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Abstract
The proposed method allows to calculate explicitly, using mathematical notions of barycenter and
mixed product, the conduction duration switches of a n-leg 2-level Voltage Source Inverter (VSI)
supplying a n-wire load. This method depends on a new geometrical and vectorial VSI characterization.
Its geometrical feature enables optimization and graphic representation such as the Space Vector
Method (SVM ) for a 3-leg VSI.  Its  vectorial feature enables to generalize to n phase systems the
properties found out with three phase systems.

Introduction
When a VSI is controlled with a carrier-based PWM, the conduction durations of the switches have to
be calculated to obtain the correct average values of the voltages applied to the load. The more classical
way is the Suboscill ation Method [9] which determines the intersections between a triangular shape
wave and the desired average values of voltages. For a 3-leg 2-level VSI supplying a star connected
load with isolated neutral, another method, more favorable to optimization [2],[4] is the Space Vector
Method. Then, to obtain the conduction durations, projections of the desired vectors must be achieved
(Fig 1). However, this last method can hardly be generalized to the study of n-leg VSI supplying n-wire
loads [13], [14] or even a 3-leg VSI supplying a star connected load with neutral not isolated [6]. It is
always possible to use the Suboscill ation Method but in this case we have no more geometrical tools to
analyze and optimize the performances of different control laws. A few works, [1], [5], develop, for 4-
leg VSI a 3-dimensional approach by using vectors that belong to a 3-dimensional space. Other works
[8], [10] use more general methods for n-leg VSI but with no geometrical approach.
We propose in this paper a general geometrical vectorial characterization of VSI. So, a n-dimensional
vectorial space Fn is introduced for studying a n-leg VSI. This characterization enables to use
geometrical tools for optimization of n-leg VSI control as the SVM for a 3-leg VSI. Then, we describe
how to determine explicitly, in a such space Fn, the conduction durations of the switches. From this
point of view, it is a generalization of the way to achieve, by SVM, the conduction durations for a 3-leg
VSI (Fig 1). At last, we explicit for a 3-leg 2-level VSI the relations of the method with SVM and with
Suboscill ation method.
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Characterization of a n-leg 2-level VSI

Vectorial space Fn associated to VSI

The n-leg inverter represented in Fig 2 imposes n voltages vck. So, we associate to this converter a
vectorial space  Fn with an orthonormal base of vectors (xc1, xc2,…, xcn). We can define then a voltage
vector:

vc = vc1
 xc1 + vc2 xc2 +…+ vcn 

xcn.

This voltage vector characterizes the different voltages that the inverter can impose to the load. Besides,
it is easy to find out the voltage vck from vc: we have only to achieve the scalar product of the two
vectors vc and xck : xck = vc . xck. From this point of view the vector vc is more convenient than complex
vector cv . For this last one, it is not so easy to obtain vck from cv .

Geometrical characterization of VSI

Each coordinate of vc  can accept two values, +E and –E. Consequently, a family of P = 2n vectors vcr

characterizes the inverter. Let us consider, for geometrical representation, the points O and Mr such as
OM r = vcr. The P points Mr  are the vertex of a polyhedron B.
For a 3-leg 2-level VSI (n=3), we obtain thus the 8 following vectors:
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Fig 1: Characterization by Space Vector Method of a  3-leg 2-level VSI connected to a star load with
isolated neutral.
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Fig 2: Representation of a n-leg 2-level inverter.
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In Fig 3 the polyhedron B is represented. It is simply a cube. We can point out that this
characterization of VSI is more complete, even for n=3, than this one obtained with the SVM because
no hypothesis on the connecting kind of the VSI load is putting forward. The two different points M0

and M7 represent two different VSI states which correspond only to the nul vector in VSM
representation (Fig 1).
For a 3-level VSI, this kind of characterization can be useful for studying the ground current escaping
through stray capacitors [6] but also the bearing current and shaft voltage [7] or the mean to reduce
common mode emissions [3]. Elimination of common mode voltage in three phase converters by use
of 4-leg VSI ([10], [11]) could also take advantage of this characterization.

Average control and barycenter notion

We consider a carrier-based PWM with a period carrier T. At the kT instant, <vc>, the mean value of
the vector vc(t) can be expressed by the formula:
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In this expression, tr is the activation duration of the vector vcr.

