orem 5.7. By the Leibniz rule, we deduce that IF, is closed under d. B
For m € (£<a,)(<w) and [€ £2, , we have m < [oeé0 Set m,, :=d(— (e ')~1). Since

(o < &, the axiom HF1 yields m, = (ef;ou) < Loa, 09 So m, < F,. This concludes
the proof. O

6 Extending compositions

We now look into extending composition laws. Instead of always considering binary laws
o:(f,g)— fog, it is sometimes more convenient to work with unary right compositions
og: f = fo g for fixed g. Our main goal in this section is to prove the following theorem:

Theorem 6.1. Let v < On and p < v with 0 < p. Let (U, oy), (V,ovy) be hyperserial
fields of force v such that U satisfies Schmeling’s axiom T4. Let N\: U —V be a right
composition and assume that A\ has a good relative near-support Wa. There is a unique
right composition

AUy — Vicp)

of force v which extends A. Moreover 2 is a relative near-support for A,.

6.1 Right compositions

We fix a v <On and a p < v with p >0, and we write A:=w".
Consider two hyperserial fields (U, oy) and (V, oy) of force v. A right composition
U — V of force v is a function A: U — V which satisfies the following properties:

RC1. The function A: U — V is a strongly linear morphism of rings.
RC2. For all feL.y and s € U, we have A(f oy s) = foy (A(s)).
Example 6.2. Consider the field IL.,v, seen as a hyperserial field of force v. Now let

(T, o) be any hyperserial field of force v. Then for each s € T>~, HF1 and HF2 imply
that the function os: L., — T; f+— fo s is a right composition.

We see that hyperserial embeddings U — V of force v are simply right compositions
of force v which preserve monomials. Like in the case of hyperserial derivations, the nature
of right composition can be checked on the skeleton of U.
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Proposition 6.3. Right compositions /\: U — 'V of force v are strictly increasing.

Proof. Since U is a real-closed field and V is an ordered field, any morphism of rings
U — V is strictly increasing. O

Proposition 6.4. Let A\:U—V be a strongly linear function with
A(lyroy @)= Lyn(A(g)) for alln<v and g€ Ly,

for all p<v and g€iy,n. Then A is a right composition of force v.

Proof. Let C denote the class of series f € Loy with A(fog)= fo/A(g) for all ge U~>".
We prove that we have L. ,» C C by induction on p < v, starting with p=1.

Consider g € U~ and write g =140, (1 +¢4) where ry € R~ and £, <1 as in (2.3). We
have A(g) =7y A(dg) (1+ A(ey)) where A(gg) <1, so

_ (=1F kpa
logg = logbg—i—logrg—i—z I gs ,and
keN
k
log A(g) = logA(Dg)+logrg+Z k:—l—l S A(gg)FH!
keN

_ 1)k
= A(logbg)+logrg+A(Z %gngl)

= A(logg).

We deduce that C contains [ € £ if and only if it contains log[. Note that by strong
linearity of A, the class C is closed under sums of well-based families. Moreover, for f,h € C
with A >R, we have foh & C. So we need only prove that we have ¢,,» € C for all n <v. Let
1 >0 such that this holds for all : < 7. So L.,n C C by the previous arguments. Let g€ T~
and write g:=0,n(g). By (2.4), there is v <w" such that the number ¢:=/, 0y g — ¥y oy g
is infinitesimal, with

il )F o lyo
EW"OUgZEW"OUg“f‘Z (u)n k;{j Ug k‘
k>0

Note that for k € N~, we have (fll)(k) € L.,n C C. Moreover, we have
byoy A(g) —lyoy A(g) =A(lyoug —Lyoug)=A(e) < 1.
We deduce that

T’Y (k)
fwnovﬁ(g) = "OW +Z E Owg O\/A(g) A(E)k
k>0
Ty (k)
_ A(moug)+a<z ) Z;ué 10U g k)
k>0
= A(lynoyg).
We conclude by induction that C=1L_j. O

Corollary 6.5. Let A:U—V be a strongly linear function with

A(logm) = logA(m) for all me i, and
A(Lyn(a)) = Leu(A(a))  forall 0<n<wv and a&iym.
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Then A\ is a right composition of force v.

Corollary 6.6. The notions of hyperserial embeddings of |7, Definition 3.4] and Defini-
tion 2.2 coincide.

6.2 Extending right compositions

Fix (U, oy), (V,oy), A and 24 as in Theorem 6.1. As in Section 5.3, we inductively define
Ay, along with the class D of series s € U, at which A, is defined. For s € U ) with
HHy(s) =:(v,n), we say that A, is defined at s if

i. s€U. Then we set
Ap(s) = A(s). (6.1)

. s€<y), n=1and logs€Da. Then we set
Au(s) =exp(Au(logs)) € Ve ). (6.2)

iii. s €< p), n=1+1 for a certain ¢ >0 and s =tm where m € Dx, hsuppt C Dx and
the family (log(t,) oy (Au(EL.)))pehsuppt is well-based. Then we set

Au(s)i=exp D> log(ty) ov (Eu(Dpu())) | Lulm) € Vic . (6.3)
@€Ehsuppt
A simple computation in the case when tm= L. (E?,) yields
Ap(Ly(EZ)) = Ly(Eu( Du()))- (6.4)
iv. s &4 p), supps C D and the family (Ay(m))mesupps is well-based. Then we set
Ap(s):= Z SmAp(m). (6.5)
mesupps

This definition is warranted by induction on HHy;(s). The existence in Theorem 6.1 reduces
to the identity Do = U, ). From iii. above, it follows that Da is a subgroup of U, )
which contains U. We first justify that Da is closed under various operations.

Proposition 6.7. Let n<v, set a:=w" and let m e (U)o or mell if a=1. We have
m e Dp <= Lo(m) € Da. Moreover, if meDa then Ay(La(m)) = Lo(Ap(m)).

Proof. We proceed by induction on HHy(m). Let (v, n) :=HHy(m). If (v, n) = (0,0),
then me U and Lo(m) € U and Ay (Lo(m)) = A(Lo(m)) = Lo(A(m)) = Lo(Apu(m)).

Assume that (0,0) <jex (7, 7) and that the result holds for monomials with exponential
height <jex(7y,m) over U. Since m is a monomial, we know that n=:+ 1 is a successor.
Write §:=w'. We have m = EJ where ¢:= Lg(m) € (U<y)s s and HHy(¢) <iex (7, ).
Note that o < fw by Corollary 4.7. There will be many cases to consider.

Assume first that a =1. If =1, then we have m € Dp <= ¢ = Li(m) € Da by ii. By
(6.2) we have Ay (m)=E1(Au(p)), whence Ay (Li(m)) = Li(Ayu(m)), if applicable. Recall
that Da is a group, so Do — 1 =Da. If f=w, then we have m € Da <= ¢ € Dp <
@ —1€Dp by iii. If Li(m) :Eg’f1 €U, then we have ¢ —1 €U, and m € D by ii. Moreover
(6.2) yields Ap(m) = Ei(A(L1(m))), so A(Li(m)) = Li(Apu(m)). We obtain Ay (Li(m)) =
A(Ly(m))=Ly(Ap(m)) by (6.1). If Ef ' ¢ U, then Ef '€ Dp<= p—1€Dp<=meDp
by iii. Moreover, we have A, (Li(m))=Li(A,(m)) by (6.4) if applicable.
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If 8> w, then we are in case iii and we have m € Da <= p € Da <= 11 Eg’ € Da. We
conclude with (6.4) that Ay (Li(m)) = Li(Ay(m)) if applicable.

This treats the case when o =1. Assume now that o« =w and f=1. We have m €
Dpa <= p € Da by ii. Since ¢ is log-atomic, the induction hypothesis yields m € D <=
L,(¢) € D, with Ap(Ly(p)) = Lu(Au(p)) if applicable. We have Ly,(¢) = L,(m) — 1 so
meDp <= Ly(m) €Dp, and Ay(Ly(m)) = Ly (Apu(m)) if applicable.

In all other cases, the inequality avw < 8 implies that 8> 1, so we will only deal with
the cases i and iii. Moreover, we have m € DA <= ¢ € D by iii.

If = fw, then ¢ is L.,-atomic. The induction hypothesis yields ¢ € Do <= Lo (@) €
D, and if applicable. Since Lo(¢) = Lo(m) — 1, we obtain (Ay(La(m))) = Lo(Apu(m)) if
applicable.

If a=p, then L,(m)= ¢ so by iii, we have L,(m) € Do <= m €€ Da. If applicable, we
have Ay (La(m)) = Lo(Ap(m)) by (6.4).

If =aw, then Ly(m) :Eg’fl. If BY~ 1'¢ U, then by iii, we have Ly(m) € Dp <
¢ —1€Dp <= meDa. If applicable, we have Ay, (Lqo(m)) = Lo(Ap(m)) by (6.4). If
E[f*l €U, then ¢ €U, so ¢ € D, so me Da. We have Ay (Lo(m)) = Lo(Apu(m )) by (6.1)
and (6.4).

If 3> aw, then we have Lo(m) = Lo Ef. Since a >w, the series Lqo(m) occurs in i,
and we have Lo(m) € DA <= ¢ € DA <= m € Da. If applicable, we have A, (Ly(m)) =
Lo(Ap(m)) by (6.4). This concludes the inductive proof. O

Lemma 6.8. For s,t € Da with st € Da, we have Ap(st) =Au(s) Apu(t).
Proof. We have supp s UsupptUsupp st C Da by iv, so by (6.5), it is enough to prove
the result for 5,t € Da N, In that case we have log(s), log(t),log(s t) € Da and

Ap(logs) = log Auls),
Apu(logt) = log Ap(s), and
Aullog(s ) = log Au(s ),

by Proposition 6.7. Therefore

Au(st) = exp(Ap(log(st)))
= exp(Ay(logs)+ Ap(logt))
= exp(Apu(logs)) exp(Ap(logt))
Dpu(s) Du(t)
This concludes the proof. O

By Proposition 3.7, we have:

Proposition 6.9. Let G be a transserial subgroup of U<,y with GCDa. Then G<1)C
DA.

6.3 The relative near-support
Let Pa denote the subclass of series s € Da such that for all m € supp s, we have

supp Apy(m) C O, (m) gKou(m) WA.

So our hypothesis that 20 A is a relative near-support for A translates as the inclusion U C
Pna. We will prove that Da=Pa =T ).
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Lemma 6.10. Let n€ (0, u), set a:=w" and let ¢ € PAN (U< y))>,a- There are a ag<n
and an ng<w such that Lyon(EY) € Pa whenever o € |09, 1) and n € [ng,w).

Proof. By (2.14), there are a 0p <7 and an ng € N~ such that the series € :=A,(p) —
fa(Apu(p)) satisfies € < (Lyoo(n,—1)(Ea(Apu(9)))) L Let 0 <n and n € N with w’n >wno.
We write f:=wn, 87 :=w’ (n—1) and 0 := (A pu(p)). Write a:=Lg(EY). We have € <
(Lg(Ea(Du(9)))) L By Proposition 6.7, we have a family (t3 x)ken as in (2.8, 2.9) with

tg oy ES
Ayla)= Z % ok
keN ’
In particular 94 ,(q) = Lg(Eg). Let m € supp Ay(a). We have m = qi oy EF - n for certain

k€N, qr €supptg,k and for a certain n € supp ek, Set vy, = I 2

La(Eg) " S5O that m =04 ,(q) vk 1.

In order to conclude, we must prove that vpne g Aula) D) I

By Lemma 2.8, we have 1 < v, < Lg;1(E7), so vi € 0*24(®) We now turn to n. We
have suppe Csupp Apu(¢), so since ¢ € Pa, there are ni, ..., ng € dguppa (o) With

ne(ng---ng) - YEUoPEMLPR = (ny . .ony)  YEM LY,

Consider m € {1,...,k}. We have n, € 0guppa () Where ¢ is a-truncated. We deduce that
= (Lea(Eo(Dp(9)))) 7L 50 Ny = (Lo EZ) ™1 We also have M < Vsupp A () K L<alEQ)-
Thus in total

Lg(EZ)t<n, < Lg(EY).

