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Some Remarks on Enlargement of Filtration and Finance

Monique Jeanblanc∗

June 2, 2022

Abstract

In this note, we give a short overview of enlargement (or expansion) of filtration to help the
reader who would like to have a survey on known results and some open questions. We try to
select some papers (not all!) which contain important results. We present some applications in
mathematical finance.

It was a great pleasure to write this paper in honour of my friend Catriona, who so efficiently
manages her duties for Springer, providing useful editorial advice, improving the quality of the
first versions of submitted books, promoting Springer volumes at many conferences, and contacting
authors both old and new. Like many of us, I met Catriona quite often in numerous mathematical
workshops. The time we spent together (too short) was always a pleasure. I will miss her during
the forthcoming meetings and wish her a pleasant retirement.

1 Introduction

The information about the world is different for all of us. Some of us are specialists in history, others
in philosophy and so on. The same is true of financial markets: some of the agents have informa-
tion, say, in US market, others in European market. We restrict this general framework to the case
where two groups of agents on the market may have different information about the dynamics of the
same traded asset. If one of them has more information than the remaining ones, and if this new
information is useful she can make profit or even arbitrages.

Examples:

• The Monty Hall problem is a well-known situation where you can make profit from extra
information:

Suppose you are on a game show, and you are given the choice of three doors: Behind one
door is a car; behind the others, goats. You pick a door, say No. 1, and the host, who knows
what’s behind the doors, opens another door, say No. 3, which has a goat. He then says to
you, “Do you want to pick door No. 2?” To increase your probability of winning, you have to
change your choice.

• William Duer is widely considered the first to have used his privileged knowledge in a scheme
that involved speculating on bank stocks in 1789, . Six months later, he resigned from his
position after it was discovered that he was taking advantage of his access to confidential
information in order to speculate on stocks and bonds (see investopedia).

∗Université Paris-Saclay, CNRS, Univ Evry, Laboratoire de Mathématiques et Modélisation d’Evry, 91037, Evry,
France; e-mail: monique.jeanblanc@univ-evry.fr
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• Another example took place on 19th June 1815, the day after the battle of Waterloo.
Nathan Rothschild, who knew about Napoleon’s defeat beforehands (thanks to a spy or a
carrier pigeon) went to the London Stock Exchange and proceeded to sell his English stocks,
causing others to do the same. The resulting Stock Market crash (market impact) enabled
Nathan Rothschild’s agents to then buy up these assets.

The American Securities and Exchange Commission (the SEC) defines insider trading as follows:
Insider is an officer, director, 10% stockholder or anyone who possesses inside information because of
his or her relationship with the Company or with an officer, director or principal stockholder of the
Company. Rule 10b-5’s application goes considerably beyond just officers, directors and principal
stockholders. This rule also covers any employee who has obtained material non-public corporate
information, as well as any person who has received a “tip” from an Insider of the Company con-
cerning information about the Company that is material and nonpublic, and trades (i.e., purchases
or sells) the Company’s stock or other securities. This is illegal (see the SEC web page for recent
cases and more information).

One of the IFRS (International Financial Reporting Standard) rules is that an entity need not
undertake an exhaustive search of all possible markets to identify the principal market or, in the
absence of a principal market, the most advantageous market.

In both cases, the notion of different information is advanced, and a goal is to try to model the
new information and its impact on the market. The new information mainly concerns the behaviour
of prices in the future, for example that the firm will close a part of its activity next month. We
assume that a group of agents has access to the information described by a filtration F and we shall
model some kinds of new information. Then the insider can use the knowledge of this information
to construct a portfolio and have a better terminal wealth.

Here, we do not distinguish “illegal” insider trading from trading with new information. We are
only trying to see the impact of new information on the dynamics of prices.

2 Mathematical Facts

2.1 Problem of enlargement of filtration

At the beginning this problem was purely a mathematical problem. In the 70s, Itô [?] underlined
that, in the case of a Brownian motion B with natural filtration F, in order to give a meaning to∫ t

0
B1dBs, or more generally to

∫ t

0
θsB1dBs where θ is an F-adapted process (note that the process

Ψ = (Ψt = B1, ∀t ≥ 0) is not F-adapted) it is natural to enlarge the filtration F with the random
variable B1 and to obtain the decomposition of B as a semimartingale1 in this enlarged filtration
(this is known as the Brownian bridge). Recall that the set of semimartingales is the larger space of
processes which makes it possible to define a “good” stochastic integration (Bitcheler-Dellacherie-
Mokobodzki Theorem [?, Section 1.2.1]).
At the same time, independently of each other, P-A. Meyer and D. Williams asked the question:
what can be said about F-martingales when one introduces the smallest filtration containing F and
turns a given random time into a stopping time?