Since ∑
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=
. Consequently, the point M, define as )kT(cvOM = , can be

considered as the barycenter of the P points Mr, with barycentric coordinates tr/T.
Moreover, as tr is positive, M is inside the polyhedron B. So, when an average control is adopted, it is
the entire volume of the polyhedron B that characterizes the inverter and not only its vertex.

How to find the barycentr ic coordinates
Let us suppose that we have found a M point which allows to obtain the desired voltages for the load.
We know that M belongs to the polyhedron B and can be considered as the barycenter of P vertex of
the polyhedron B. The problem is to find the barycentric coordinates. In fact, it is possible to find less
than P vertex whose M is the barycenter.
The most practical interesting case consists in taking n+1 vertex which generate the vectorial space Fn.
First, because it will be always possible to find such n+1 vertex of the polyhedron B whose M will be
the barycenter. The reason is that the dimension of the vectorial space Fn associated to the n-leg VSI  is
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Fig 3: Characterization of a 3-leg 2-level Voltage Source Inverter (VSI)
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n. Second, in this case there will be a unique solution for the barycentric coordinates. For a three leg
VSI for example, the common sequences use effectively only four vertex (Fig 4 and Fig 5).

The most common case:  (n + 1) vertex and barycentric coordinates.

We consider a M point inside the polyhedron B. Then, we find n+1 vertex which create a Bn+1

polyhedron whose M belongs. For the 3-leg inverter on Fig 4 we have chosen, to obtain the desired
voltages, the points M0, M1, M2 and M7. We can find these n+1 vertex for example by taking, by

TT/2

instantaneous voltage vc1(t)

M 0 M 1 M 2 M 7 M 2 M 1 M 0

instantaneous voltage vc2(t)

 instantaneous voltage vc3(t)

<vc1>
<vc2>
<vc3>

busy points 
of  polyhedron

desired average
 voltages

t0 /2 t1/2 t2/2 t7/2 t1/2 t2/2 t0/2

Fig 4: example of points (M0, M1, M2, M7) used in a symetric Intersective Pulse Width Modulation
(Suboscill ation method).
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Fig 5: Representation of busy Mk points (M0, M1, M2, M7) in the sequence of symetric Intersective
Pulse Width Modulation chosen in Fig 4.
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successive tests of euclidian distances, the n+1 nearest vertex of M which generate the vectorial space
Fn. Let us note these n+1 vertex Nk, { }1n,...,1k +∈ .  So we can adapt the formula  (1) to our particular

case to obtain:
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On the basis of this formula we will find, by use of classic vectorial properties, the barycentric
coordinates tk/T.

1. A free family

As the n+1 points Nk generate the vectorial space Fn, the family of n vectors { N1Nk, 1<k<n+2}  is free.
Consequently the determinant, ),...,,det( 1NnNN3NN2N 111 + , is different from zero:

0),...,,det( ≠+1NnNN3NN2N 111 (4)

2. Mixed product

In a n-dimensional vectorial space  Fn, the mixed product of n vectors wk is simply the determinant of a
matrix, elaborated by concatenation of the n vectors wk:

( ) ),...,,det(... n21n21 wwwwww = .

The following property will be used : if exist k and r, k ≠r,  as wk = wr than ( ) 0... =n21 www     (5)

3. Barycentr ic coordinates

{ }1n,...,2k,k +∈∀ , we  can express tk with the n vectors N1Nj  :

( )
( )1n13121

1n11k111k13121

NN...NNNN
NN...NNMNNN...NNNN

+
++−=Ttk (6)

Then t1 is found by the following expression: t1= T– t2 – t3 – …– tn+1.
Proof:
To obtain this formula we have only to consider each term of the equation (3) and apply to them the
following application φ defined by: φ (w) = ( )1n11k11k13121 NN...NNwNN...NNNN ++− .

The property (5) implies the nulli ty of n terms of the equation (3) since:
( ) 0r =++− 1n11k111k13121 NN...NNNNNN...NNNN  if r≠k

The equation (3) becomes then:

( ) ( )1n11k111k131211n13121 NN...NNMNNN...NNNNNN...NNNN ++−+ =
T

tk

The property (4) allows us to divide by ( )1n13121 NN...NNNN + to give the announced result.