In other words U< C Y240 We deduce that vy - T<M ... P<m C %«A“(a)7 SO

vpne Q]«A“(a) B)IIPN

This concludes the proof. O
Lemma 6.11. Let ¢ € PAN (U< ) 1. We have EY € Pa.

Proof. Write A, (¢)=Au(@)s+1r+Au(p)< where supp Ap(p)- =1, 7€ Rand Ay(p) <<
1. By Proposition 6.7, we have

1
Au(Ef) = exp(Du()) = exp(r) exp(Apu(p)s) ( > (Au(w)<)’“>- (6.6)

keN
Note that exp(Ai(p)s) =04, (gp)- Let v € supp Au(EY). So there is k € N such that
0=0p,(pyym for a certain m € supp (Dp(p)<)F. Let my,...,my € supp Ay (@) with my, ...,
my; <1 and m=my --- mg. By the induction hypothesis, for each i € {1,...,k}, there is
n; € supp ¢ with m; €04 ,(n,) - P *Au(m) 9. Since supp ¢ = 1 we have n; < e? for all
i€{1,...,k}. We deduce that we have D5 () - G40 Cg=2ulBD) for all € {1,..., k}.
Thus m € OpL(EF)” g*oulBl). 2 A. This concludes the proof. OJ

Corollary 6.12. Let n< p and let ¢ € PAN (Ui )= wn. We have Efy € Pa.

Proof. We prove the result by induction on 7. The case n=0 is done in Lemma 6.11.
Let n < p with n > 0 such that the result holds for all o <7, set a:=w" and let ¢ €
PaN (U< p))=,a- By Lemma 6.10, there are 0 < 1 and n € N with L,on(EY) € Pa. Note
that for k€ {0,...,n}, the series Lyok(EY) is an infinite monomial, so it is w-truncated.
By the induction hypothesis, we deduce that Eon(Lyok(EY)) = EY € Pa, hence the result
by induction. O
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Proposition 6.13. Let < p and let o € PAN (U< )= wn. Fory <w", we have L.(Efy) €
Pa.

Proof. We prove this by induction on 7. The case n=0 is vacuously true by Lemma 6.11.
Let n < p with n > 0 such that the result holds for all o <7, set a:=w" and let ¢ €
PAN(Ucr))s,o and v < a. Write f:=aif nis a limit, and §:=w" if n=1+ 1. Considering
@ —m € Pp for a certain m with v= 8m + ' with 7' < 3, we may assume that yw < a.
Consider by Lemma 6.10 a ¢ <7 and a n € N~ with ¢ := L0, (E?) € Pa. Choosing o
large enough, we have v <w? by the previous argument. We have ¢ € Pao N (U(<“))>7wa,
SO Ei)b”(nfl) ePan (U(<,u,))>,w"7 by Corollary 6.12. So by the induction hypothesis, we have
EY,
L7<E = (”*”) =L\(Ef) € Pa.

W

This concludes the proof. O

6.4 The extension theorem for right compositions

Proposition 6.14. We have E(Pa) C Pa.

Proof. Since each monomial in IE(Pa) is atomic, this follows from Lemma 1.37. O
Proposition 6.15. We have (G(Pa))(<1) € Pa.

Proof. By Proposition 6.14, we have E(Pa) C Pa, hence G(Pa) C Pa. We obtain
(G(Pa))(<1) € Da by Proposition 6.9. An easy induction using Proposition 6.13 shows

that (G(PA))K 1) CPa. O
Corollary 6.16. We have Pa=U(. ).
Proof. Apply Lemma 4.10. OJ

Corollary 6.17. The function Ap: U<y —> Vi< is a right composition of force v and
W is a good relative near-support for A,.

Proof. We already know since Ui ,) C Pa that A, is strongly linear on Ui, with
relative near-support 20 . It is a ring morphism by Lemma 6.8. Finally, by Propositions 6.7
and 6.4, it is a hyperserial composition of force v. O

In order to complete our proof of Theorem 6.1, we must prove the unicity of A,.
Proposition 6.18. The extension of A to Ui, is unique.

Proof. Let V be a right composition Ui ,) — V() which extends A. We claim that
vV =/A,, and we prove the result by induction on the hyperexponential height (v, n) of
s over U. We have V=A,, on U by definition. Now let s € U, such that we have
V(g) =Aulg) for all g€ U, with HHy(g) <iex (7, m). By RC1, we may assume that s
is a monomial. By RC2, it is enough to prove that V(m)=A,(m) for all m € supplog s.
Consider such a monomial m. If n=1 or 7 is a limit, then we have HHy(m) <jex (7, m),
whence V(m)=A,(m). Otherwise write 7=1¢+1 for a certain ¢ >0. We have m=L,(E?,)
for certain p <A with pw <w* and ¢ € (U ) w with HHy () <iex (7, 7). The induction
hypothesis yields V() =Au(¢). We deduce with RC2 that V(m)=A,(m). By induction,
we deduce that vV and A, coincide. g
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6.5 Hyperserial composition laws

Let (U, oy), (T, op) and (V,oy) be confluent hyperserial fields of force v. A hyperserial
composition law o: U x T>>~ — V of force v is a function such that for each s € T~
the function

0 U—V; f— fos
is a right composition of force v. The function oy is called the right composition with s.

Example 6.19. By HF1 and HF2, the law oy: Loy x U”>" — U is a hyperserial com-
position of force v. If (U, oy) C(V, 0y ), then we have a trivial composition law

Ux T —V;(f,s)—f,
all of whose right compositions are the inclusion U — V.

Remark 6.20. We do not ask that hyperserial composition laws be associative with
respect to an eventual internal composition law U x U~>" — U. Indeed, studying the right
context for that would take us beyond the scope of this paper. However we will see that such
an extended associativity follows immediately in the case when U =IL. Some additional
properties of hyperserial compositions laws pertaining to the structure of hyperserial field
on T are considered in Section 7 and 8.

As immediate corollaries of Theorem 6.1, we have:

Corollary 6.21. Let u < On with 0 < p<wv. If each og for s€ T~ has a good relative
near-support, then o extends uniquely into a hyperserial composition Ui, ) X T —
Vi< p) of force v.

Corollary 6.22. Let p<On with 0< p<wv and let (T,or) be a confluent hyperserial field
of force v. There is a unique extension of or into a hyperserial composition (L)< ) X
T>" — T(< ) of force v.

Corollary 6.23. There is a unique extension of the standard composition L x L™ — 1L
into a hyperserial composition law o:IL x IL”>" — 1L of force On. Moreover, for all f € 1L
and g,h € =", we have fo(goh)=(fog)oh.

Proof. The existence and unicity of o follows from Corollary 6.22. Given £ € >, let A¢
denote the right composition . — I with £. Let ¢, h € L™ be fixed. By RC2 for Ay, we
have Agop 1 L= (ApoAg)1L. So Agop and Ay oAy are both right compositions of force On
which extend Agop 1 L. From the unicity in Theorem 6.1, we deduce that Agop=Apo0 Ay,
ie. fo(goh)=(fog)oh forall fel. O

We next see that right compositions on subfields of L really are right compositions o¢
with certain positive infinite series &, with respect to a suited hyperserial composition law o.

Lemma 6.24. The atomic elements of II/J:)\ are fo if v is a limit and the series {,n, and

ef?nn forallne N ifv=n+1 is a successor.

Proof. By [7, Theorem 3.16 and 4.1], the atomic elements of L.y are {; if v is a limit,
and and the series £, for all n € N if v =741 is a successor. If v is a limit, then by
Proposition 4.3, there is no atomic element in IE:A \ Lca.

Assume that v =7+ 1 is a successor. If (T, o) is a confluent hyperserial field of force v,
then by [7, Remark 8.23], the atomic elements of T{,) are those of the form a= ES%y where
be T(% L) 0Se
induction according to Definition 4.1 that the atomic elements of IL.y are the series EBnn
where b € L.y is atomic and n € N. O

is atomic. For ¢ <7, the atomic elements of T{,) are those of T. It follows by
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Proposition 6.25. Assume that (U, oy) be a confluent hyperserial subfield of II/J:)\ of
force v and that (V,oy) is a confluent hyperserial field of force (v,v). Then there is a
hyperserial composition law o: U x V=~ — V of force v such that each right composition
A:U—V of force v is a right composition og with a unique §{ € V7.

Proof. By Corollary 6.22, the hyperserial composition oy: Loy x V>7 — V extends
uniquely into a hyperserial composition law (oy),: Loy x V> — V of force v which
restricts to a hyperserial composition law o: U x V-~ — V of force v. Consider a right
composition A: U — V of force v. Likewise /A extends uniquely into a right composmon

Ay U(<,,) — V(<p). We claim that U,y = IL<>\ Indeed, we have U,) C 1L<>\ since

UC ]L< A Now let a € U be atomic. As a consequence of Lemma 6.24, there is a v <A
witha=/, or a= e . We deduce that £o € Ui, 50 Lex=Laxolop C Uy, sO 1L<>\ CUi<w)
as claimed. For f E Lox CUi<y), we have

Ay(f)=A(f oulo) = f oy Alo)
by RC2. Thus A, 1L<y is the right composition L.y — V by A (fo) We deduce by

the unicity in Theorem 6.1 that A is the right composition (A L<y)y Lox— V(<u) by
Ay (lo) restricted to U. O

In this setting, hyperserial embeddings U — V of force v are right compositions with
L, v-atomic series. The converse is not true. Indeed, consider L 2 as a hyperserial field
of force 1. So ¢; is atomic in IL_ 2. But the right composition L_ 2 — L__2 with ¢; is not
a hyperserial embedding of force 2 since £, 0 /¢ =/¢,— 1 is not a monomial.

Remark 6.26. Consider in particular the case when U=V C IIT:)‘ Proposition 6.25 shows
that there is a natural bijective correspondence between right compositions U — U and
series in U~>". There are two obstructions to generalizing this to any confluent hyperserial
field U.

The first one is that there might not be a way to define a hyperserial composition law
U x U>” — U if one wants this right composition to have additional properties such
as Taylor expansions with respect to a given hyperserial derivation (which the trivial
composition doesn’t have). Yet there always exists a right composition U — U which is
the identity.

The second one is that there may be non-isomorphic (in the expected sense) hyperserial
composition laws of: U x U>"> — U for i € {0, 1}, each one yielding its own “sheave” of
right compositions of, s € U>". We expect that this will be the case for surreal numbers.

6.6 The chain rule

Let (U, oy), (T,or) and (V, oy) be confluent hyperserial fields of force v with (T, oy) C (V,
oy). Let o: U x T=~ — V be a composition law of force v with Uo T~ CV. Let Jy:
V —V and ”: U — U be hyperserial derivations of force v on. We say that a series f €U
satisfies the chain rule if for all s € T, we have

CR. Oy(fos)=0y(s) x flos.
Assume that each f*), k € N satisfies the chain rule and let s € T>. For (n,k) €N, write
Xn,kiz {U & (N>)n2 |Q)‘ :Q)m 4+ ... +'U[n} :k}

Then for k€ N, we have Faa di Bruno’s formula

fos Z Z f™Mos 9, (s) 04" (s) (6.7)
n! ! V!

neN UEXn k
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Theorem 6.27. Let (U,oy), (T, or) and (V,oy) be confluent hyperserial fields of force
v with (T, o) C(V,oy). Let 0: U<,y x T — Vi<, be a composition law of force v
with Uo T~ CV. Assume that there are hyperserial derivations Oy and ' of force v on
Vi< p) and U< ) respectively with 0y(V) CV and U'CU. If each f €U satisfies the chain
rule, then each f €U, ) satisfies the chain rule.