A first fact is that the martingale property is not stable under enlargement of filtration. More
precisely, if (Ω,G,P) is a probability space endowed with two filtrations F and K with F ⊂ K (i.e.,
Ft ⊂ Kt, ∀t ≥ 0), and if X is a (P,F)-martingale, X can fail to be a (P,K)-martingale. The
general problem of enlargement of filtration is the following one. Let K be a filtration larger than F:

1A semimartingale is the sum of a local martingale and a process with finite variation. When the finite variation
part can be chosen as a predictable process, the semimartingale is said to be special and the decomposition with
predictable part is unique.
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under which conditions are all F-martingales K-semimartingales and obtain the K-semimartingale
decomposition of any F-martingale. The condition is called the (H′)-hypothesis by Jacod [?] and
many other authors.
As usual, for a filtration K, we denote by P(K) the predictable σ-algebra and by O(K) the optional
σ-algebra on Ω× R+.

Example 2.1 Let X be an F-martingale of the form Xt = E[X∞|Ft] where X∞ ∈ F∞ is integrable,
and Kt = F∞,∀t ≥ 0. Then E[X∞|Kt] = X∞ ̸= Xt, and X is not a K-martingale.

Example 2.2 Let F be the filtration generated by a Brownian motion B and Kt = Ft+δ, ∀t ≥ 0,
where δ > 0. In that case, B is not a K-semimartingale (see, e.g., [?, Example 1.19]).

For financial purposes, semimartingales play an important role: Let S be the F-adapted price
process, (eventually d-dimensional) locally bounded and assume that the riskless asset is constant
(equal to 1). The fundamental theorem of asset pricing claims that No Free Lunch with Vanishing
Risk (NFLVR) holds in F if and only if there exists a strictly positive F-martingale L such that SL
is an F-local martingale, or equivalently if there are no arbitrages (see, e.g., Björk [?, Chapter 10]).
Another weaker result states that there is No Unbounded Profits with Bounded Risk (NUPBR) if
and only if there exists an F-strictly positive local martingale L such that SL is an F-local mar-
tingale. These two characterisations require that asset prices are semimartingales under historical
probability. The (local) martingale L is called a (local) deflator.

The financial definition of NFLVR and NUPBR is too long to give in this note, and would not
be particularly useful. Instead we refer the reader to Delbaen & Schachermayer [?] and Björk [?,
Chapter 10] for NVLVR and Kabanov, Kardaras & Song [?] for NUPBR.

Despite an extensive literature, very few cases are solved and very few concrete examples are
known (see a list of examples in [?] and [?]). Studies are mainly concerned by

• Initial Enlargement: A filtration F being given and ζ being a random variable, one sets F(ζ) =
F ∨ σ(ζ) (this is the case in Itô, where ζ = B1). This problem was solved in a quite general
setting by Jacod [?]. We shall give a proof under a restrictive condition and recall the general
result, without proof.

• Progressive Enlargement: A nonnegative random variable τ is given. We denote by A the
indicator process At = 11{τ≤t} and by A = (At, t ≥ 0) its natural filtration. A filtration F
being given, one sets Gt = Ft ∨ At, ∀t ≥ 0 (up to a regularization, so that G is continuous on
right). In other words, G is is the smallest filtration containing F and turning τ into a stopping
time. This corresponds to the question of Meyer and Williams. The first mathematical study
was done by Barlow [?] for a specific class of random times, called honest times.

• Others: The new information can be the knowledge of a random variable at some random
time (see Corcuera & Valkeika [?]) or more generally, two filtrations F and F̃ being given, one

studies the enlargement of F with F̃, i.e., F ∨ F̃. This general problem was intensively studied
by Protter and various coauthors [?, ?].

Up until now, four lecture notes have been dedicated to enlargement of filtration: Aksamit &
Jeanblanc [?], Jeulin [?], Jeulin & Yor [?] and Mansuy & Yor [?]. Chapter 20 of Dellacherie et al.
[?] contains a very general presentation of enlargement of filtration theory, based on fundamental
results of the theory of stochastic processes, developed in the previous chapters and books by the
same authors. Chapter X in Jacod [?] presents deep results in a general setting. Chapter 12 in
Yor [?] and the book of Mansuy & Yor [?] focus on the case where all martingales in the reference
filtration F are continuous (hypothesis (C)). The paper of Nikeghbali [?] also assume hypothesis
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(C) and the fact that τ avoids all F-stopping times (hypothesis (A)). A survey containing many
exercises can be found in Mallein & Yor [?, Chapter 10]. Protter [?] and Jeanblanc et al. [?] have
devoted a chapter of their books to the subject. The lecture by Song [?] contains a general study of
the subject. The book of Hillairet & Jiao [?] contains applications to portfolio optimization.

Quite surprisingly, applications of enlargement of filtration theory to finance started only at the
end of the 90s with the thesis of Amendinger [?] and independently in the paper Grorud & Pontier
[?].

A basic example is that of point processes with bounded variation, hence the compensated mar-
tingale exists in any filtration larger than its natural one. Of course, the compensator depends on
the filtration. See [?] and [?].