4. Analysis of results

The expression of tk is easy to implement because, for each tk,, there is only one vector, N1M , whose n
coordinates change. The others vectors N1Nk are constant and have to be calculated only one time.
The relation (6) shows that to obtain tk we have, in general, to solve an algebraic system of n equations
with n unknowns:

(t) = A (<vc>) + (b),

 with (b) a constant vector,  ( ) ( ) ( ) ( )tcn2c1ct1n32 vvvandttt >>+ <><<=><= �� cvt . The

matrix A characterizes the polyhedron Bn+1.
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Taking account the properties of the polyhedron Bn+1 can lead to reductions. For example, in a few
particular cases the matrix A is triangular. Then it is possible to obtain simply the solution tk because
A-1, the inverse matrix of A, is also triangular. We explicit this last case for a 3-leg inverter in a next
paragraph. An explicit research of the duration tk is then no more useful because they can be considered
as the intersection between a triangular shape wave and 3 horizontal li nes (we find out the
Suboscill ation Method which is one way to implement the results).

Other cases

1. More than n+1 vertex

When the number k of vertex is higher than n+1, the decomposition of OM  is not single. This will lead
to more commutations and is not used for this reason.

2. Less than n+1 vertex

When the number k of vertex is less than n+1, the barycentric resolution is not always possible. It
depends on the position of M in the polyhedron B. M must belong to a polyhedron generated by the k
vertex considered. For example, for a 3-leg inverter M must be inside a triangle defined by three vertex,
or inside the line segment defined by two vertex. These cases are used to optimize the number of
commutations [2],[12].

Study of a 3-level VSI
We consider a carrier-based PWM with a period carrier T.

Comparison with Suboscillation Method

Let us prove that the Suboscill ation Method is one way to determine the instants of commutation
without calculate them explicitly.
We suppose that the desired average voltages at kT instant are those represented on Fig 4. The busy
points of the polyhedron are then M0, M1, M2, M7. We have also defined a corresponding point M by

)kT(cvOM = =<vc1> xc1 + <vc2> xc2 + <vc3> xc3.

Let us identify (N1, N2, N3, N4) to (M7, M0, M1, M2). Then, our method gives us the durations t0, t1, t2
corresponding to M0, M1 and M2 vertex:
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We can rewrite these expressions:
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We find out the intersections of  three horizontal lines <vc1>, <vc2> and  <vc3> with  a triangular shape

varying between – E and  E : 
T

t
E4E     − for 0 < t <T/2 et 

T

t
E4E3     +− for T/2 < t < T .
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Comparison with SVM M ethod

For a symetric three phase load which is star connected with neutral isolated (Fig 6) we have the classic
relations between voltages:

•  uc1  = vc1 – vcN = 
3

1
( 2 vc1 - vc2 - vc3 ) ;

•  uc2  = vc2 – vcN  = 
3

1
( - vc1 + 2 vc2 - vc3 ) ;

•  uc3  = vc3 – vcN  = 
3

1
( - vc1 - vc2  + 2 vc3 ) ;

The image of the vector  vc = vc1 xc1 + vc2 xc2 + vc3 xc3 is then the vector uc = uc1 xc1 + uc2 xc2 + uc3 xc3.
As uc1+ uc2+ uc3 = 0, this vector belongs always to a plane which can be considered as a complex plane.
If we consider uc as a complex vector cu , we find the following expression:

[ ] a   v a  v  1 v 
3

2 2c3c2c1 +++=cu  with 3
2

j
ea

π

= .

This vector is effectively proportionnal to the classic phasor [ ] a   v a  v  1 v 
3

2 2c3c2c1 +++ .

It is possible to characterize the inverter for this kind of load by the image of the cube. We find that the
image of the vextex of the cube are the vertex Mkp of the well known hexagon in complex plane
represented Fig 7.
Consequently, the SVM formulation is effectively a particular case of our formulation.

Conclusion
We prove that, even with a characterization of VSI in a n-dimensional vector space Fn, it is possible to
calculate explicitly, as the SVM allows it in the complex plane, the conduction durations of the VSI
switches. The method that we propose relies on a geometrical vectorial VSI characterization which
enables, as the SVM, optimization, because of using geometrical tools as Euclidian distance, barycenter
and scalar or vectorial products. But, contrary to the SVM, the desired vector vc does not have to
belong to a 2-dimensionnal vectorial space. We have explicited a few aspects of this approach in the
well kwown case of 3-leg 2-level VSI. So we have showed the relations with the SVM method and with
the Suboscill ation method. The vectorial feature of the method allows to use it also for multilevel VSI
or instaneous control as the Direct Torque Control of electrical machines.
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Fig 6: Representation of a 3-leg 2-level VSI
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