Proof. We prove the result by induction on HHy( f). Write (v, n) :=HHy(f) and assume
that the result holds for all g € U ,) with HHy(g) <iex (7, 7). We may assume that
(7, M) >1ex (0,0). Since ' is a hyperserial derivation of force v >0, it satisfies (exp(g))' =
g'exp(g) for all g €log(U~), so it is enough to prove the result for log f. Since ’ is strongly
linear, we may assume that log f is a monomial. So n=1¢+ 1 for a certain ordinal ¢ and
log f=Lg1(E].) for certain ¢ € (Ui y))» o with HHy (@) < (7, 1) and a 8 with fw <w".
It follows that

Oy((log f)os) = Oy((lgr10eu)oy (pos)) (by RC2 for o)
= Oy(pos) x (lgr10ey) oy (pos) (by D4 for dy)
= Oy(s) X ({g410ew:) oy (pos)x ¢'os (by CR for ¢)
= Oy(s) x ((lgr10€ewm) 0p)osx ’os (by RC2 for oy)
= Oy(s) x (log f) os. (by D4 for /)

We conclude by induction that every f &€ U(.,) satisfies the chain rule. O

Corollary 6.28. Let (T, o) be a confluent hyperserial field of force v, let 9: T — T
be a hyperserial derivation of force v and assume that each f € L.y satisfies the chain
rule. Write o: (L<x)(<y) X T~ — T for the unique extension of o into a hyperserial
composition of force v. Then we have

Ifog)=0(g)x flog

for all f € (Lex)(<w) and g € (Lax) (-

6.7 Large supports and monomial values

Let U=R[[Y]], V=R[[U]] be confluent hyperserial fields of force v and let £ € V. Let A:
U — VWV be a right composition of force v with a good relative near-support 20 and let
0: U — U be a hyperserial derivation of force v with a {1} as a good near-support.

Let me . In Section 7, we will see that in certain cases, Taylor expansions determine
how A(m) may decompose as a series. In the opposite direction, we now give a criterion
for A(m) to be a monomial.

Given £ € V, we consider the following condition on a subclass 2J C*U:
Vio € 0, 3m € (supp &), w0 K m. (6.8)

So (6.8) states that (supp &)~ has no strict <-upper bound in 20. Note that (6.8) is
preserved under products as well as under the operation 25— 25°°.

Theorem 6.29. Assume that WA satisfies (6.8) with respect to §. Then for all me i, if

supp § > ﬁ((:,)) for all nesupplogm, then we have A(m) e V.
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A

Proof. Let m €l and write p:=logm. Assume that supp { > — 0]

Let q € supp A(p). So

for all n € supp .

q GDA(n) . Q]'«A(”) -0

for a certain n € supp ¢ and a certain w € Q0. Since {1} is a near-support for 9, we

supp 9(n) . ( n) ..
have o < 0y(n)- We obtain ~om) A(n) by Proposition 6.3 and RC1, whence

(supp ) < A(n). By (6.8), we have w < A(n). Therefore o < A(n), so q= A(n)
by Corollary-1.31(c). It follows that supp A(p) > 1. We deduce that A(m) = A(e?) =
exp(A(p)) €D. O

Proposition 6.30. Let T =R[[9M]] be a confluent hyperserial field of force v and let
se€T> 7. The right composition og: L.y — T with s admits a good relative support 2,
which satisfies

a) (6.8) with respect to s.

b) (supp s<U SuPpS) CW, s.

oo
¢) Wy o, C Wy C Wy o, - (supp ) - (252
Proof. We will construct such a relative support 2J,, s for each 1 <v by induction. First
assume that v =0 and let s € ’I[‘> ~. By [7, Lemma 5.1], we can set 2 := (supp esU
supp s<)°° where g5:= (s — 75) T, 1 21. For m € suppes, there is n € supp s with m=—, so

m—<n or m =<9, by Corollary 1.31(a). We deduce that 2 s satisfies (6.8), whereas c holds
by definition.

Assume that the result holds for all for all n < v, for all confluent hyperserial fields U
of force n and s € U~ For all n <v and n <w, we will prove the following additional
statement by induction on w”n:

Vit € T, Vn € supp L,n,(t), Im Esuppt, n <m, (6.9)

as well

That is, (6.9) states that supp ¢ has no strict <-upper bound in supp Ly, (t). Note
that if 7 is an ordinal such that (6.9) holds for w”, then it holds for w”n for all n € N~
by transitivity of <. So considering 1 < v such that the result holds for all w*n for ¢t <n
and n € N7, it is enough to prove that (6.9) holds for w”. We first assume that 7=0. Let
teT> 7. In view of (2.3), we have

supp L1(t) C (supp €1 00;) U (supp es)*,

- (suppe)>®©. By HF1,
HF7 and Lemma 2.1, we have 1 < supp #; 00; < 0; so likewise supp ¢ has no strict <-
upper bound in supp ¢; 0 9;. This proves (6.9) in this case. Assume now that 7 >0 and
let t € T>>~. Recall that there are a « <7 and an n € N~ such that setting 8 =w*n and
d:=Lg(0,n(t)) — La(t), we have § <1 and

where g; = —

Lunlt) = Lttt + 3 LDV La@a@) 5.
k>0

We have supp L,n(0,7(t)) = (L<wn(t))~! by HF7. In particular supp L,n(d,7(t)) has no
strict <-upper bound in suppt. For kK € N~, we have

supp (£15)®) o (Ls(2.(1)))) S W o dn(t)



54 SECTION 6

where 20 := (ﬁﬁ)(k:) ols is a well-based subset of £(g ) [7, Lemma 5.9]. Since L~(dun(t)) <
L, (t) =<t for all y€[B,w") and 0,n(t) is L. m-atomic, the set suppt has no strict <-upper
bound in £5 ,n 00,n(t). Finally, we have supp d C supp Lg(t) so the induction hypothesis
on 7 implies that suppt has no strict <-upper bound in supp 4. This concludes the proof
of (6.9).

Now let s € T=>~. As in [7, Proposition 5.11], there are n < v, n <w with &5:=
Lnn(s) — Lymn(0a(s)) < 1, such that

Qﬂu,s = ( H Qﬂn,LM;k(s)) : (Supp 5)00

k<n

contains the relative support for o on L.). By our induction hypothesis on v each
supp Lynx(s) for k <n has no strict <-upper bound in W, 10, (s)- Hence by (6.9), nei-

ther has supp s. By (6.9), the set supp s has no strict <-upper bound in (supp €)*>
We deduce that 20, ; satisfies (6.8). Note that 20, ; C20, s so b holds for 20, ;. It remains
to show that c holds for 20, ,. Note that the same 1, n and ¢ can be chosen for 05, yielding

l/ 05 — <H wn L ,n4(0s) ) : (Supps)oo

k<n
So
supps \ *
W, s C ( ”DLwnk(s)> (supp s<)*° < 5 ) >.(Supp5)°° (by c at n)
S
supps \ *
S I Wor o |- Woa - (supps<) <a—>
k<n s
supps \
(T 0 coo ) - Gupps - (2222 (by c at )
k<n 5
supp s
C W, o, (supps<)™- <%>
S
Thus ¢ holds at v. This concludes the proof. O

We will call the class 20 :=20,, s obtained in the proof the canonical relative support
for os. We finally note the following property which is required in extending our results to
the case of surreal numbers.

Proposition 6.31. For s,c € T-~ with o0 <s, we have 20, C Ws.

Proof. We have 0, =0 and supp o Csupp s, so Proposition 6.30(c) for 20, gives

o0
Wy,o C Wy o, (suppo<)™- <M)

[
o0
c o, DS.(Supp&)oo.(w)
b DS
o0
c gn”.(supp&)oo.(m)
’ DS
C W, .,

as desired. n
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7 Taylor expansions

Our goal in this section is to study the existence of Taylor expansions of hyperseries
around a series. We fix ¥ <On and p<v with 0 < p. Let (U, oy), (T, o) and (V,oy) be
confluent hyperserial fields of force v such that (T, op) C (V,oy) and (L<x, o) C (V,oy).
Let o: U x T~ — V be a composition law of force v. We also assume that there is a
hyperserial derivation

B:U—U; frs f!

of force v which extends the standard derivation ’: L.y — L., and assume that 9 has
a near-support 2y =K ¢y. Finally, assume that (0, 0) satisfies the chain rule. Given f €T,
s€T>” and 0 € T, we study conditions under which fo (s+ ) is given by the Taylor

(k)
series ) . EN%Z’“ at . That is, we want to find conditions under which the family

((f(k) 0Ss) gk)kelN is well-based, with

*)
fo(g—i—e):z / o 5 5k

keN

The existence of such expansions is a crucial feature of the local behavior of transseries
and hyperseries. Our main result regarding these expansions, which for technical reasons
will be proved in the next section, is the following:

Theorem (Corollary 8.3). Consider the field L equipped with the derivation of Corol-
lary 5.22 and the composition law of Corollary 6.23. For all f,6 €L and g € L™ with
§=<gand (mfog)d <1 for all mesupp f, the family ((f(k) 0 g) 0" ren is well-based, with

*) o
folg+08)=> / - 9 sk,

keN

This means that the function Ay: h+— foh is analytic on L>", with .A](cn) = Af(n) for
all ne N and

Conv(As),2{e€L:e < gA (Vmesupp f,((mfog)d<1))} (7.1)

for all g€ L>"". The convergence domain (7.1) is optimal in that for ¢ 3= Conv(As),, there
is a monomial m € supp f for which the family ((m*) o g) 6%),cn is not well-based. There
are various known results about Taylor expansions in fields of transseries. The history of
these result is less linear than one might think, so we feel it is appropriate to briefly discuss
those results in chronological order:

e FEcalle [18, 4.1.26bis| considered Taylor expansions of grid-based transseries or log-
arithmic-exponential transseries. His propositions for the domains of convergence
are sometimes too small to be used appropriately (see [17, (6.32)]).

e Van den Dries, Macintyre and Marker [17, (6.8)-(4)] showed that logarithmic-expo-
nential transseries in Tt g have Taylor expansions of non-optimal radius.

e Schmeling [35, Section 6] showed that transseries in L. act on hyperserial fields
of force (1,1) and have Taylor expansions with optimal radius. Unfortunately, his
proof is incomplete.

e Van der Hoeven [27, Proposition 5.11(c)] showed that the theorem above is valid in
the field of grid-based transseries.
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e Berarducci and Mantova defined a composition law o: ]ﬂ;d x No”® — No on the
class No of surreal numbers [9, Theorem 6.3] and showed [9, Theorem 7.5] that a
transseries f € IL,, has a Taylor expansion

)
folg+a) =Y L te

keN

at every £ € No~»~ for small enough (but undetermined) 6 € No depending on f
and a.

e Van den Dries, van der Hoeven and Kaplan [15, Proposition 8.1] showed that the
theorem above is valid in logarithmic hyperseries, for which the condition (m'o
g) 6 <1 for all m €supp f is redundant with § < g whenever f ¢ IR.

e With van der Hoeven, we defined [6, Theorem 1.1] a composition law o: L x
No~" — No for which (No, o) is a hyperexponentially closed confluent hyper-
serial field. In particular the composition law o:IL x No~~ — No satisfies the
same Taylor expansion property as that of o:IL x IL.”>" — IL.

7.1 Taylor series

We require a few results on Taylor series in the context of fields of well-based s(e)ries.
AUk
z

Generally speaking, we will call Taylor series power series of the form eN

where A\: U — V is a strongly linear morphism of ordered rings.

Lemma 7.1. Let me . We either have m <X {y and then suppm’ <X /{y, or m» {y and
then suppm’ X m.

Proof. We have suppm’ Cm -0~ 205. Assume that m =< ¢y. Then B~" < /¢y so then

supp m’ = fy. Assume that m = £y. Then 2y < m so 222 & m, whence in partic-
ular suppm’ X m. O

We next adapt Schmeling’s arguments in |35, Section 6.1.3] in order to prove that Taylor
series converge in certain cases.

Proposition 7.2. Let N\:U—V be a strongly linear morphism of ordered rings. Let
€U and e € V with e < A(ly) and A(m')e < A(m) for all m €supp f. Set

X:={(mym): meUAmeNAAm)e=<A(m)}.
Consider the ordering on X given by
(m,m) <x (n,n) <= A(m) ™= A(n)e™
Then the function 9: X — P(U x N) given by
Y(m,m):={(n,m+1):ncsuppd(m)}
18 a strictly extensive choice operator.

Proof. We first prove that ¢ is a choice operator. Let (m,m) € X and let n € supp m’.

If m </, then we have n < ¢y by Lemma 7.1. It follows that a(nn) < fy. We deduce since

e <A(y) that A(9(n))e < A(n), so (n,m+1)€X. If m» £y, then Lemma 7.1 yields n X m,
whence %,x%, We deduce since A(m’)e < A(m) that A(n')d < A(n), so (n,m+1)eX.