We shall need the notion of projections, that we recall now. If H is a filtration satisfying H ⊂ K,
and Y is a K-adapted process such that Yϑ11{ϑ<∞} is integrable for any H-stopping time ϑ, the H-

optional projection of Y is the H-optional process o,HY such that E[Yϑ11{ϑ<∞}|Hϑ] =
o,HYϑ 11{ϑ<∞},

for any H-stopping time ϑ. This optional projection satisfies E[Yt|Ht] =
o,HYt, for all t ≥ 0. If Y is

a càdlàg K-martingale, then o,HY is an H-martingale. See, e.g., [?, Section 1.3.1].

2.2 Particular cases

2.2.1 Discrete time

In discrete time, any integrable H-adapted process X is an H-special semimartingale. Indeed Xn =
Mn + Vn,∀n ≥ 0 where

Mn = Mn−1 +Xn − E[Xn|Hn−1], Vn = Vn−1 + E[Xn −Xn−1|Hn−1]

and M0 = X0, V0 = 0. The process M is a martingale, V is predictable with finite variation.
Therefore, if X is an F-martingale and K a larger filtration, X is a K-special semimartingale and its
semimartingale decomposition reduces to computations of the conditional expectations E[Xn|Kn−1]
and E[Xn−1|Kn−1]. See Choulli & Deng [?] or Blanchet & Jeanblanc [?] for examples, as well as for
initial enlargement and progressive enlargement.

These authors also present the study of arbitrages due to the new information. This is a difficult
problem, and the proofs are similar to those in continuous time.

2.2.2 Immersion

Let F ⊂ K. Immersion holds between F and K if any F-local martingale is a K-local martingale:
this is equivalent to, for any t ≥ 0, the σ-fields F∞ and Kt being conditionally independent given
Ft, i.e., ∀ t ≥ 0, ∀Kt ∈ Kt,∀F∞ ∈ F∞, both being square integrable

E[Kt F∞|Ft] = E[Kt|Ft]E[F∞|Ft] .

This case (also called the (H)-hypothesis) was presented in Brémaud & Yor [?] and this hypothesis
is assumed in many studies, in particular for progressive enlargement in a credit risk framework.
Roughly speaking, it means that the new information contained in Kt has no influence on the past
information Ft. Note that if F ⊂ K ⊂ G and F is immersed in G, then F is immersed in K (but
K can fail to be immersed in G). A nice property is that under immersion, NFLVR is preserved.
Indeed, if L is an F-deflator, it is a G-positive martingale as well and a G-deflator, the process SL
being an F and a G-local martingale.

Immersion is not stable under change of probability (see [?]).
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Example: An important example is the one introduced by Lando [?]. Given a filtered
probability space (Ω,G,F,P) and a non negative F adapted process λ, as well as a random variable
Θ, independent of F with unit exponential law, one defines

τ = inf{t :

∫ t

0

λsds ≥ Θ} .

Then, since obviously F is immersed in F ∨ σ(Θ) (by independence) and F ⊂ G ⊂ F ∨ σ(Θ), where
G is the progressive enlargement of F by τ , the filtration F is immersed in G.

3 Initial Enlargement

A filtered probability (Ω,G,F,P) and a G-measurable random variable ζ being given, one sets F(ζ) =
F ∨ σ(ζ). We assume that F0 is trivial, and, if necessary, we take the smallest right-continuous

filtration containing F(ζ). Note that F (ζ)
0 = σ(ζ).

This is a generalisation of the problem studied by Itô, for which ζ = B1.

We now present two important results on measurability:

For any fixed t > 0, every F (ζ)
t -measurable random variable Y

(ζ)
t is of the form Y

(ζ)
t = yt(ω, ζ(ω))

where yt(·, u) is, for any u, an Ft-measurable random variable.

Every F(ζ)-predictable process Y (ζ) is of the form Y
(ζ)
t = yt(ω, ζ(ω)) where (t, ω, u) 7→ yt(ω, u)

is a P(F)⊗ B(R)-measurable function [?, Lemma 3.13].

We shall now simply write yt(ζ) for yt(ω, ζ(ω)). The result on predictable processes cannot be
extended in full generality to optional processes, but no counterexample is known.

3.1 Jacod’s conditions

We start with a particular case, for which the proof is easy, found simultaneously by Grorud &
Pontier [?] and Amendinger [?]. Then, we shall state (without proof) the general result of Jacod.

Assumption (E): The F-conditional law of ζ is equivalent to η, the law of ζ. More precisely
there exists a non-negative O(F)⊗ B(R+)-measurable map (ω, t, u) → pt(ω, u) càdlàg in t such that

for every u, the process (pt(u))t≥0 is a strictly positive F-martingale,
for every t ≥ 0, the measure pt(u)η(du) equals P(τ ∈ du | Ft), in other words, for any Borel

bounded function h, for any t ≥ 0

E[h(ζ)|Ft] =

∫
R
h(u)pt(u)η(du) .

Assumption (E) is also called Jacod’s equivalence assumption.