We next prove that o is strictly extensive. Let (m,m+ 1) € X and let n € suppm’. We
have A(m’)e < A(m) and nxm’ so A(n)e™F < A(m)e™, ie. (n,m+1)<x(m,m). O
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Corollary 7.3. If A, f and € are as in Proposition 7.2 above, then we have

A=A e A(f) 2.

Corollary 7.4. If A, f and ¢ are as in Proposition 7.2 above and if moreover the family
(A(FR) Ry en is well-based, then

T AU®) o AUE™)

HC ml
k>m

for all m e N.
Proof. This follows from Corollary 7.3. OJ

Theorem 7.5. Let AN:U—V be a strongly linear morphism of ordered rings. Let f € V
and e € V with e < A(fy) and A(m')e < A(m) for all mesupp f. Assume that /\ preserves
monomzials and that

A(m) = A(ly) A(m) (7.2)
for all mesupp f. Then the family (A(m(k)))m@uppﬁkem is well-based.

Proof. By Proposition 1.7, we may assume that € =0, is a monomial. Consider the strictly
extensive choice operator ¥ on (X, <x) as in Proposition 7.2. We will prove that ¢ is
Noetherian. So given a Noetherian subset Y C X, we want to prove that the set

Z:={z:Jy,(yeYANzxed(y)}CX

is Noetherian. We have Z={(n,m+1):3meil, (m,n) €Y Anesuppm’}. Let (n;,m;+1)ien
be a sequence in Z, and let (m;, m;);en be a sequence in Y with n; € supp m; for all
i € N. For each i € N, we have A(m;) €0, whence by Noetherianity of Y, we may assume
that the family of monomials (A(m;) 9.");en is well-based. By strong linearity of 9, so
is ((A(m;) ") );en. By (7.2), the family (A(4y) (A(m]os)0d");en) is the sum of the
families ((A(m;) 07))ien and (=] m; A(m;) 9™ )ien, so it is well-based. Therefore the
family (A(m])0*);en is also well-based. In particular, there are i, j € N with i < j and
Ang) 0% = A(ny) 90, whence A(n;) e™it! = A(ny) €™t that is, (n;, m; + 1) >x (nj,
mj+1). This proves that Z is Noetherian.

By Theorem 1.42, we deduce that the family (zx) (s, ... 2,) o+ (supp £ x {0}) is Noetherian.
Writing zr = (2;,1,k) €0 x N for all (zo,...,zr) €9 (supp f x {0}), this means that the

family (A(xg,1) 05)( ) €0+ (supp f x {0}) i Well-based. For m € supp f and k € N, we have

o,

AmP)ot=3" > A(wp1) .

i<k (zo,...,xx) €9 ({(m,0)})

We deduce that (A(m®)) %) cqupp £ ke is well-based. O

Theorem 7.6. Let A\:V —V be a strongly linear morphism of ordered rings. Let f €V
and e €V withe < A({y) and A(m')e < A(m) for all mesupp f. Assume that A is bijective
and that A(m)'=A(lg) A(w') for all mEsupp f. Then the family (A(m™) ) mesupp £ keN
s well-based.

Proof. Note that the functional inverse A" of A is an R-linear morphism or ordered
rings. So setting § := A™V(e), we have m’§ <m for all m € supp f. Applying Theorem 7.5

to (idwv, f,d), we obtain that (m(k) 6") mesupp f.keN is well-based. By strong linearity of A,
SO is (A(m(k)) Ek)mESuppf,ke]N~ O
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7.2 Properties of Taylor series

We will use Taylor series in two ways: in order to define composition laws and to study the
local behavior of hyperseries as functions.

Proposition 7.7. Let v <On with v >0. Let U be a confluent hyperserial field of force
v, and let 0: U — U be a hyperserial derivation of force v. Let W be a transserial subfield
of U with a total exponential and with L,u(a) €W for all p<v and a € WNUyn. Assume
that W is closed under 0. Let A\: W — 'V be a transserial right composition with

A(Lyu(a)) = Lyn(A(a)) (7.3)

for all p<v and a € W N Ln.
Let p<v, a€ Wiy and e € V such that the family (/\(a®)eF)pen is well-based with

Yk >0, Aa) = Aa®)) gk, (7.4)
Then the family (A((Lgra)®) e¥)pen is well-based, with

L“’“(Z A(;Z(k)) k> ¥ A((ngga»“ﬂ) &

keN kelN

Proof. We may assume that ¢ # 0. By Proposition 1.23, the function A: V¢ — V given
for 6 < ¢ by

AQ) = % %!(k))ak

is analytic on V=°. Our goal is to show that L,u(A(g)) = P(g) where

P=3 AL k.

k!
keN
The function L, is analytic at A(a) with Conv(Lwr)a(a) = V=2, For neN and k>0,
we set
Xnk = {ve(N2)":|v[:=vy+ - +vp =k} and
- (o Afw) A) | Aa)
Chin = Z n! Um! U[n}! '

'UeXn,k

The monomial group of V is densely ordered. Furthermore we have A(0) — A(a) < A(a) by
(7.4), so may apply Proposition 1.26 and see that L,»o A is analytic on V=¢. Moreover,
the family (cx p Ek)neN7k>0 is well-based, with

Lo A(e) = Lou(A(@)+ > coper. (7.5)
neN,k>0

So by Lemma 1.2, the family (3, ckn €M) >0 is well-based, and

T =Y (Z k)k

neN,k>0 k>0 \neN

Since Lyr(A(a)) = A(Lyr(a)) and in view of (7.5), it suffices to show that >\ ckn=

(k)
% for all k> 0.
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By iterating (7.3), we have A(L~(a)) = Ly(A(a)) for all v <w*. Note that each 6(79 for
(n) )=

n >0 lies in L. Since A is a transserial right composition, we deduce that A(Ewu oa
é(n) o A(a) for all n € N. Note that each ¢™) k€ N satisfies the chain rule at a, so (6.7) yields

who
Z Z g( Voaa [1]) N Cl(U[n])‘
neEN vEX, k ooy Uin)!
Therefore
A((Ly HETAC ) A(a)  A(at)
—_ = N 77 7 e — CTLJC'
n;q ; . op! Upn Z%
This concludes the proof. O

7.3 Taylor expansions

Let v < On with v >0 and write A:=w". Let (U, oy), (T, o) and (V, oy) be confluent
hyperserial fields of force v with (T, o) C (V, oy) and (U, oy) C (V, oy). Let o: U x
T>~ — WV be a composition law of force v. Let 9: V—V; f+ f’ be a derivation of force
v with 9(U) C U, such that (U, 9) is an H-field, and which satisfies the chain rule

VieUVvteT>7,(fot) =t fot.
Definition 7.8. Let s€ T~ and f € U. We say that f has a Taylor expansion at s
(with respect to (o,0)) if the following holds:
TE. If § € T satisfies § <s and (m’os)d <mos for all m€supp f, then the family
((f®) 0 5) 6% ke is well-based, with

®
fols+d)=3" fkk! S 5k,

keN

We say that f has Taylor expansions with respect to (9, o) if it has a Taylor expansion
at each s € T~” with respect to (9,0). We say that (o,0) has Taylor expansions if each
f € U has Taylor expansions with respect to (o, d).

Remark 7.9. Assume that f satisfies TE at s € T~ and that the set

{m mesuppf\{l}}

m/
is not <-coinitial in V7. This is for instance the case in I or No. Then we have

flos—limlo(t+e)—Ffos

e—0 IS

So f’is determined by the composition law.
Lemma 7.10. Let n < p and v <w'=: . Defining t, j as in (2.8,2.9), we have

ty ko Eg(s)=({yo0 eéo)(k) os
for allkeN and s € T>".
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Proof. The result holds trivially for k=0 and by the chain rule for 0 for k=1. Note that
0 is a hyperserial derivation of force v, that ¢, , € L.y, and (eéo)’ =ty 10 eéo =ty10 ego. We
deduce by induction that for all k> 1, we have

(0o ego)(l”l) os = (ty10 eéo X 15 o ego) 0s

= (typsr0cf)os

hence the result. ([
Proposition 7.11. Let p <v, write a:=w* and let B <a. Let o € Uy o and s € T~
such that ¢ has Taylor expansions at s. Then LgEY has Taylor expansions at s.
Proof. We first assume that a =1, so f=0. Write n:= E{. Let 6 € T with  <s and

nos 1
(5-<,—: —
nos (plos

Let m € supp ¢. We have m < ¢ so m’ 5 ¢’ by Lemma 5.5(ii). Since supp ¢ 3= 1, we deduce
that < %% By TE, the function T>" — V,t+ @ ot is analytic at s

S

plos m/os m/os
and po(s+3d)—pos=<0(p'os)<1. Now the exponential is analytic at ¢ o s with
Conv(exp)gos = V=. It follows with Proposition 1.26 and (2.6) that A:t+>not is analytic

at s with
no(s+d)=exp(pos)+ Y cxo",

k>0
where
_ (Bfos) "™os  olos
Ck_z Z oy ol T o
neEN vEX, k ‘ 1] [n)*
(BH®

for all ke N. So ((n® 0 5) 6%)en is well-based with

(k)
no(s+4d)=Y - k,"s.
kEN )

Now by (6.7), we have ¢, =

k!

Assume now that o > 0. Since 0 is a hyperserial derivation of force v, we have
(Ls(EZ)) = ¢' (eaop) (Loea) 0 ) = @' x Lig.ay0 EF.

Y o :
Ls(Eg) SS' Let m € supp ¢. We have ({(g,4)© EZ)~! <m because ¢ is

Let e<s With5‘<m

truncated. So

£>_E>. 1 _ LB(E(f)
m' "o (Lg a0 EL) ¢ (Lg(EZ))"

for each m € supp ¢. So we have po(s+¢e)=pos+ ¢ where

(k)
L Pros g
0= E A e”.
k>0

mos

We deduce that € <

m/os

Corollary 7.4 yields § 5 e (¢'0s) < (£(g,a)0 EY) 0 5. We deduce with (2.10) that the family

((€g0eqa) ) oy (o s)8%)pen is well-based. We conclude again with Proposition 1.26, (6.7)
and Lemma 7.10. O
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Lemma 7.12. Assume that (o,0) has Taylor expansions. For each f €U, the relation
s~pt <= (Vmesupp f,(m'ot) (t —s) <mot)

is an equivalence relation on T~ .

Proof. If f=0 then the relation is trivial. We assume that f # 0. The relation ~y is
clearly reflexive. We next prove that it is symmetric. Let s,¢ € T>", assume that s ~yt
and let m € supp f. We have

mot—mos = mo(t+(s—t))—mos
(k)
m*>ot
=2 T o
E>0 )
~ (m'ot)(s—1t) (by Corollary 7.4)
< mot.

So mot~mos. We have m’ <m so the same applies to m’, yielding m’ ot ~m’os. We
deduce that ¢ ~¢s, so the relation is symmetric. Now consider sg, s1, sp € T=” with sg~fs1
and s1~¢s2. In particular, we have

mo Sy mo sy mo So
mosy mos; mosy
for all mesupp f\ {1}.

For mesupp f \ {1}, we have sy — so=(s2— $1) + (s1 — S0) where s9 — 51,81 — S0 <
mo so

mo sg

m’052’

SO S2 — 89 < We deduce that sg~fs2. Therefore ~¢ is an equivalence relation.  [J

m 052.

7.4 The extension theorem for Taylor expansions

We now prove the following result:

Theorem 7.13. Let v <On and p <v with 0 < . Let (U,oy), (T,or) and (V,oy) be
confluent hyperserial fields of force v with (T, op) C (V,oy) and (L<y,0) C (U, oy) C (V,
oy). Let 0: U )y x T7" — V() be a composition law of forcev. Let 0: V< yy — Vi< y);

[ f" be a derivation of force v with (U< ) € U< py, which extends the standard
derivation on L.y, and satisfies the chain rule

Vf €U, VE€T>",0(fot)=0(t) O(f)ot.

Assume that O has a near-support gy with Wy =<K Ly. Let s € T=7 such that o, satisfies
one of the two following conditions:

a) os preserves monomials, or

b) os extends into a strongly linear and bijective morphism or ordered rings V— V.

If (01(UxT>7),01U) has Taylor expansions at s, then so does (o,d).