Lemma 3.1 Under Assumption (E), the process L defined as Lt =
1

pt(ζ)
, t ≥ 0 is a (P,F(ζ))-

martingale. Let P∗ be the probability measure defined on F(ζ) as

dP∗
|F(ζ)

t
= Lt dP|F(ζ)

t
. (3.1)

Under P∗, the random variable ζ is independent of Ft for any t ≥ 0 and, moreover

P∗
|Ft

= P|Ft
for any t ≥ 0, P∗

|σ(ζ) = P|σ(ζ).

5



Proof: Obviously, one has L0 := 1
p0(ζ)

= 1. Setting Lt(u) :=
1

pt(u)
, ∀t ≥ 0, for any bounded Borel

function h and any Fs-measurable bounded random variable Ks and s ≤ t, one has

E[Lth(ζ)Ks] = E
[
Ks

∫
R
Lt(u)h(u)pt(u)η(du)

]
= E

[
Ks

∫
R
h(u)η(du)

]
= E[Ks]

∫
R
h(u)η(du) = E[Ks]E[h(ζ)] .

For t = s, we obtain E[Lsh(ζ)Ks] = E[Ks]E[h(ζ)], hence E[Lth(ζ)Ks] = E[Lsh(ζ)Ks]. Since h and

Ks are arbitrary and generate F (ζ)
s , it follows that L is an F(ζ)-martingale. Thus, for each t ≥ 0,

we can define the probability measure P∗ on F(ζ)
t by dP∗|F(ζ)

t
= Lt dP|F(ζ)

t
. The equivalence of P∗

and P on F (ζ)
t for each t ∈ [0,∞) follows from the strict positivity of Lt. For any bounded Borel

function h, any Ft-measurable bounded random variable Kt, and denoting by E∗ the expectation
under P∗, the above computations yield

E∗ [h(ζ)Kt] = E[h(ζ)]E[Kt]. (3.2)

For h = 1 (resp. Kt = 1), one obtains E∗[Kt] = E[Kt] (resp. E∗[h(ζ)] = E[h(ζ)] and the as-
sertions P∗|Ft = P|Ft and P∗|σ(ζ) = P|σ(ζ) are proven. Thus the identity (3.2) can be rewritten
as E∗ [h(ζ)Kt] = E∗[h(ζ)]E∗[Kt], which shows that the random variable ζ and the σ-field Ft are
independent under P∗. □

Corollary 3.2 Under the probability measure P∗, F is immersed in F(ζ).

Proof: Since under P∗, the random variable ζ and the σ-field F∞ are independent, the assertion
follows. □

Under Assumption (E), we study a financial market (Ω,G,F,P, S) with null interest rate. If the
prices S are (P,F) martingales, then P∗ defined above is an equivalent martingale measure for the
market (Ω,G,F(ζ), S).
Note that if ζ satisfies (E) under P, it satisfies (E) under any probability measure equivalent to P. If
the financial market is such that there exists an F-equivalent martingale measure Q, then, denoting
pQ(ζ) the density of ζ under Q, it follows that Q∗ is an equivalent probability measure where

Q∗|F(ζ)
t

=
1

pQt (ζ)
Q|F(ζ

t
. (3.3)

□

Proposition 3.3 Under Assumption (E), any (P,F)-local martingale X is a (P,F(ζ))-special semi-

martingale with decomposition Xt = X
(ζ)
t +

∫ t

0

d⟨X, p.(u)⟩s|u=ζ

ps−(ζ)
, where X(ζ) is a (P,F(ζ))-local mar-

tingale.

Proof: If X is a (P,F)-martingale, it is a (P∗,F(ζ))-martingale. Indeed, since P and P∗ are equal on
F, X is a (P∗,F) martingale, hence, using the fact that ζ is P∗ independent of F, it is a (P∗,F(ζ))

martingale). Noting that dP = pt(ζ)dP∗ on F (ζ)
t , Girsanov’s theorem yields that the process X(ζ),

defined by X
(ζ)
t = Xt −

∫ t

0
d⟨X,p.(u)⟩s|u=ζ

ps−(ζ) , is a (P,F(ζ))-martingale.

The general result of Jacod [?] (proved 20 years before the equivalence result) is the following
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Theorem 3.4 Assume that there exists a non-negative O(F) ⊗ B(R)-measurable map (ω, t, u) →
pt(ω, u) càdlàg in t such that

for every u, the process (pt(u))t≥0 is a non-negative F-martingale,
denoting by η the law of ζ, for every t ≥ 0, the measure pt(u)η(du) equals P(τ ∈ du | Ft), in

other words, for any Borel bounded function h, for any t ≥ 0

E[h(ζ)|Ft] =

∫
R
h(u)pt(u)η(du) .

Then, any (P,F)-local martingale X is a (P,F(ζ))-special semimartingale with canonical decomposi-
tion

Xt = X
(ζ)
t +

∫ t

0

d⟨X, p.(u)⟩s|u=ζ

ps−(ζ)
, (3.4)

where X(ζ) is a (P,F(ζ))-local martingale.