We fix v, p, (U,op), (T,or), (V,oy), 0, o and s as in the statement of Theorem 7.13.

For all f €U, and k€N, we write f®) .= 5(f). We consider the class Py, of
series [ € U, that have Taylor expansions at s with respect to (0,0). We will prove
that 'Pa,o,s:U(<u).

Proposition 7.14. For f € U(.,), we have supp f CPy o s= f €Poos-



62 SECTION 8

mos

Proof. Let ¢ <s with e < —— for all m € supp [ \ {1}. By Theorem 7.5 if the condition

Theorem 7.13(a) holds, or Theorem 7.6 if the condition Theorem 7.13(b) holds, the family

(m®) o s) €M) ke NAmesupp £ 18 well(—l))ased. For m € supp f, our hypothesis that m C Py o

m k oS
2

implies that mo (s +¢) =3, .= k. Moreover, we have

fels+0)= 3 famo(s+e) and  [Wos= 37 famos
mesupp f méesupp f
(k) o
for all k€ N. We deduce with Lemma 1.2 that fo(s+¢)= ZkeN%ak. Thus f €
PB,O,& . O]

Proposition 7.15. Let G C U.) be a transserial subgroup with G CPy.. We
have G(<1) S Po,o,s-

Proof. By Proposition 7.14 and by induction on v in G(<1)=UJ G(,) it is enough to

v€On
prove that each monomial in G*P lies in Py o 5. This follows from Proposition 7.11. [

Proposition 7.16. Let n <v with ;1 >0 and set a:=w". Let 8 <a and let ¢ € Py o sMN
(U< w))=,a- We have Lg(EZ) € Py,o,s.

Proof. This follows from Proposition 7.11. OJ
Proposition 7.17. We have E(Pyo,s) CPa.o,s-

Proof. This is a direct consequence of Propositions 7.14 and 7.16. OJ
Proposition 7.18. We have (G(Po,o,s))(<1) < Po,o,s-

Proof. By Proposition 7.17, we have G(P,0,s) C Pa,o,s, whence (Gg,o.s)(<1) S Po,o,s by
Proposition 7.15. OJ

Corollary 7.19. We have Py o s=U(< -
Proof. Apply Lemma 4.10. O

This proves Theorem 7.13.

8 Finitely nested hyperseries as an ordered group

We now focus on the class L>" of positive infinite finitely nested hyperseries. We will
show that it is a group under composition, and then that it is a linearly ordered group for
the ordering < on L. This last result amounts to proving that each function L>" — L;
g fog for fixed f el is either constant or strictly monotonous. We will proceed by
proving that this property is preserved under the hyperexponential closure in certain cases.
Throughout this section, we fix a v < On with v > 0.

Definition 8.1. Let U and V be hyperserial fields of force v with U CV, let o: U x
V== — 'V be a hyperserial composition of force v and let f € U. We say that f acts as
a strictly increasing function on V>~ if we have

Vs, te V" s<t= fos< fot.
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8.1 Functional inverses

Theorem 8.2. Let v be a non-zero limit ordinal. Then (G(v),o,4) is a group. As a
consequence (.77, 0,4g) is a group.

Proof. Fix an ordinal p € (0,v), an n € N~ and set :=w*. Consider the subgroup
M) :={m € (L<puw)(<pr1):m =X Lo}

of (£<pw)(<ps1)- We also write $(u) :=R[[D(1)]]. Recall that Wy := {El: v€0n}®is a
good near-support for the derivation L —» IL, with 205 < £;. So for m € MN(u), we have

supp A(m) Cm - £¥M. 90, < 4.

It follows since O((IL<gw) (< p+1)) € (L<pw) (< ut1) that I(B(1)) S$(n). We also have $(j1) o
{3, C$(p) since £y, is L« g,-atomic.

Let € € $(p) with e <1 and write A,, . for the restriction to $(u) of the right composi-
tion I — I with £3,,+¢. Let f€$(u) and m€supp f \ {1}. We have m < fo, so m <451,

::/Zi[;n. By Theorem 7.13(a), we have A, .=V, o+ H,, . where

whence e <1<

- (k)
Hyo () — s o 30 Lot
k>0
and U, , is the right-composition with £g, restricted to $(u). Write ®,, o for the right
composition with € on L. The function H, . is strongly linear with H,, -(f) < Uy o(f)
for all fe$(u), so @, o0 Hy,  is strongly linear with (®,, o0 Hy ¢)(f) < f for all feS(u).
Furthermore, the inclusion 9($(v)) C $(u) yields (Pr, 00 Hy o) (B(p)) TS (w).
By Corollary 1.47, the function

Ine:S(p) —8(p), g—= Y (—1)F (D 00 Hp ) (g)
keN

is well-defined, with (idg() + ®n,a© Hnc) 0 Inc(g) = g for all g€ $(u). We deduce that

((®n,a0lne)(g))o(lpnte)=g

for all g€ $(p). In particular, the number (®,, o0 I, ) ({o) € () is a left-inverse of lg,+¢
in (]T_;>’>, o).

Now let f € G(v). Considering a sufficiently large non-zero ordinal p < v, we claim
that f € $(u)oe . Indeed take =17+ 1 where f € (L<wn)(<n)- Then supp f < el so
since £~ is atomic in (IL<wn)(<y), we get supp fof,n X fo. This proves the claim. The
series ef;% has an inverse /,r in G(v), so it suffices to show that g:= fo/,» € 3(u) has an
inverse in G(v). Write again a=w*. We have g € (IL_u+1) (< u41) S0 by Lemma 6.24, there
are m, p € N~ with £y, 0 g=V{p+ ¢ for a certain ¢ < 1. We have

supp € Csupp lam© g C (Lapw) - L<fan. 2,

where 20, is the canonical relative near-support for the right composition with g. For all
o € W,, there is a m € supp g< with v Xm. In particular 20, C 9(u), so e € B(pn). We
deduce that there is an h € $(u) with ho (lomo g) =w. We have (go (holym))o g=g so
go (holam) ="~ by injectivity of o4. Thus holym, € 3(n) C G(v) is the inverse of g. We
deduce since L~ = J G(v) that (L7, 0, fy) is also a group. O

veOng;,
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We will write f™ for the inverse of a series f in (IL”",0). We can now apply The-
orem 7.13(b) to each right composition I —s I with a series s € L. We thus have

Corollary 8.3. The hyperserial derivation L — I of Corollary 5.22 and the hyperserial
composition law I x ">~ — 1L of Corollary 6.23 have Taylor expansions.

Given v € Ongjy,, write G(v) := Uu<v (1L<wu)(><’z). Note that G(v) is closed under o.
We will show that (G(v), o, ) is a group.

8.2 The approximate mean value inequality

We rely on the following weakened mean value inequality for differentiable real-valued
functions. The link between monotonicity and this sort of inequality was suggested to us
by Vincenzo Mantova who also gave us the proof of Lemma 8.8 below.

Definition 8.4. Let U and V be hyperserial fields of force v with UCV and let o:
U x V=7 — 'V be a hyperserial composition of force v. Let 0:V — 'V be a hyperserial
derivation of force v. Given s,t € V=~ with s <t, consider the following statement for a
series f € U7

amvi. (flos)(t—s)x fot— fosx(f'ot)(t—2s).
We say that f satisfies the asymptotic mean value inequality (or amvi) at (s,t) if

amvi holds for (f,s,t). We say that f satisfies the amvi if it satisfies the amvi at all
(s,t) € (V>")2 with s < t.

Lemma 8.5. Assume that each f € U satisfies the chain rule. Let s,t € V=~ with s <t.
Let f,g€eU>" with fogeU>". If g satisfies the amvi at (s,t), if gos<got and if f
satisfies the amvi at (gos,got), then fo g satisfies the amvi at (s,t).

Proof. We have (f29)0t=(fogles _ folget) = folgos) \ got=gos o, hypotheses yield

t—s got—gos t—s
frolgot) x oot x L2290 g1 (o) g/or,
The chain rule (fog)' =g’ x f'o g yields the result. OJ

Lemma 8.6. We consider the hyperserial composition law o: II/J:)‘ x V>~ — Vi<w) of
force v given by Corollary 6.22. Let u <v and let v < X with v <w*. The series a:=

lyo effu € L.y satisfies the amvi.

Proof. We prove the result by induction on p. For z=0, we have y=0, so a=e‘. Thus
in view of Proposition 2.7, the amvi for a is a consequence of the mean value theorem
for exp and the fact that exp is strictly increasing. Assume that p >0 and that the result
holds for all n < p. In particular, by Lemma 8.5, each £,0 ef?nn for n< p, n<w and p<w’
satisfies the amvi.

Let s,t € V>~ with s <t. We distinguish two cases. First assume that f,u(t) = f,x(s).

Thus there is a f <w* with t — s < . We may choose >~ with 8 =w"n for

1
Lg(Ea(t))
certain n < p and n <w. Write b:=/go ef;o and ¢:=/{,0 ego, so a=cob. By our previous
arguments, the series ¢ satisfies the amvi at bos,bot. So Lemma 8.5 yields

(a/os)(t—s)<xaot—aos=<(a’ot)(t—s).
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Now assume that f,x(s) # fwr(t). So dun( Eyr(s)) <dun(Eynr(t)) whence in particular aos <
aot. Thus aot—aos=<aot=x(a’ot)(t—s). We have a’ot=aot>aos=a’os and
dot>t>t—s,s0oa’ ot>(a’os)(t—s),soaot—aosi=(a’os)(t—s).

Thus a satisfies the amvi. The result follows by induction. O

8.3 Monotonicity and exponential extensions

Let (U, oy) and (V, oy) be confluent hyperserial fields of force v with (U, oy) C (V, oy).
Let o: U x V77 — V be a composition law of force v. Let /: U — U be a derivation of
force v such that

e (U, is an H-field with small derivation.
e {1} is a positive near-support for ’.
e (o,’) has Taylor expansions.
e (o, ) satisfies the chain rule.

Given s,t € V7~ with s <t, write 73/‘ ..« for the class of positive infinite series f € U~"
which satisfy the amvi at (s,t), as well as:

fot > fos and
fot—fos ~ 1ot —Tp05.
Write
Prsii=Px5,U(U\U>)

- ﬂ P/‘ﬁ,t.

s<t

and

Proposition 8.7. Let s,t € V>~ with s <t. Let & be a subclass of W NP x5 We have
R[[GH c P/‘,s,t-

Proof. Let f € R[[S]] with f>IR. We claim that
fot—fos~Tpot—Ts0s5. (8.1)

Assume for a moment that (8.1) holds. Since 77 >R and 74 € P = ;, we have fot— fos>0.
Moreover since (U, ) is an H-field, we have f’~ 74, so the amvi for 77 yields

fot—fos Tfot—Tfos
t—s t—s

flos=<Tfos< S Tfot= flot.

Thus it suffices to prove our claim.
Assume first that there is a term 7 in f with 7 <77 and 7/0t}=7f0s. Then 7fot > 7fo0s,
which implies since Tf has Taylor expansions that { — s = T— Since {1} is a positive near
7o
support for 0 and (U, d) is an H-field, we have mfx= (m/) for all me U™, So we also have
t—s%= . For m e (supp f \ {0r}), we have 7pot —7p053= (t —s) 7fo s = 7r 0 s. Recall
Tos

that m acts as a strictly increasing function on V-7, so mot —mos<mot. We deduce
since ~ is an equivalence relation that

Tfolt—TpoS=Tfot = Tol=Tot—ToOSs.

So fot— fos~Trot —Tf0s.
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Assume now that /ot < Tfo s for all terms 7 € term f with 7 < 7. Since

mot—mos
t—s

TfOot—TfOS

sm'ot<Tfos=
t—s

ot— fo ot—TfoO
for all m e (supp f \ {07}), we deduce that ! t_f f t_Tf ® whence fot— fosn~

Tfot —TfOS. O
The following proof is from Vincenzo Mantova.