The proof is more delicate, the process 1/p(ζ) is well defined (since, from Jacod [?, Corollaire
1.11], p(ζ) > 0) but is no longer a martingale. Jacod [?] mentioned (page 25) that it would be
possible to use Girsanov- type results in the absolute continuity condition (page 15), but that in
any case, the difficulties are due to measurability conditions in both approaches. The assumption
of absolute continuity is also called the (J )-assumption.

Under the (J ) hypothesis

a) every F(ζ)-optional process Y (ζ) is of the form Y
(ζ)
t (ω) = yt(ω, ζ(ω)) for some F⊗B(Rd)-optional

process (yt(ω, u), t ≥ 0) (see Fontana [?]).

b) Let Y
(ζ)
T be an F (ζ)

T -measurable integrable random variable. Then, for s < T :

E
(
Y

(ζ)
T |F (ζ)

s

)
=

1

ps(ζ)
E
(
yT (u)pT (u)|Fs

)∣∣
u=ζ

.

c) Characterization of (P,F(ζ))-martingales in terms of (P,F)-martingales: The process Y (ζ) is a
(P,F(ζ))-martingale if and only if, for any u, the process y(u)p(u) is a (P,F) martingale.

We now present the propagation of the predictable representation property.
We assume that there exists a (P,F)-local martingale X such that any (P,F)-local martingale Y can
be represented as

Yt = Y0 +

∫ t

0

φsdXs (3.5)

for some φ ∈ P(F).
Then (see Fontana [?]), under the (J )-hypothesis, every (P,F(ζ))-martingale Y (ζ) admits a rep-

resentation

Y
(ζ)
t = Y

(ζ)
0 +

∫ t

0

ΦsdX
(ζ)
s (3.6)

where Φ ∈ P(F(ζ)) and Y0 ∈ F (ζ)
0 . Here X(ζ) is the (P,F(ζ))-martingale part (given in (3.4)) of the

(P,F(ζ))-semimartingale X introduced in (3.5).

3.2 Brownian bridge

The Brownian Bridge is obtained when studying the initial enlargement of a Brownian filtration F
(generated by the Brownian motion B) with the random variable B1. Note that Jacod’s absolute
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condition is not satisfied at time 1. Nevertheless, it is not difficult to prove (see Jeulin [?, Th. 3.23]
or [?, Proposition 4.1]) that

B
(B1)
t := Bt −

∫ t∧1

0

B1 −Bs

1− s
ds, 0 ≤ t ≤ 1

is an F(B1)-martingale, a first step being to prove the existence of the integral. Then, using elemen-
tary computations, it is easy to prove that B̂ is a martingale, and by Lévy’s Theorem, it is a Brownian
motion. This main example presents another point of interest: even if B is a semimartingale, not
all F-martingales are G-semimartingales (see [?]).

Theorem 3.5 Let X be an F-local martingale with representation Xt = X0 +
∫ t

0
φsdBs for an F-

predictable process φ satisfying
∫ 1

0
φ2
sds < ∞ a.s. Then, the following conditions are equivalent:

(a) the process X is an F(B1)-semimartingale;

(b)
∫ 1

0
|φs| |B1−Bs|

1−s ds < ∞ P-a.s.;
(c)

∫ 1

0
|φs|√
1−s

ds < ∞ P-a.s.
If these conditions are satisfied, the F(B1)-semimartingale decomposition of X is, for t ≤ 1,

Xt =X0 +

∫ t∧1

0

φsdB
(B1)
s +

∫ t∧1

0

φs
B1 −Bs

1− s
ds. (3.7)

This is an example where some F-martingales are F(B1)-semimartingales, but not all of them.

Note that, in a Brownian filtration, Yor’s criterion [?, Section 4.3] is more general than Jacod’s
condition.

Application: Consider a financial market with null interest rate and risky asset dSt = St(bdt+
σdBt), S0 = x, driven by a Brownian motion B and ζ = ST . The arbitrage is obvious (no need of
mathematics) and the conditional density does not exist on [0, T ]. If one takes ζ = ST + ϵ where ϵ
is a discrete random variable, independent of F, Jacod’s absolute continuity assumption is satisfied
(see Amendinger et al. [?]).

4 Progressive enlargement

Here F is a given filtration, τ a finite random time and G the progressive enlargement: roughly
speaking, Gt = Ft on t < τ and Gt = Ft ∨ σ(τ) after τ .
There are typically two cases: before τ and after τ . Before τ , there is no new information, except τ
has not yet occurred. After τ , the time when τ has occurred is known. It is easy to illustrate with
a “financial” example. Let S be the price of a risky asset (e.g., a Black and Scholes dynamic, and
assume zero interest rate. Let τ = inf{t : St = supu≤T Su}. If an agent has access to the progressive
enlargement: before τ she will by the stock, say at time 0 at price S0, and wait till τ , when she will
sell the stock making arbitrage. She can also realize an arbitrage after τ : at time τ , she short sells
the stock at price Sτ and delivers it at price St < Sτ at any time t after τ . This kind of random
time is called an honest time (see below).

The F-dual optional projection Ao of A is the optional process such that for any non-negative
bounded F-optional process Y such that Yτ is integrable

E[Yτ ] = E

[∫
[0,∞)

YsdA
o
s

]
.
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The F-dual predictable projection Ap of A is the F-predictable process such that for any non-negative
bounded F-predictable process Y , such that Yτ is integrable,

E[Yτ ] = E

[∫
[0,∞)

YsdA
p
s

]
. (4.1)

Two processes are important: the optional projection of 1 − A, denoted Z, and the optional
projection of 1−A−, denoted Z̃, i.e., Z = o(1−A), and Z̃ = o(1−A−).

Comment 4.1 One can prove (see, e.g., [?, Proposition 1.4]) that Z = m−Ao = M −Ap, where m

and M are F-martingales and that Z̃ = m−Ao
−. The decomposition Z = M−Ap is the Doob-Meyer

decomposition of Z,
Note that

Zt = P(τ > t|Ft), Z̃t = P(τ ≥ t|Ft). (4.2)

Defining Z as in (4.2) can create some difficulties. Indeed the equality is valid a.s. for any t, and
(except if Z is continuous) prevents us for defining the process Z (the union of negligible sets can
fail to be negligible)

4.1 Before τ

Lemma 4.2 For any Gt-measurable random variable Y G
t , there exists an Ft-measurable random

variable Y such that Y G
t 11{t<τ} = Yt11{t<τ}. If XT is integrable and FT -measurable, one has

E[XT 11{T<τ}|Gt] = 11{t<τ}
E[XTZT |Ft]

Zt
.

Proof: By definition of G, the existence of Y is obvious. The uniqueness is not granted. The sec-
ond assertion follows from the first, taking conditional expectation with respect to Ft the equality
E[XT 11{T<τ}|Gt) = 11{t<τ}Yt. Note that Z > 0 on {t < τ}. See Elliott et al. [?, Section 3.1]. □

The G-predictable processes can be described in terms of a family of F-predictable processes:

Lemma 4.3 For any G-predictable bounded process Y G, there exists a bounded F-predictable process
Y and a map y : R+ × R+ × Ω → R, which is B(R+) × P(F)-measurable and bounded such that
Y G
t = Yt11{t≤τ} + y(t, τ)11{τ<t}. (See Jeulin [?, Lemma 4.4].)

The G-compensator of A is the G-predictable increasing process ΛG such that

M̃ := A− ΛG (4.3)

is a G-martingale; this process is flat after τ (i.e., ΛG
t∧τ = ΛG

t ). From Lemma 4.3, there exists
an F-predictable increasing process Λ such that ΛG

t = Λt∧τ ,∀t ≥ 0. Furthermore, ΛG
t 11{t≤τ} =

11{t≤τ}
∫ t

0
dAp

s

Zs−
(see, e.g., Proposition 2.15, page 37 in [?]). The process Λ is not uniquely defined

after τ (except if Z− > 0) and, hereafter, we choose

dΛt =
dAp

t

Zt−
11{Zt−>0}, ∀t ≥ 0, Λ0 = 0 . (4.4)

As an application of the above and by definition of dual projections, we obtain the following
result (see, e.g., Jeanblanc & Li [?]) which is useful for pricing defaultable claims:
For any bounded F-predictable process K,

E[Kτ11{τ≤T}|Gt] = Kτ11{τ<t} + 11{τ≥t}
E[
∫ T

t
KudA

p
u|Ft]

Zt
.
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For any bounded F-optional process K,

E[Kτ11{τ≤T}|Gt] = Kτ11{τ≤t} + 11{τ>t}
E[
∫ T

t
KudA

o
u|Ft]

Zt
.

Lemma 4.4 Under the two assumptions (A) and (C), any (càdlàg) (P,F)-local martingale X
stopped at time τ is a (P,G)-semimartingale with decomposition

Xt∧τ = XG
t +

∫ t∧τ

0

d⟨X,M⟩s
Zs−

where XG is a (P,G)-local martingale. Here M is the martingale part in the Doob-Meyer decompo-
sition of Z.

Proof: Let Y G
s be a Gs-measurable random variable. There exists an Fs-measurable random vari-

able ys such that Y G
s 11{s<τ} = ys11{s<τ}, hence, if X is an F-martingale, for s < t,

E(Y G
s (Xt∧τ −Xs∧τ )) = E(Y G

s 11{s<τ}(Xt∧τ −Xs∧τ ))

= E(ys11{s<τ}(Xt∧τ −Xs∧τ ))

= E
(
ys(11{s<τ≤t}(Xτ −Xs) + 11{t<τ}(Xt −Xs))

)
.

From the definition of Z and (4.1),

E
(
ys11{s<τ≤t}Xτ

)
= −E

(
ys

∫ t

s

XudZu

)
.