Lemma 8.8. Let s,t € V>~ with s<t and let G CU be a transserial subgroup such that
each f € G satisfies fos< fot. Then for all f € (G(<1))i and s,t € V=7 with s <t, we
have

fot— fos~Trot —Ts0s5.
In particular, each f € (G(<1))i acts as a strictly increasing function on V=7,

Proof. We prove by induction on EHg(f). Consider s,t € T>>" with s <t and let f €
(G(<1))Z such that for all g € (G(<1))C with EHg(g) < EHg(f), we have got —go s~
g0t —T140s and got > gos. If f € G, then also supp f CGZ. So for mesupp f \ {07} and
r€R”, we have (1y —rm)ot > (7p —rm)os. We deduce that (1pot —7p0s) > (mot—mos)
so fot— fos~T1rot—Tpos. Thus we may assume that f ¢ G.

Consider m € supp f with m <9;. Write ¢ :=logm and ¢g:=1logdy, so ¢, pg— ¢ €
(G(<1))Z. Our assumption that f ¢ G gives EHg(p), EHg(vo — ¢) <EHg(f), so (o —
p)ot>(po—p)osand pot —pos>0 so

woot —@pos>pot—pos>0.

This yields exp(poot — pgos) —1>exp(pot —pos)—1>0, whence

exp(poot —@pos)—1=exp(pot—¢pos)—1. (8.2)
We also have

efos>e¥os. (8.3)

Multiplying (8.2) and (8.3), we obtain
ePoot —e¥los=ePot—e¥os.

We deduce that fot— fos~7rot —7r05. Moreover since pgot > pgo s acts as a strictly
increasing function, we have 7ot — 7705 >0, whence fot— fos>0. O

Proposition 8.9. Let s,t € V=~ with s <t. If & C4l is a subclass with G CP »,; and
log & CR[[S]] (that is, if R[[S]] is a transserial subgroup), then (R[[S]])<1)CP ..

Proof. Write G:=R[[ENU"]], s0 GCP », + by Proposition 8.7. Note that (R[[S]])(<1)=
G(<1). We first prove that (G(<1))~ € P ~, by induction on the hyperexponential height.
Let f € (G(<1))~ \ G such that any g€ (G(<1))~ with EHg(g) < EHg(f) lies in P,
and let s,t € V>~ with s <t. We may assume that f > 0. By Lemma 8.8, we have
fot— fos~T1rot—7r05. Now EHg(logdy) <iex EHg(f), so by the induction hypothesis
log 0y satisfies the amvi. We deduce with Lemmas 8.5 and 8.6 that 9y satisfies the amvi,
so (0fos)(t—s)<x0pot—dpos=< (0fot)(t —s). Therefore (f'os)(t—s)< fot— fos<
(f'ot)(t—s),ie. fsatisfies the amvi. The result for all f € (G<1))- follows by induction.
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Now let f € G(<1) and write f= f. +7+ f< where f. € (G(<1))-, "€ R and f< is
infinitesimal. We may assume that » =0 and that f. >0. Let m €supp f<. We claim that
mos—mot=(mos)(t—s).

By our previous arguments, we have m~' ¢ P ', 80 mos>mot. Assume first that
t—s=< ::,235 So by TE and Corollary 7.4, we have mot —mo s~ (m’os) (t — s), hence

the result. Assume now that ¢t — s = m—ooz Assume for contradiction that mot~mos.
1

m/

Som lot~m™los, that is, mtot —mlos<m~los. Now the amvi for m™—! yields
mlot—m tosi=((m™1) 0s)(t—s). We deduce that (m~1)"0s) (t—s)<m~los, ie.

m~los _ mos
(m~1)’os mos

t—s=< a contradiction.

Therefore mot=mos. We have mos>mot>0somot—mos=<mos=< (m'os)(t—s)
by our assumption on t — s.

Since m <1 and (U, /) is an H-field with small derivation, we have m’ <1, so mot —
mos<t—s. On the other hand, we have f. ot — foos%=(f'0s)(t —s) where f/'=f>1
as a consequence of Lemma 8.15. In particular fiot— fios<t—s< foot— foos, so
fot—fos~ f.ot— f.os. Since f. €P »,, we deduce that f € P »,. This concludes
the proof. O

8.4 The extension theorem for monotonicity
We now to prove the following theorem:
Theorem 8.10. Let (U,oy) and (V,oy) be confluent hyperserial fields of forces v and

(v,v) respectively, with (U, oy) C (V,oy). Let 0: U x V> —V be a composition law of
force v. Let "U— U be a derivation of force v such that

. (IfJ, ") is an H-field with small derivation.

o {1} is a positive near-support for '.
e (o,') has Taylor expansions.

e (o,') satisfies the chain rule.

Let s, t € V=~ with s <t and UCP s where P » s 4 is as in Section 8.3. Then TBQP/‘,SJ.
We fix (U, oy), (V,o0y), /, o and s,t as in the statement of Theorem 8.10.
Lemma 8.11. We have E(P =) CP 7 5

Proof. By Proposition 8.7 and since IE(P » 4 ;) C U, , it is enough to show that E(P 56N
UCP ¢ Let a:= Ls(EY) be such a monomial, with ¢ € IUha NP st and fw < a.
Lemmas 8.6 and 8.5 imply that a satisfies the amvi at (s,¢). We have aot > aos since
Lgo E, is strictly increasing. So a€ P » s ¢. O

Proposition 8.12. We have (G(P s.4))(<1) S P 7s.1-

Proof. By Proposition 8.9, it is enough to prove that G(P » ;) CP ¢ But this follows
from Proposition 8.9 and Lemma 8.11. OJ

Proposition 8.13. We have TEJ:P/757t.

Proof. Apply Lemma 4.10. O
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This proves Theorem 8.10.

8.5 Monotonicity and right compositions with atomic elements

Let (U, op) and (V, oy) be confluent hyperserial fields of force On and (On, On) respec-
tively with

(La O) C (Ua OU) C (Va OW)'

Let o: U x V> — V be a hyperserial composition of force On. Let : U — U be a
hyperserial derivation of force On extending the standard derivation on IL, and such that
(U, ") is an H-field with small derivation. Assume that (o, /) has Taylor expansions and
satisfies the chain rule.

We fix an increasing union (U, )o<,<on Where each U, is a hyperserial subfield of U of
force v, and a sequence (a,)o<y<on € V such that

e cacha, for 0<v<Onis L.,v-atomic and the right composition U—V; f— foa,
preserves monomials,

e for each ¥ < On with v >0, the function s+ a,0s: V>~ — V>~ is a strictly
increasing bijection,

e for each 0 <v < On, each f €U, " oa, satisfies the amvi

e the set {1} is a positive near-support for / on U, o a,.

Moreover, we assume that

U= |J W) (8.4)

0<r<On

We write $,:=U,o0a, for all v € On. So I, is a confluent hyperserial subfield of U, of
force v.

Lemma 8.14. For v € On with v >0, we have (Uy,) (<)o a, = ($,)(<y)-

Proof. On the one hand, the right composition oq,: U, — 5, preserves monomials, so it
is a hyperserial embedding of force v. Furthermore this function is bijective by definition.
Thus by the initial property of the closure under hyperexponentials, it extends uniquely
into a bijective hyperserial embedding ®: (Uy,)(<,) — (%) (<) of force v.

On the other hand, by Theorem 6.1, there is a unique right composition og,: (U,) (<) —
(3,) (<) of force v which extends oq,. Since oq, is a hyperserial embedding, we have
supp oq, = {1}. Theorem 6.1 also yields supp o4, = {1}, which trivially satisfies (6.8) with
respect to any series. By Theorem 6.29, the function oy, preserves monomials. In other
words og, is a hyperserial embedding (U,)<,) — ($,)(<,) of force v which extends og,.
We deduce that (Uy,)(<,)0a, =P(Uy)(<1)) = () (<1): O

Lemma 8.15. The set {1} is a near-support for ' on (3,)<,).-

Proof. Note that {1} is good. By Theorem 5.7, it follows that 913%, extends uniquely
into a hyperserial derivation of force v on ($,)(<,) with near support {1}. Thus 0 itself
has near-support {1}. O

Theorem 8.16. For all f e U™ and s,t € V>~ with s <t we have

fos < fot and
fot—fos ~ Tpot—Tp0s.
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Proof. Thereis a v >0 with f € (U,)<,) by (8.4),s0 g:= foa, €(3,)(<,) by Lemma 8.14.
We have g € P »,, by Proposition 8.13. In particular, the series g acts as a strictly increasing
function on V>>~. Since V>~ — V>>7; s+ a, 0 5 is bijective and strictly increasing, there
are u,v € V>~ with u <v and (a,ou,a,0v)=(s,t). So

fos=gou<gov= fot
and
fot—fos=gov—gou~Tti0v—T4j0Uu="T70t —TfOS.

This concludes the proof. O

Corollary 8.17. For f €U, the function F: V>~ —V;s— fos is strictly increasing if
and only if f'>0, strictly decreasing if and only if f' <0, constant if and only if f'=0

Proof. We first treat the case when f 1. If f >R then f'>0 by H1, and F is strictly
increasing by Theorem 8.16. It follows that if f <IR, then f’<0 and F' is strictly decreasing.
Assume now that f=<1,so f=r+¢ for ar€R and a ¢ € U%. We have f’'=¢’ and the
monotony of F'is that of the function s+ cos. Assume that € #0. The function s+—cos
is strictly increasing (resp. decreasing) if and only if s+ !0 s is strictly decreasing (resp.
increasing), we obtain the result by applying the previous arguments to e ~! = 1. We have
f'=0if and only if e =0, in which case F is constant with constant value r. O

8.6 The case of finitely nested hyperseries

/

Lemma 8.18. Write \:=w". The set {1} is a near-support for ' on L<Aoe§°.

Proof. Consider a monormal hin L.yo e)\ There 1s an [€ £ with h=1[o e)\ , and we
have () = 0(e{) d(1) 0 e5?. We have supp d(I) C [ - {E 170 <y <A} where 79 < A is minimal
with [,,# 0. Note that [=/,,. Therefore

supp ()  A(ef?) (loefd) - {£ 0 ef0: 70 <y < A}
For v < A, we have
1/ oe)\a(e)\) 7Hoe)\<<£%oe/\_[oe

s0 A(e0) - {KT 0ei0:v9 <y <A} =<h. This proves that {1} is a near-support for d on L.y o
& .
Corollary 8.19. Let V be a confluent hyperserial field of force (On,On), and assume that

each f €L has Taylor expansions with respect to ":IL — L and the law o:L x V" — V
gwen by Corollary 6.21. For f€lL>" and s,t € V>~ with s <t we have

fos < fot and
fot—fos ~ Tpot—Tp0s.

Proof. We need only justify that IL satisfies the conditions imposed on U in Section 8.5.
We know by Corollary 6.28 and [15, Proposition 7.8] that each f € L satisfies the chain
rule. We know by Corollary 5.22 that (L, /) is an H-field with small derivations. For each
v € On with v >0, we set L, :=L.,v, and a, := efﬁ,. Since a, is L« v-atomic, the right
composition with a, preserves monomials, so it is a hyperserial embedding of force v. Note
that V>~ — V> s+ a, 0 s is strictly increasing. Fix v € On with v > 0. The same
arguments as in Lemma 8.11 using Lemma 8.6 yield (log £.,v) o effu CP .. We deduce
with Proposition 8.9 that L, »o eioy CP ».. Finally, we have L= Uo<wp<on L<wr) (<v)s
so Theorem 8.16 applies. O
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Corollary 8.20. Fach f €™ acts as a strictly increasing function on L>".

Since (I, d) is an H-field, we have the following equivalences for f € L:

f/>0 < fel> or feR-—(L>")"1,
f/<0 < fe-L>" or feR+(L>")"! and
f'ed < feR.

It is then easy to deduce the following result.

Corollary 8.21. Let V be a confluent hyperserial field of force (On,On), and assume that
each f el has Taylor expansions with respect to ' L— L and the law o: L x V> —
given by Corollary 6.21. For f €IL”>" and s,t € V> with s <t we have

fot>fos < [f'>0,
fot< fos < f'<0, and
fos=fot < f'=0.

Corollary 8.22. Let VDL be a confluent hyperserial field of force (On, On), equipped
with the composition law o: L x V> — 'V of Corollary 6.21. Assume that (’,0) has
Taylor expansions where ' L —>I~L, and that (0, 0) satisfies the chain rule. Then each
function

V>" — V> s fos
for feL>" is bijective.
Proof. This function is strictly increasing by Theorem 8.16, hence injective. We have a

finve L>" with fiVo f =/. So by Lemma 2.1 and Corollary 6.23, the function s— f™Vos
is the functional inverse of s+— fos. OJ

Proposition 8.23. The structure (]~L>7>7 0,<) is a linearly ordered group.