From the integration by parts formula (taking into account the continuity of Z and X)∫ t

s

XudZu = −XsZs + ZtXt −
∫ t

s

ZudXu − ⟨X,Z⟩t + ⟨X,Z⟩s .

We have also

E
(
ys11{s<τ≤t}Xs

)
= E (ysXs(Zs − Zt))

E
(
ys11{t<τ}(Xt −Xs)

)
= E (ysZt(Xt −Xs))

hence, from the martingale property of X,

E(Y G
s (Xt∧τ −Xs∧τ )) = E(ys(⟨X,M⟩t − ⟨X,M⟩s))

= E
(
ys

∫ t

s

d⟨X,M⟩u
Zu

Zu

)
= E

(
ys

∫ t

s

d⟨X,M⟩u
Zu

E(11{u<τ}|Fu)

)
= E

(
ys

∫ t

s

d⟨X,M⟩u
Zτ
u

11{u<τ}

)
= E

(
ys

∫ t∧τ

s∧τ

d⟨X,M⟩u
Zu

)
.

The result follows. □

The general case is more delicate. See, e.g., [?, Section 76] or [?, Theorem 5.1].

Theorem 4.5 Every càdlàg F-local martingale X stopped at time τ is a special G-semimartingale
with the canonical decomposition

Xτ
t = XG

t +

∫ t∧τ

0

d⟨X,m⟩s
Zs−

, (4.5)

where XG is a G-local martingale and m is as defined in Comments 4.3.
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Arbitrages before τ : Introduce R̃ := R11{Z̃R=0<ZR−} +∞11{Z̃R=0<ZR−}c , where R := inf{t :

Zt = 0}. The following conditions are equivalent.

(1) The F-stopping time R̃ is infinite.
(2) For any F-local martingale X, there exists a non-negative G-local martingale ζ such that Xτζ
is a G-local martingale, where Xτ is the stopped process (non arbitrage of the first kind).
See [?, Theorem 5.46] for a proof.

Arbitrages under the (E) hypothesis: Under the (E) hypothesis, if discounted prices are
(P,F)-martingales, P∗ (defined in (3.1)) is an equivalent martingale measure on G. Otherwise, if
there exists an equivalent martingale measure Q for F-adapted discounted prices, Q∗ defined in (3.3)
is an equivalent martingale measure in G.

4.2 Some facts on the predictable representation property

We assume that the predictable representation property holds in the filtration F, i.e., there exists an
F-local martingale X such that every F-local martingale Y can be represented as Yt = Y0+

∫ t

0
φsdXs

for some φ ∈ P(F)
Under some conditions, the predictable representation property propagates to G. For example,

(see Fontana [?]) under the (J )-hypothesis (XG, M̃) has the the predictable representation property

in G where XG is the G martingale part of the G-semimartingale X and M̃ is the G-martingale
defined in (4.3).
We refer to [?, Section 5.6] for more information.

We now study the relationship between G-martingales and F-martingales obtained in [?, propo-
sition 2.2]

Proposition 4.6 Under the (J )-hypothesis, a G-optional process of the form Y G := ỹ11[[0,τ [[ +
ŷ(τ)11[[τ,∞[[ where ỹ and ŷ(u) are F-optional processes, is a G-martingale if and only if the following
two conditions are satisfied
a) for η-a.e u,

(
ŷt(u)pt(u), t ≥ u

)
is an F-martingale;

b) the process y is an F-martingale, where

yt := E(Yt|Ft) = ỹtZt +

∫ t

0

ŷt(u)pt(u)η(du) . (4.6)

Under the (J )-hypothesis, if the function (ω, u) → X(ω, u) is FT ⊗B(R+)-measurable and bounded,
then

E[X(τ)|Gt] = 11{t<τ}
1

Zt
E[
∫
]t,∞]

X(u)pT (u)η(du)|Ft] + 11{τ≤t}
1

pt(τ)
E[X(u)pT (u)|Ft], for t ≤ T

and

E[X(τ)|Gt] = 11{t<τ}
1

Zt

∫
]t,∞]

X(u)pt(u)η(du) + 11{τ≤t}X(τ), for T < t

(see e.g., [?, lemma 5.24]).

4.3 Immersion

Immersion is easily characterized in a progressive enlargement setting: F is immersed in G if and
only if

P(τ > t|Ft) = P(τ > t|F∞)

(see, e.g., [?, lemma 3.8]). This implies that Z is decreasing and Z = 1 − Ao (see [?, Proposition
3.9]).
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Many models of “default risk” are constructed as follows (see Gueye & Jeanblanc [?]). Let F be
a given filtration and K a càdlàg increasing F-adapted process, and define

τ = inf{t : Kt ≥ Θ}

where Θ is a random variable independent of F with unit exponential law. Then P(τ > t|Ft) = e−Kt ,
and immersion holds between F and G. If K is continuous, τ avoids F stopping times. If not, the
jump times of K are the F-stopping times not avoided by τ .

Comment 4.7 Let us point out a “technical” difficulty. Assume that K has no jumps at constant
time, which implies P(τ = t) = 0,∀t > 0. This does not imply that Z = Z̃ (the equality meaning

that the two processes are indistinguishable). Indeed, Z = 1−Ao whereas Z̃ = 1−Ao
−.

We have underlined that immersion is not stable under change of probability. However, let
us point out that if a price process S is given on (Ω,G,F,P) and the interest rate is null, if the
corresponding financial market satisfies NFLVR, and if the (Ω,G,G,P, S) financial market satisfies
NFLVR, then one can choose a G-equivalent martingale measure such that immersion holds. If the
market (Ω,G,F,P) is complete and discounted prices are (P,F)-martingales, under any G-equivalent
martingale measure immersion holds.

4.4 Honest times

Honest times were introduced by Barlow [?].

Definition 4.8 A random time τ is an F-honest time if, for every t > 0, there exists an Ft-measurable
random variable τt such that τ = τt on {τ < t}.

Fontana et al. [?] assume that τ is honest, and the following conditions (a), (b) and (c)
(a) The restricted financial market (Ω,F,P, S) satisfies NFLVR.
(b) The random time τ avoids all F-stopping times (Condition (A)).
(c) The martingale part of the semimartingale S is a continuous F-local martingale MS =

(
MS

t

)
t≥0

which has the F-predictable representation property in the filtration F.

Then, they prove that the (F,P, S) market is complete and
(1) NUPBR holds in the enlarged market on the time horizon [0, τ ],
(2) there exists an explicit arbitrage opportunity in the enlarged market on the time horizon [0, τ ]
and on the interval [τ, ϑ] for an explicit G stopping time ϑ (see [?, Theorem 3],
(3) NFLVR fails to hold in the enlarged market on the time horizon [0, τ ],
(4) NUPBR fails to hold in the enlarged financial market on the global time horizon [0,∞].

In the case of honest time, for a (P,F)-local martingale X

Xt = XG
t +

∫ t∧τ

0

1

Zs−
d⟨X,m⟩s −

∫ τ∨t

τ

1

1− Zs−
d⟨X,m⟩,s,

where XG is a (P,G)-local martingale.
Any G-optional process can be written

Y = L11[[0,τ ]] + J11[[τ,∞]] +K11[[τ,∞[[,

where L and K are F-optional processes and J is an F-progressively measurable process.
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Example 4.9 We recall Barlow’s counterexample given in [?, p. 319] to show that a G-optional
process cannot always be decomposed as L11[[0,τ [[+K11[[τ,∞[[, where L and K are F-optional processes.
Let B be a Brownian motion, F its natural filtration ϑ = inf{t : |Bt| = 1}, τ = sup{t ≤ ϑ : Bt = 0}
and G the progressive enlargement of F with τ . The process X defined as Xt = 11{t≥τ}sgn(Bϑ) is
right-continuous and G-adapted, hence G-optional. Moreover X is a G-martingale. Obviously, if
the pair (L,K) exists, then L = 0 and one can choose K to be F-predictable, since O(F) = P(F).
Then ∆Xτ = Kτ would be Gτ−-measurable, which contradicts the G-martingale property of X.

Lemma 4.10 Assume that (Ω,F,P, S) is a complete market satisfying NFLVR on the time horizon
[0,T]. If τ is a finite honest time which satisfies (A), there are classical arbitrages before τ for
(Ω,G,P, S) and classical arbitrages after τ for (Ω,G,P, S).

Proof: See [?, Section 5.8.1] and the examples in [?]. □

5 Information drift

Assume that B is an F-Brownian motion and BK
t = Bt+

∫ t

0
ksds a K-Brownian motion where F ⊂ K.

When S is the F-adapted price of an asset, one has (in the Brownian case)

dSt = St(btdt+ σtdBt)

= St((btσt + kt)dt+ σtdB
K
t ) .

The quantity k is called the information drift. See [?] or [?] for more information.
In the case of portfolio optimisation, when the interest rate is null, denoting by X the wealth

associated to a self financing portfolio, i.e., dXt = πtdSt, X0 = x, one computes easily

sup
π∈F

E[ln(XT )] = lnx, sup
π∈FK

E[ln(XT )] = lnx+ E[
∫ T

0

k2t dt] .

6 Conclusion and open problems

We hope to have given a presentation of enlargement problems. As we mentioned at the beginning,
many problems remain to be solved . For example, solve an optimal stopping problem in an en-
larged filtration, compare the solution of a BSDE in two filtrations, give the G-decomposition of any
martingale when τ is a random time in a Poisson filtration (see [?] for some examples). It would
be interesting to provide some tests to detect insider trading (as in [?]). The reverse problem of
shrinkage is to give the F-decomposition of the optional projection of a K-semimartingale and has
no general solution.

Acknowledgement: The author thanks warmly the language editor for improving a lot English
language and the two referees for providing some help to improve the paper.
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