Proof. We know that (]~L>7>, <) is a linearly ordered class and that (]~L>7>, o,p) is a group,
so it is enough to prove the following statement

Vf,g,h€l>", g>ly=>(fog>fAgoh>h).

Let f,g,heL> " with g > ¢. Since f acts as a strictly increasing function on >, we have
fog> foly= f. The right composition by A is strictly increasing, so goh > fpoh=~h. I

9 Conjugacy

In [19], Ecalle studies what he calls the natural growth scale. This is a (somewhat informally
defined) group G, under composition, of germs at +oo of real quasi-analytic functions.
The elements in G involve hyperexponential and hyperlogarithmic functions expx, log,x,

k € N which satisfy the same conjugation equations as £, and eiok, ie.

exp k+1(r+1) = exp,r(exp, r+1(r)) and
log k+1(logk(r)) = log, k+1(r)

for large enough r € R (see also [35, Appendix A] for a construction of those functions).
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Thus the group (I, o) and (G, 0) can be regarded respectively as formal and geo-
metric substantiations of the same idea. Ecalle gives formulas for conjugacy relations
within (G, o). In order to make sense of those formulas in our formal setting, we rely on G.
A. Edgar’s work [21]. In [21, Section 4], Edgar shows that each transseries f € Ty~ C L of
exponentiality 0 (i.e. with 9,(f)="~o) with f >/p is a conjugate of £o+1 [21, Theorem 4.4].
Edgar’s proofs apply in our case with a few adjustments that will be made below.

We will prove that any two f, g€ L>" with f, g > {y are conjugate in the group
(L>",0), i.e. that there is a V € L>" with Vo f=go V. It is enough to prove that each
fel>” with f >/, is a conjugate of a fixed series >£y. We choose £y + 1, which we see
as the simplest one. So for a € IL with a > ¢, we are looking for a V € L™ with

Vof=V+1.

9.1 Edgar’s method

Besides the properties of Trg as a differential field (in particular, that it is an H-field),
Edgar relies on properties of an integral operator [ on Tig. So we must introduce it in our
setting. Recall that O(IL) =L and Ker(d) =R, so for each f €L, there is a unique F € I
with 1 ¢ supp F' and F'= f. We write [ f:=F. For s,t e >, we also write

[y

Lemma 9.1. For s,t€L>", the functions IE L—1L and fst: L — L are strongly linear.

Proof. Recall that (I, d) is an H-field, so given m € £, there is a unique n € £ and a unique
reR* with m~7n’. We then write Z(m) :=rn. Note that 7: 8 — R is strictly <-increasing
so it extends uniquely into a strongly linear function Z: I, — IL. Now the strongly linear
function
UL — L
[ [—=(9I)(f)

is contracting, i.e. satisfies U(m) <m for all m € K. So by Corollary 1.47, the function
0oZ=id; — ¥ has a strongly linear functional inverse

(@oz)m="" wit.
keN
We have (Zo (0oZ)™)(1)=Z(0)=0. We deduce that [=Zo(doZ)™ is strongly linear,
whence also fst is strongly linear. O

We next prove elementary properties of the integral operator. The reader can see |20,
Corollary 3.17 and Proposition 3.18] for similar results in the case of transseries.

Lemma 9.2. Let f,ge L and s,t € L™ with s<t. If 0< f < g then ()gf:fgf:g.

Proof. By linearity, it is enough to show that f; f>=0. Since ([ f)’ >0, the function
L>" - L;u— (] f) 0w is non-decreasing by Corollary 8.20. Therefore fstf =([[f)ot—
(f flos=0. Il

Corollary 9.3. For f,ge L and s,t € L™ with s #t, we have f%g:>f;f<fstg.
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Proof. Write sp:=min (s,t) and to:=max (s,t). For all »r € R”, we have |f| <r|f|.

Therefore
t to to to t
[al= [ i< [Crial=r [Cal=| [0
s S0 S0 S0 S

by Lemmas 9.2 and 9.1. Note that g#0, so [ g¢R. Since s#t, we have ([g)os#([g)ot
by Corollary 8.20, whence |fstg| > (0. We deduce that |f5tf| =< |f8tg|, whence fstf < fstg. 0O

Corollary 9.4. For f,geL? and s,t € >~ with s #t, we have fwg:>f5tf~fstg.

An important step in Edgar’s proof of [21, Theorem 4.4] is to conjugate an f € Tyg~
of exponentiality 0 to a series x + ¢ where € <1 is a so-called log-free transseries. We thus
need to define a field T which plays the same role in L as the field of log-free transseries
does in TEE’>. We write O for the group generated by 5 and all groups Szu o effy for
v € 0On”~. We also write T := R[[M]]. We have (/) CL.jow. For v € On>, we have

ILawroel) C ER xd(Lcwr)oel

C (Lawwoell)- (Ecuroell)
C (Lopv) o6l

We deduce with the Leibniz rule that o(T) C T.

Lemma 9.5. For all p,v € On with 0< p<v and all (mo,...,mn)e%RxS:;uoefful X eee X
£<wuoefﬁ,p, we have mg --- m, =m; where i=max{j €{0,...,p} :m;#1}.

Proof. By Corollary 1.31(c), it is enough to note that Lopn? o el < (S/;;u):’é o€’ when-
ever 0< pu<v and that (& < £_u7 06, 0

Lemma 9.6. For all me 9™, we have suppm’=m.

Proof. Write m=mg --- m, for (mg,...,m,) € I8 x Q/;;ﬁé o efful X oo X SZﬁé o effup
where pc N and 11 < --- <v,. We have m’:ng;o mzT where m =m,, by Lemma 9.5. By
Lemmas 8.18 and 8.15, the set {1} is a near-support for & on each R[[M(v)]] o B2, so
suppml-T <«m; forallie{1,...,p}. If p#£0, then we also have suppmg)g {1,045} <m. So
we have suppm’=m in that case. If p=0 then m =mg, and since m is infinitesimal, we
have m{ = my. O

We require some technical lemmas whose proof in [21] relies on the specific inductive
definition of Ty g, and must therefore be proved in a different way. The results which are
relevant to our case are [21, Lemmas 3.11(g), 3.14(a,b), 3.20, 3.21 3.23, Theorems 3.8
and 4.1, and Propositions 4.2 and 4.3|. Using the adapted versions of those results, we will
prove an adapted version of [21, Theorem 4.4].

Lemma 9.7. (adapted from [21, Lemma 3.11(g)]) If b €M7 and nesupp (Lob)’, then nf~
bf.

Proof. We have (¢pb)'=b+ {yb’ so we may assume that n € {y-supp b’. If b€ £.4, then
since b+ 1, we have b’ € R7 b /5! so n< b, whence nf ~ bf. Otherwise b s ;. We have
log ((supp b’) - £) C (log (supp b’)) + log £y where log (supp b’) <log b > log ¢y by Lemma 9.6,
whence (log (supp b’)) = log £o. In particular logn ~1logb so nf~bf. O
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Lemma 9.8. (adapted from [21, Lemma 3.14(a,b)]) Let m € R and set
B = {nch:nf<m} and
B = {nch:nfxm}.

Then B and B are subgroups of K. Moreover, if g€ M=, then we have

geB — supp (bog)'CB and
g€B = supp (log) CB.

Proof. The fact that B and B are subgroups follows from the inequality

(non1)f =nf 4+ nl g max (nf,nl) for all ng, n; € &.
<

S

The last two statements follow from Lemma 9.7. O

Lemma 9.9. (adapted from [21, Lemma 3.20]) Let B C 8 be well-based. Let g €*B. There
are finitely many pairs g1, g2 € B with g € supp (Lo g1)’ ge.

Proof. The family ({pm)mew is well-based. Since 0 is strongly linear, it follows that
((lom))mess is well-based. So ((fopm)'n)m ness is well-based by Lemma 1.3. O

Lemma 9.10. (adapted from |21, Lemma 3.21]) Let e € 8=, and set
2 = {gef:gxeng <(le) '} and

A= {geR:g=<eng < (o)1}

Then R[[]] and R[[2]] are closed under the operations

80,91 = 8091,
g0,91 — (Logo) g1, and
g — floeg.

Proof. Apply Edgar’s proof of |21, Lemma 3.21], using Lemma 9.8 instead of [21,
Lemma 3.14(a,b)]. O

Lemma 9.11. (adapted from |21, Lemma 3.23]) Let B CIM be non-empty, well-based and

infinitesimal. Write e =max B and assume that gt < (lge)™" for all g€B. Let B denote
the smallest set of monomials such that

i. BB,
i. if g1,02€ B, then g1g2€ B,
ii. if g1,82€ B, then supp (£og1) g2 CB.
Then B is well-based.

Proof. We need to prove that the least set 87 of monomials with B; DB U {¢?} with
Vg € By, supp (lpeg’) C By is well-based. To that end write

G = {meM:mf<(he)™'} and

G = {meM:mf<(he) 1.

Consider the derivation 9,:=/ped on L. We claim that
O(R[[S]) C R[S]] and
(R[[S]]) < R[&]].
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Given m € &, we have suppm’=m by Lemma 9.6. We deduce that (suppm’)f=<mf< (¢ye)~?
with a strict inequality if m € &. Thus (supp de(m))t C {5, et} U (supp m’)T < (g e) 7,
with strict inequality if m € &. So 0, restricts to strongly linear maps R[[G]] — R|[[&]]

and R[[6]] — R][[S]]. Moreover we have J.(m) <m for all me &. Thus we have a strictly
extensive and Noetherian choice operator

Vm € &,9(m) :=supp de(m)
on R[[&]]. Given X C9MN, we write C1(X) for the union of classes Cl,,(X),n € N where

Clp(X) := X and
Clp+1(X) := Cly(X)U U supp d(m) for all n € N.
meCl, (%)
By Corollary 1.43, for each well-based subset 20 of &, the set C1(20) is well-based.
Let ¢:=(BU{e’})NG and D :=(BU{?})\ & ={meBU{e?}:ml=<(¢he)~}. Since
0:(6) CR[[S]], writing €= supp d¢(m) \ {m}, we have € C & and C1(D) =D UCI(€).
So

mev

B, = C1(B) C C1(¢) UCLD) C C1(€) UD U CL(€)

is well-based. Now apply Edgar’s proof of [21, Lemma 3.23], using Lemma 9.10 instead of
[21, Lemma 3.21(c)]. O

9.2 Solving conjugacy equations

Proposition 9.12. (adapted from [21, Theorems 3.8 and 4.1]) Let f € T>~ of the form
f=lo(1+re+d) where r€R>, § <e<1, (suppd) < (bpe)™! and g’ < (bye)~! for a
gesuppd. Then there is a V € L™ with V'~ (rfye)~" and

Vof=V+1.

Proof. Note that ¢,0 € T. By the arguments in the proof of |21, Theorems 3.8], using
Lemma 9.11 instead of [21, Lemma 3.23| and Lemma 9.9 instead of [21, Lemma 3.20], we
obtain a series ®1(0, £o) ~ 7 {ye with
f! _ 1
@1(0760)0 f (b1(07£0).
So setting V := fm, we have f'x V'o f=V' whence (Vo f)'=V' by the chain rule.

So Vo f=V +rgfor a certain ro € R. It is enough in order to conclude to prove that ro=1.

Set A= f %Oe and write 7 for the dominant term of A. So

f 1 1

Vel=v = ~ and by Corollary 9.4

’ f Ao (I)l(oagO) /’l"foe 1 ( Yy T ry )

/ I Aof—A~ToOf—T. (by Corollary 8.20)
’I“f()e

We have —— = (5" = (log £9)’ so A= 1. It follows that f —fy=<¢fy<—. Thus by TE and
rlpe 0 ’ T
Corollary 7.4, we have 7o f —7~7/(f —Llg) ~ A" (f —lp) ~ 2~ 1. So ro~ 1. But rg is a

~ 7“@0 4
real number, so ro=1. O

Proposition 9.13. (adapted from [21, Theorem 4.2|) Let f € T~~ of the form f={y+¢
where e <1 and € >0. There are a V €™ and a § € L= with 6T =1 and

VofoViV=/y+1+56.
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Proof. The proof is the same as in [21, Proposition 4.2], using Proposition 9.12 instead
of [21, Theorem 4.1]. O

Proposition 9.14. (adapted from [21, Proposition 4.3]) Let f € L>" of the form f =
lo+1+68 where § <1 and 8t =1. There is a V € L™ with
Vof=V+1. (9.1

Proof. Write ¥ for the operator L — L defined by
U(g):=(lo+g)of—Lo—1=gof+§

It suffices to show that ¥ has a fixed point go; then V := /¢y + go satisfies (9.1).

To that end, we will show that there is a subclass & of & such that U(R[[G]]) CR[[S]]
and that mo f <m for all m € &. Consider the class & of monomials m with m <1
and mf = 1. We have § € R[[&]] since D; > 1 and the logarithmic derivative is strictly <-
decreasing on R<!. Fix an m € &. We have

log mri ! = log(mo f) —logm
!
I
!
- / 1. (by Corollary 9.3)
I

So log%c > f—Llo~1. Since f >y, and m is positive and infinitesimal, we have mo f <m.
We deduce that longof < 0 whence longof <R, so mo f <m. In particular, we have
mo f € R[[&]]. By Proposition 1.46, the family §,00 f,d0 fo f,... is well-based. The series

Goi=6+80 f+50 foft---
satisfies gpo f = go— &, whence ¥(go) = go as desired. O

Lemma 9.15. Let f € L>". For sufficiently large v € On there is an infinitesimal € €
£<wuoef?y with

lwo foeS=ly+e.
Proof. Fix a sufficiently large limit ordinal v € On with f € IL:ZU. We deduce with

Lemma 6.24 that 0,v(f) =£p. So there are a p<v and a 6 € E:;u with § < ¢« and
byno f=L,n+ 6. By TE, we have

(ﬂlfu)(k) o0l ,u

k
k! o%.

lowo f =l =013" 0 (lun+8) — bur =Y
k>0

Zli)’“)(k) o/l

Now each (ng“)(k) €Lcyvforall k>0s0 3, ( ke L. The series

k!

Twhy (k)
£:= <Z (b ) o bur )k! 0 L 5’“) oels,

k>0

satisfies the conditions. O

Theorem 9.16. Any two f,geL>" with f,g>{y are conjugate.
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Proof. It suffices to prove that each f > /¢y is a conjugate of ¢p+ 1. By Lemma 9.15, the
series f is a conjugate of £y+ e where ¢ € T~ and € >0. By Proposition 9.13, the series f
is a conjugate of £o+ 1+ 0 where § <1 and (suppé)! = 1. By Proposition 9.14, the series
f is a conjugate of o+ 1. O

We see by taking inverses that any two series f, g€ L>" with f, g </ are conjugate.
Since (L™, 0, <) is an ordered group, no two series f, g€ L>" with f </y< g can be
conjugate. This shows that there are exactly three conjugacy classes in (I~L>7>7 o) including
{lo}. In particular, the group (I~L>’>, o) is simple. Note furthermore that the positive
cone L>% (and thus the ordering on ]~L>’>) is first-order definable with parameters in
(>, 0) as the class of series that are conjugates of o+ 1.

Remark 9.17. Conversely, let (G, -, 1) be a group with exactly three conjugacy classes
{1}, C; and Cy with C; :C2_1 and Cy-C; CCy. Then the class C; is a positive cone for G
and for the resulting order, the group G is linearly bi-ordered. As far as we know, the
existence of such a linearly bi-ordered group is an open problem (see [11, Problem 3.31]). In
order to obtain a set-sized solution G to this problem, it is enough to consider the closure
under solutions V of Vo f=V +1 for f > {y, composition and inverses, of {{o+ 1}. So set
Go:={ly+ R}, and for n € N, define G, 11 as the subgroup of L>~ generated by

G U{V el :3f G, (f>lAVof=V+1)}.

For any fixed f > {y, the class of series V with Vo f=V +1 is a set (see (9.3) below), so
each G, is a set. Thus G := Un ENQn is a set-sized solution.

9.3 Real iterates

Let us consider and solve the simple inequation

fog=foy, (9.2)
for f,ge > with f, g > (.

Consider for a moment the idea that hyperseries are akin to very regularly monotonous
differentiable functions, like germs in Hardy fields with composition. Then one expects
that when f is large, a slight increment of its argument, from ¢y to g, should result in a
relatively sharp increment in its value, which ought to exceed the increment from f to
go f. In other words, the series g being fixed, the inequality (9.2) ought to hold for large
enough f. In order to understand how large f should be with respect to g, we are first
led to consider the case when f and g commute, i.e. when fog=go f. Indeed this case
should be elucidated first. As in [21], it turns out that the class of series which commute
with g can be described using fractional and real iterates of g. Starting with the simpler
case when g=/{y+ 1, we will show how those real iterates allow us to solve (9.2).

Lemma 9.18. Let f e L>". We have
follo+1) > f+1 if f>l+R.
follo+1) < f+1 if f<lh+R.

Proof. Assume that f>/¢y+ R, and fix an f € R”. The inequality f —fo >R implies by
H1 that f/>1. If f'~1, then f=/{y+0 for 0 := f — ¢y >IR. We have

follo+1)— f=ly+1—Lly+do(lop+1)—d=14+d0(lp+1)—9¢
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By Corollary 8.20, we have do (g+1) —§ >0, whence fo(fp+1)> f+1. If f'<1 and
f'o 1, then f=r{y+e for a certain r € R with » > 1 and a certain € < £y. By Corollary 8.19,
we have

follo+1)— fr~Tpo(lo+1)—Tp~r.

We deduce that fo(¢yp+1)— f>1, hence the result.
Assume now that f’>1. By Corollary 8.19, we have

2 2
fo<£0+7_—f>_f'\“7'fo<£0+7_—f>—7'f-

We have 2/Tf/ =< af/a} so TE and Corollary 7.4 yield

TfO(fo—f—z/) —TfNTf%:Z
i f

In particular, fo<£o+3,) — f>1. Since Tf’>IR, we have fo(lp+1)— f> fo (KO—FQ/T;) —f
i

by Corollary 8.20, hence fo(¢y+1) — f>1. The statement when f </{y+ R follows from
symmetric arguments. O

Lemma 9.19. Let f € > with f £ fo+ R and f # lo+R. Then there is a unique ry €RR
such that § := f — lo+ry is infinitesimal, and for all r € R, we have

fo(f+r) < f4+r ifé>0
fo(f+r) > f+r fd<O.

Proof. We must have f —{y<1so f —{ly=r;+6 for unique 7y €R and 6 <1. Let r€ R~. So
follo+r)—f+g=ro(lo+r)—4.

If § >0, then 671 >0so0 6! acts as a strictly increasing function on IL>>" by Corollary 8.20.
We deduce that 0o (lp+7)—3d <0, s0 fo(lp+7r)< f+r. The case when § <0 is sym-
metric. OJ

For geIL>", we write C(g):={h€L>":hog=goh}. The class C(g) is a subgroup
of (L7, o) which contains g.

Corollary 9.20. We have C(fp+1) =4y + R.

Proof. We have C(¢p+1) C¢y+ R by Lemmas 9.18 and 9.19, whereas the converse inclusion
C(lp+1) D lyp+ R is immediate. O

Let heL>" with h>{y and let U,V € L™ with

Voh = V41 and
Uoh = U-+1.
The existence of V and U follows from Theorem 9.16. We have Voho V™ =/y+ 1=

UohoU™, so (UoVi™)o (fg+1)=(lg+1)o (U o V). Thus by Corollary 9.20, there
exists an s € R with

V=U+s. (9.3)
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It follows that for all r € R, the series V™ o (V + 1) does not depend on the choice of V.
We write

A= vVive (V 47) for any V e L™ with Voh=V +1.
We also write (A™)[":= pl="] and Eg] =/ for all r € R, so the operation
I:R x L>" — > (r, h) — Al

is well-defined. This can be interpreted as a law of ordered R-vector space on the non-
commutative linearly ordered group (L=, 0, <).

Remark 9.21. Another consequence of (9.3) is that V — U € R. So V/=U"’, and there

[—]

is a unique finitely nested hyperseries denoted h with constant term 0 and hl=“/oh =
Ly

hl=“l 4+ 1. For instance (63)[7”} = Tog2 and (ef?u)[*”] =/, u+1 for all p € On.
Proposition 9.22. For all he 1”7\ {{y}, the function r— bl is an isomorphism of
ordered groups (R, +, <) — (C(h), 0, <) with B —p.

Proof. Fix a V with Voh=V 41 So h=V™o (V+41)= Al by definition. For all
p e > we have

po(lp+1)=({gp+1)op <= V™opo(V+1)=V™o(fy+1)ogpoV
— (VinvoQOOV)OVinVO(V-f-l):VinVO(V—f—l)O(VinVOQOOV)
< (V™WoypoV)oh=ho(V™opoV).

Therefore C(h) = V™ oC(ly+1) oV =V"™0 ({+R) oV = {hl':r € R}. For all ,s € R,
we have (fg+71)o (lo+5) =Lo+7+s so ATl = hl o pl8l. Furthermore, we have r < s =

V4+r<V+4s= hll<plb by Corollary 8.20. So A+ Rl is an isomorphism of ordered
groups. O

For each n € N, the series Rl is the n-fold compositional iterate of h, whereas Rl s
the n-fold compositional iterate of h™Y. Thus for g € @}, the series hld is a fractional iterate
. . 1 . . .
of h. For instance, we have a solution A7) to the formal Schréder equation in y:

yoy=h. (9.4)

Proposition 9.23 below shows that A2 is in fact the unique solution of (9.4) in L>>~. As for
the values of hl"l for r € R\ @, one can consider them as “real iterates” of h. The existence
and properties of real iterates of so-called grid-based transseries of exponentiality 0 were
studied in detail by Edgar [21]. Our results in the case of hyperseries are similar to his.

Proposition 9.23. For heL>" and r,s € R. We have (Rl =plrsl,

Proof. We treat the case when h > ¢y and r, s> 0. The other cases follow from the identities
Tt = (o) = (L) for all pe L™ and t € R. Let V € L™ with Voh=V +1 and
set U:=(r~14y)oV. We have (r~14p) o (lo+7)= (bo+1) o (r~14p), so
Uohll = (r~Yg)oVoVi™o (ly+1)oV
= (r~')o(lp+r)oV
= U+1.

So (h[r])[s] =U™o(U+s)=V™o(rly)o(lo+s)o(r=tly)oV=V" (ly+rs) oV =nl"l. O
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Proposition 9.24. For all h € L™, the function r— W) s the unique non-decreasing
group morphism (R, +) — (C(h),0) with Rl = p.

Proof. By Proposition 9.22, it is enough to prove the unicity. Let ¥:]R — C(h) be a non-
decreasing morphism of ordered groups with ¥(1) =h. Let ¢ :%E @Q where n € N~ and

k € Z. We have U (¥/,)[" = hl¥] whence W (¥/,) = h”»] by Proposition 9.23. We deduce that
¥ and 7 Al coincide on @Q. Since ¥ is non-decreasing and @ is a dense subset of R, it
follows that ¥ (r) = Al for all r € R. O

We now solve (9.2).

Proposition 9.25. For f, g>{y, the solution to the inequation fog> go f is as follows:
a) If f>C(g), then fog>go f.
b) If f <C(g), then fog<go f.
c) If f #C(g) and f £C(g), then for gr:=sup{heC(g):h< f}, we have

fog < gof iff>yr
fog > gof if f<g and
fog = gof if f=gys

Proof. Let V eL>” with Vog=V +1 and write h:=V o fo V™. Note that
fog}gof<:>ho(€0+1)2h+1.

So we may assume that g=/¢y+ 1 and f=h. Then the statements a) and b) follow from
Lemma 9.18 and Proposition 9.22. As for ¢), note that the number r; in Lemma 9.19 is the
supremum of {r e R:{y+r < f}. So ¢) follows from Lemma 9.19 and Proposition 9.22. [
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